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Abstract. Accurate information on forest tree species composition is vital for various scientific applications,
as well as for forest inventory and management purposes. Country-wide, detailed species maps are a valuable
resource for environmental management, conservation, research, and planning. Here, we performed the classi-
fication of 16 dominant tree species and genera in Poland using time series of Sentinel-2 imagery. To generate
comprehensive spectral–temporal information, we created Sentinel-2 seasonal aggregations known as spectral–
temporal metrics (STMs) within the Google Earth Engine (GEE). STMs were computed for short periods of
15–30 d during spring, summer, and autumn, covering multi-annual observations from 2018 to 2021. The Polish
Forest Data Bank served as reference data, and, to obtain robust samples with pure stands only, the data were val-
idated through automated and visual inspection based on very-high-resolution orthoimagery, resulting in 4500
polygons serving as training and test data. The forest mask was derived from available land cover datasets
in GEE, namely the ESA WorldCover and Dynamic World dataset. Additionally, we incorporated various to-
pographic and climatic variables from GEE to enhance classification accuracy. The random forest algorithm
was employed for the classification process, and an area-adjusted accuracy assessment was conducted through
cross-validation and test datasets. The results demonstrate that the country-wide forest stand species mapping
achieved an accuracy exceeding 80 %; however, this varies greatly depending on species, region, and observa-
tion frequency. We provide freely accessible resources, including the forest tree species map and training and
test data: https://doi.org/10.5281/zenodo.10180469 (Grabska-Szwagrzyk, 2023a).

1 Introduction

Information on forest tree species composition is essential for
many scientific applications, as well as for forest inventory
and management purposes, such as estimating timber vol-
ume, modelling biodiversity, conservation, monitoring dis-
turbances, or carbon and biomass estimation (Hanewinkel et
al., 2013; Loiselle et al., 2003; Gillis et al., 2005; Boisvenue
and White, 2019). In recent times, the use of remote sens-
ing data has greatly improved forest monitoring and man-
agement. One such powerful source of data is the Sentinel-2
mission, which offers high-resolution and frequent data for
mapping tree species. While Sentinel-2 data have been in-
creasingly employed for mapping species composition, most

studies focus on smaller regional scales (Immitzer et al.,
2016; Puletti et al., 2018; Karasiak et al., 2017; Persson et al.,
2018; Grabska et al., 2019; Immitzer et al., 2019; Hościło and
Lewandowska, 2019; Bolyn et al., 2018; Grabska et al., 2020;
Lechner et al., 2022; Shirazinejad et al., 2022; Axelsson et
al., 2021; Wessel et al., 2018; Melnyk et al., 2023) or classify
broad forest classes and/or species groups over larger regions
(Waser et al., 2021; Breidenbach et al., 2021; Schindler et al.,
2021; Rüetschi et al., 2021). For larger areas, distinguish-
ing tree species has been performed with the use of Landsat
(Turlej et al., 2022; Bonannella et al., 2022). Furthermore,
continent-scale studies have utilized high-resolution hyper-
spectral and field data to develop models for tree species
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classification, evaluating both general and site-specific mod-
els (Marconi et al., 2022). At the national scale, Sentinel-2
time series were successfully used to map seven dominant
tree species in Germany (Welle et al., 2022) and to map larch
plantations in Wales (Punalekar et al., 2021). In studying the
tree species composition of larger regions, additional envi-
ronmental variables – for instance, topographic predictors –
have been found to improve classification accuracy (Waser et
al., 2021; Grabska et al., 2020; Ye et al., 2021). Other aux-
iliary variables include climatic variables (Hermosilla et al.,
2022), soils (Hemmerling et al., 2021), phenological metrics
(Kollert et al., 2021; Hermosilla et al., 2022), spectral indices
(Schindler et al., 2021; Ye et al., 2021; Hemmerling et al.,
2021; Praticò et al., 2021), and textural metrics (Ye et al.,
2021; Hemmerling et al., 2021).

Still, the accurate mapping of forest tree species with re-
mote sensing data remains a challenge (Fassnacht et al.,
2024). In particular, studying species composition in large
areas presents significant problems, such as generating good-
quality predictors from satellite imagery (Grabska et al.,
2020). The frequent cloud cover or topographic effects in
mountainous regions may limit the number of cloud-free ob-
servations or disturb the surface reflectance values (Schindler
et al., 2021). Additionally, larger areas exhibit greater envi-
ronmental variability, including variations in topography, cli-
mate, and phenology, which can significantly impact species
classification accuracy. The optimal image acquisition dates
which are crucial in improved species recognition (Grabska
et al., 2019; Immitzer et al., 2019) may substantially dif-
fer between regions. Another challenge in large-scale clas-
sification is the limited availability of reference data, espe-
cially for less common species (Zeug et al., 2019), leading to
poorer performance for underrepresented species (Hemmer-
ling et al., 2021; Marconi et al., 2022; Ahlswede et al., 2023).
Finally, species classification for large regions requires han-
dling high-volume spatial datasets, which may be difficult to
process using locally installed, monolithic software. Google
Earth Engine (GEE), the freely accessible (for research pur-
poses) cloud-based platform, enables parallel processing of
large spatial datasets (Tamiminia et al., 2020; Gorelick et
al., 2017). GEE provides access to entire, pre-processed
Sentinel-2 collections and other environmental datasets, as
well as tools for processing and classification (Tamiminia et
al., 2020). Previous studies have demonstrated the potential
and versatility of GEE in forest classification, emphasizing
its role in addressing the challenges encountered in large-
scale mapping (Forstmaier et al., 2020; Chen et al., 2017;
Praticò et al., 2021). Different approaches have been used
to produce seamless and cloud-free satellite composites for
mapping tree species composition, with multiple studies em-
phasizing the importance of a multi-temporal approach for
accurate tree species classification (Immitzer et al., 2019;
Grabska et al., 2019; Hościło and Lewandowska, 2019; Pers-
son et al., 2018; Kollert et al., 2021). However, there are vari-
ations in optimal timing for different seasons, and applying a

single seamless image composition at a country-wide scale is
not feasible. Thus, researchers often employ temporal aggre-
gations such as spectral–temporal metrics (STMs) calculated
for a season, year, or multi-annual periods.

Here, we present a classification of 16 forest tree species
and genera for the entire area of Poland. Given the availabil-
ity of several years of Sentinel-2 imagery, we propose, based
on our previous findings (Grabska et al., 2020, 2019), a novel
approach that utilizes short-period (15–30 d) seasonal STMs
using mean values derived from multiple years. This strat-
egy aims to focus on critical periods characterized by dy-
namic phenological changes while avoiding gaps in imagery
that are commonly encountered when using single-year data.
We used GEE for pre-processing and classification of the
Sentinel-2 time series, along with additional environmental
variables.

2 Data and methods

2.1 Study area

Poland’s forests cover an area exceeding 9×106 ha – 9.265×

106 ha according to the Central Statistical Office (31 Decem-
ber 2021) or 9.464×106 ha according to the standard adopted
for international assessments, taking into account land re-
lated to forest management (Zajączkowski et al., 2022). This
accounts for approximately 30 % of the country’s total land
area (Fig. 1). In terms of ownership, public forests hold the
majority share at 80.7 % (with 76.9 % of forests being man-
aged by the State Forests, 2 % belonging to National Parks,
and 1.8 % being constituted by commune properties and oth-
ers), followed by private forests at around 19.3 %. The dom-
inant species is the Scots pine (Pinus sylvestris), covering
58.5 % of the forested area across all ownership types ac-
cording to the National Forest Inventory (NFI) reports (Biuro
Urządzania Lasu i Geodezji Leśnej, 2022). The second most
prevalent genus is Quercus, primarily Robur and Peduncu-
late species, accounting for 8.0 %. Birch (Betula pendula)
represents 6.8 %, and alder species (Alnus spp.) represent
5.7 % of tree species. In the mountainous regions in southern
Poland, Norway spruce (Picea abies), silver fir (Abies alba),
and common beech (Fagus sylvatica) are the most common
species, covering 5.3 %, 3.3 %, and 6.2 %, respectively. It is
worth noting that European larch (Larix decidua) shares are
usually not reported separately but in combination with pine
species. Still, larch is also among the prevalent species in
Poland – based on data from the Polish Forest Data Bank
(FDB), the share of larch in Poland’s State Forests land prop-
erty is approximately 2 %.

2.2 Workflow

We developed an approach to classify 16 tree species in
Poland using Sentinel-2 time series within the GEE platform.
The Polish FDB was used as reference data for training, val-
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Figure 1. Forest cover in Poland elevation from EU-DEM; forest mask derived in this study.

idation, and test samples. We created four seasonal STMs
(means) from multi-annual observations (2018–2021), per-
formed pre-processing in GEE, and clipped them to the for-
est mask derived from existing land cover datasets. Clas-
sification involved the random forest (RF) classifier with
a 10-fold cross-validation technique, and accuracy metrics
were computed using test samples. To handle class imbal-
ances, we implemented two strategies: proportional and dis-
proportional allocation. Additionally, we compared the ac-
curacy between areas influenced by overlapping and non-
overlapping Sentinel-2 orbits.

2.3 Reference data processing

The reference data were gathered from the publicly accessi-
ble FDB, in which forest management units (forest stands)
are represented by polygons. Each polygon contains infor-
mation on the species share, expressed by values ranging
from 1 to 10, with 10 indicating homogenous coverage by
a particular species. Nonetheless, the precise spatial distribu-
tion of these species within the polygons remains uncertain.
In addition, the FDB does not cover private forests.

From the FDB, polygons representing pure stands with a
single-species dominance of 90 % or more and with trees
older than 10 years were selected. However, due to frequency

of some species in Polish forests, we used other thresholds
and additional conditions. Given the large number of refer-
ence stands of Scots pine, we randomly chose 10 % of pure
stands with 100 % share of this species; however, other pine
species uncommon in Poland underwent the same processing
procedures as other examined species. On the other hand,
due to an insufficient number of reference samples for less
common species such as poplar (Populus spp.), black locust
(Robinia pseudoacacia), hornbeam (Carpinus betulus), ash
(Fraxinus excelsior), maple (Acer spp.), lime (Tilia sp.), and
Douglas fir (Pseudotsuga menziesii), additional FDB stands
with a 60 %–80 % share of these species were included. The
next step involved precise adjustments of reference samples
to the actual forest mask derived from two available land
cover datasets in GEE; i.e. any samples or their parts falling
outside of forest mask were removed. Specifically, we uti-
lized the ESA WorldCover 2021 product (ESA/WorldCov-
er/v200; (Zanaga et al., 2022) selecting only value 10 (i.e.
tree cover), and the Dynamic World dataset (GOOGLE/DY-
NAMICWORLD/V1, (Brown et al., 2022), calculated from
summer 2021 imagery and aggregated to the mean, with a
tree probability threshold set at 0.6. Both datasets were em-
ployed, and, based on our tests, the ESA WorldCover prod-
uct tends to overestimate forests in certain areas, while the
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Table 1. Classes and species classified in our study with the number of reference polygons and pixels.

Class Species No. of No. of Share of the Percentage of polygons
polygons pixels total reference from stands with 60 %–

pixels [%] 80 % species share [%]

Pine Pinus sylvestris
Pinus nigra
Pinus strobus
Pinus rigida
Pinus banksiana

1036 183 768 30.9 0

Oak Quercus robur
Quercus petraea
Quercus rubra

512 79 713 13.4 0

Beech Fagus sylvatica 301 43 018 7.2 0

Alder Alnus glutinosa
Alnus incana

477 37 792 6.4 0

Birch Betula pendula
Betula pubescens

419 38 744 6.5 0

Larch Larix Decidua 256 25 153 4.2 0

Spruce Picea abies 419 51 615 8.7 0

Fir Abies alba 171 29 319 4.9 0

Hornbeam Carpinus betulus 134 19 376 3.3 66

Poplar Populus alba
Populus tremula
Populus nigra

176 22 146 3.7 51

Ash Fraxinus excelsior 164 16 894 2.8 48

Maple Acer pseudoplatanus
Acer platanoides
Acer campestre

122 12 454 2.1 67

Lime Tilia cordata
Tilia platyphyllos

60 6 567 1.1 67

Douglas fir Pseudotsuga menziesii 124 12 946 2.2 29

Black locust Robinia pseudoacacia 86 9 644 1.6 55

Dwarf mountain pine Pinus mugo 43 5 165 0.9 0

Dynamic World dataset, generated dynamically from avail-
able Sentinel-2 observations, may be prone to errors due to
frequent cloud cover. In the next step, image segmentation
on the Sentinel-2 STM was performed (harmonized level-
2A data; COPERNICUS/S2_SR_HARMONIZED) utilizing
mean values from summer 2021. This segmentation pro-
cess was carried out using a simple non-iterative clustering
(SNIC; (Achanta and Süsstrunk, 2017)) algorithm in GEE,
limited to the previously selected FDB stands within the for-
est mask area, with the aim of delineating spectrally homo-
geneous patches. Segments obtained in this step were in-
tersected with the FDB stands, and for further processing,
only segments larger than 0.5 ha that encompassed more than

60 % of the stands were selected. Subsequently, the resulting
segments were visually checked using very-high-resolution
orthoimagery.

Finally, 4500 polygons were obtained, representing 16
species and genera (Table 1). They were divided into train-
ing (2999 – corresponding to approx. 400 000 training pixels)
and test polygons (1501). The training data were further di-
vided into training (90 %) and validation (10 %), and 10-fold
cross-validation was employed to calibrate the model. The
examples of reference samples for each examined class are
illustrated in Fig. 2.
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Figure 2. Examples of reference samples for each analysed tree species and genera (shown using very-high-resolution spring orthoimagery),
shown using very-high-resolution orthoimagery: (a) pine, (b) spruce, (c) fir, (d) Douglas fir, (e) larch, (f) oak, (g) beech, (h) birch, (i) alder,
(j) hornbeam, (k) maple, (l) ash, (m) poplar, (n) lime, (o) black locust, (p) dwarf mountain pine. Orthoimagery is openly available from the
Polish Geoportal (https://mapy.geoportal.gov.pl/, last access: 14 June 2024; Head Office of Geodesy and Cartography).

2.4 Satellite imagery processing and additional
variables

Regarding satellite imagery predictors, numerous studies
have demonstrated the significance of a multi-temporal ap-
proach in accurately distinguishing tree species (Immitzer et
al., 2019; Grabska et al., 2019; Hościło and Lewandowska,
2019; Persson et al., 2018; Kollert et al., 2021). For instance,
our previous study on species classification in a smaller area
highlighted the optimal timing for distinguishing forests tree
species in temperate zones, which varies during the spring
and autumn seasons (Grabska et al., 2019). At a national
scale, however, applying a single seamless image composi-
tion for the entire growing season is impractical. While sea-
sonal STMs can provide important phenological information
(Müller et al., 2015), areas with frequent cloud cover may
still experience difficulties in acquiring high-quality obser-
vations for all needed temporal time steps (Grabska et al.,
2020). Different approaches to calculate Sentinel-2 based

STMs were employed, such as utilizing seasonal metrics cal-
culated over 2 to 4 months (Praticò et al., 2021) or testing
long-term, seasonal, and monthly composites (Nasiri et al.,
2023).

Here, we employed seasonal Sentinel-2 (L2A) spectral–
temporal metrics (STMs) calculated in GEE for four peri-
ods: (1) the second half of April, (2) May, (3) June–July, and
(4) October for the years 2018–2021. For each, one seasonal
STM from multi-annual observations was calculated. The
specific periods for each season and year are provided in Ta-
ble 2. They were selected based on findings from our previ-
ous studies (Grabska et al., 2019, 2020; Grabska-Szwagrzyk
and Tymińska-Czabańska, 2024). The spring imagery was
chosen to capture the greening-up phase, while autumn im-
agery was selected to represent the period when leaves un-
dergo colour changes. Furthermore, we decided to include
two spring STMs, one for early spring and one for late spring,
as our previous study revealed significant differences among
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deciduous species in this period. For instance, at a smaller
site, there was an 8–18 d gap between early-leafing species
like larch and birch and late-leafing species like alder and
oak (Grabska-Szwagrzyk and Tymińska-Czabańska, 2024).
Moreover, we included a summer STM as it represents a rel-
atively stable and certain period and allows us to utilize a
greater number of images. In the previous study on forest
tree species classification in the Polish Carpathians, bands
from July STMs were among the most important variables
(Grabska et al., 2020). The dates were slightly modified due
to meteorological conditions and, therefore, phenology vari-
ations in particular years, as well as missing observations in
some cases (Table 2).

All available Sentinel-2 images from the harmo-
nized level-2A collection captured during these pe-
riods and with cloud cover below 40 % were pre-
processed, including cloud, cloud shadow, and dark-
pixel masking based on the Sentinel-2 cloud probability
dataset (based on the Sentinel2-cloud detector; see https:
//github.com/sentinel-hub/sentinel2-cloud-detector, last ac-
cess: 14 June 2024), also available in GEE (COPERNI-
CUS/S2_CLOUD_PROBABILITY, Skakun et al., 2022).
The number of clear observations for each period varied,
largely due to cloud cover, as well as overlapping Sentinel-2
orbits (Fig. 3).

The pre-processed imagery was then clipped to match the
actual forest mask, ensuring that only relevant areas were
considered for analysis. In addition, the normalized differ-
ence vegetation index (NDVI) was calculated to mitigate the
potential impact of disturbances on the obtained results and
to remove recent clear cuts, ensuring that only areas with
healthy vegetation were considered. Specifically, based on
tests, the pixels with NDVI values below 0.6 from the sum-
mer 2021 STM were excluded from the analysis (Fig. 4). The
final step included calculating mean reflectance values for
each pixel and for each specific season based on the seam-
less Sentinel-2 imagery.

Additional variables for classification included en-
vironmental datasets available in GEE. They included
elevation data (reprocessed 30 m SRTM data: NASA/-
NASADEM_HGT/001, NASA JPL, 2020), WorldClim
variables (WORLDCLIM/V1/BIO, Hijmans et al., 2005),
temperature and precipitation (bio1, bio12, bio17),
soils (OpenLandMap/SOL/SOL_GRTGROUP_USDA-
SOILTAX_C/v01, Hengl and Nauman, 2018), and Terra
Climate (IDAHO_EPSCOR/TERRACLIMATE, Abatzoglou
et al., 2018) maximum air temperature for 2018 (see
Table A1 in the Appendix).

2.5 Classification and accuracy assessment

Classification for the entire area of Poland was performed
using approx. 400 000 sample pixels, employing a 10-fold
cross-validation technique. An RF classifier (Breiman, 2001)
was used within the GEE, with the number of trees set to

200. This algorithm was chosen because it is reported to
be insensitive to overfitting and outliers in training samples
(Belgiu and Drăgu, 2016). Moreover, RF is commonly used
in vegetation mapping studies for large areas (Rüetschi et
al., 2021; Hermosilla et al., 2022). Among the classifica-
tion algorithms available in GEE, RF has been reported to
be less computationally intensive than support vector ma-
chine (SVM) (Bonannella et al., 2022) and to outperform
other algorithms (Praticò et al., 2021). Accuracy assessment
included the estimation of area-adjusted confusion matrices;
producer’s accuracy (PA); user’s accuracy (UA); F1 score,
which is a weighted harmonic mean of UA and PA; and
overall accuracy (OA). For this task, 1501 test polygons (see
Sect. 2.3) were utilized. To ensure the robustness of the ac-
curacy assessment, a stratified random sampling approach
based on species was adopted, as recommended by Olofsson
et al. (2014) and based on our previous research (Grabska
et al., 2020). Furthermore, we tested the disproportional al-
location approach which is commonly employed when deal-
ing with substantial class imbalances (Marconi et al., 2022;
Maxwell et al., 2018; Jackson and Adam, 2021).

In recognition of class imbalance, a 2-fold strategy was
implemented. The first approach involved proportional al-
location, while the second approach involved a dispropor-
tional dataset. The sample size for less common species
was increased through oversampling, whereas undersam-
pling was employed for the most common class, Pinus. In
both approaches, the size of the sample was approximately
20 000 pixels (see Table A2 in the Appendix), and a mini-
mum sampling distance of 20 m was used. Finally, regard-
ing the significant differences in the number of observations
between Sentinel-2 orbit overlapping and non-overlapping
areas, further analyses were conducted to evaluate the im-
pact of observation frequency on accuracy. This included
the calculation of OA separately for overlapping and non-
overlapping areas in both sampling approaches.

3 Results and discussion

3.1 Overall accuracy of the tree species maps and
variable importance

On average, the classification process yielded high OA,
achieving values of approximately 80 % or higher. Employ-
ing a 10-fold cross-validation, the average OA was equal to
83.3 %, ranging between 79.3 % and 84.9 %. Subsequently,
the species map with the best performance in terms of
OA from the initial step was validated with approximately
20 000 pixels using two approaches: proportional and dispro-
portional. The proportional approach demonstrated an OA of
89.6 %, while, in the disproportional approach, a lower ac-
curacy of 84 % was achieved. This decline in accuracy when
transitioning from proportional to disproportional sample al-
location is reasonable as more samples represent less com-
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Table 2. Periods of Sentinel-2 imagery used in analysis.

Name 2018 (mm/dd) 2019 (mm/dd) 2020 (mm/dd) 2021 (mm/dd)

Early spring 04/15–05/10∗ 04/20–05/10 04/20–05/10 05/05–05/25
Late spring 05/10–05/30 05/15–06/05 05/15–06/05 05/25–06/15
Summer 06/10–07/10 06/10–07/10 06/10–07/10 06/10–07/10
Autumn 10/25–11/10 10/20–11/05 10/20–11/05 10/25–11/10

∗ Period increased due to insufficient observations.

Figure 3. Number of cloud-free observations in the analysed periods, combined for all years.

mon species, usually under-performing compared to the most
common ones.

OA varied between regions with overlapping and non-
overlapping Sentinel-2 orbits. The following OAs were ob-
tained: 86.7 % for non-overlapping areas and 90.1 % for
overlapping area using proportional allocation and 83.8 %
and 84.1 % using disproportional allocation, respectively. Al-
though the difference using disproportional allocation seems
to be low, the limited number of clear observations may in-
crease the uncertainty of estimations (Schindler et al., 2021).
In studies which utilize Landsat imagery, the number of clear
observations plays a vital role in classification accuracy im-
provement (Turlej et al., 2022). Furthermore, in mapping
large areas, accuracy metrics are not expected to be uniform
in space due to high species and environmental diversity.
Examples of selected regions with low and high accuracies
are illustrated in Fig. 5. Numerous environmental and forest-
related factors can impact the results. For example, heteroge-
neous forest structures with high diversity terms of age and
species (Fig. 5a) result in misclassifications and require fur-
ther examination and addressing. Also, misclassification oc-
curs more often in the mountainous areas, particularly in the
Carpathian forests due to higher species and environmental
diversity and topography effects (Fig. 5b). High accuracy is
observed in areas featuring a combination of various species
but comprising pure stands with a similar forest structure
(Fig. 5c), as well as in locations where dense black locust
stands are present (Fig. 5d).

The variable importance analysis (see Fig. A1 in the Ap-
pendix) revealed the highest contributions from environmen-
tal variables such as maximum temperature, annual precipi-

tation, mean annual temperatures, and elevation, similarly to
findings in other studies for large areas (Hermosilla et al.,
2022). Among the periods used to calculate STMs, bands
from autumn appeared to be the most highly ranked, fol-
lowed by early-spring bands. Notably, visible, red-edge, and
short-wave infrared (SWIR) bands showed stronger impor-
tance. On the other hand, the soil dataset exhibited notably
lower importance compared to other predictors despite previ-
ous reports showing soils to be more significant than climatic
variables in temperate tree species distribution (Walthert and
Meier, 2017). However, it is important to note that these find-
ings may vary across regions and may be scale-dependent,
and more detailed soil information could enhance the accu-
racy of the results.

3.2 Tree species distribution and accuracy

The obtained map of forest tree species and genera re-
veals the share and spatial distribution of forests in Poland.
Pine-dominated stands are the most common, accounting for
47.5 % of the total forest cover in the country. Several other
common species prevalent across Polish forests are birch oc-
cupying, 11.7 % of the forested areas, along with alder at 9 %,
beech at 8.1 %, and oak at 7.2 %. Other common species in-
clude spruce (3.7 %) and fir (2.8 %), predominantly occur-
ring in mountainous areas in southern Poland. Additionally,
larch-dominated stands are relatively common (3.6 %), along
with ash (1.7 %), hornbeam (1.1 %), and poplar (1 %). Sev-
eral other species each hold a share of less than 1 % in the
overall forest composition, including Douglas fir, maple, and
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Figure 4. Procedure for obtaining the forest mask used in this study for the example of part of Kraków, southern Poland: (a) Sentinel-2 image
(near-infrared, visible red, visible green), (b) Sentinel-2 clipped to ESA WorldCover v200 dataset extracted tree cover class; (c) Sentinel-2
clipped to ESA WorldCover, Dynamic World, and NDVI thresholding; (d) high-resolution colour infrared (CIR) orthoimage with borders of
the calculated forest mask.

black locust. Lastly, lime and dwarf mountain pine have a
more marginal presence in the obtained map.

The comparison of the results with official statistics shows
some discrepancies. Firstly, the share of pine in our map is
underestimated by more than 10 percentage points, which
may result from several factors. One possible reason is the
misclassification of pine as spruce or other coniferous trees,
which account for 0.65 % of the reference data, particularly
in mountainous regions. Additionally, the share of pine has
been decreasing in recent years due to shifts in forest man-
agement practices, such as the transition from monocultures
to stands with more diversified species composition (Tomaś
and Jagodziński, 2019). Furthermore, pine has been sus-
ceptible to disturbances in recent years, which may have
led to misclassifications (Hemmerling et al., 2021). Another
species with a lower share in our map than what is reported
is spruce (3.6 % vs. 5.3 %), which, in recent years, has been
exposed to significant disturbances and dieback, particularly
in the western Carpathian mountains and Białowieża forest
(Grodzki, 2010; Bałazy, 2020; Kamińska et al., 2021). Con-
sequently, the share of spruce is also decreasing. On the other
hand, certain species like alder and birch are seemingly more
common than in the official reports. The larger share of birch
may be attributed to the fact that this species is common on
abandoned agricultural land, and it is also regarded to be a
pioneer and successional species (Hynynen et al., 2010). The
area analysed in our study might include former agricultural
lands where forest succession takes place, a process that is
very common in different parts of Poland (Shahbandeh et
al., 2022; Kolecka et al., 2017; Zgłobicki et al., 2020; Ma-
jchrowska, 2013). However, abandoned areas with forest suc-
cession are not included in the official reporting for forests.
Also, while very young forests have been excluded from our
analysis, the visual inspection indicates frequent misclassifi-
cations of younger stands covered with broad-leaved trees as
alder, which may be one of the reasons for its overestimation.

In terms of species accuracy, the most abundant species
in Poland, pine, was classified with the highest accuracy, ex-

ceeding a 90 % F1 score (Fig. 6). Other species demonstrat-
ing an F1 score of 80 % or higher included dwarf mountain
pine, alder, beech, fir, spruce, oak, and larch. With the ex-
ception of dwarf pine mountain, these species are common
in forests of Poland. On the other hand, the classification
of poplar, Douglas fir, maple, lime, hornbeam, and ash re-
vealed relatively poor accuracy levels below 60 %. Surpris-
ingly, rare species such as black locust achieved high classi-
fication accuracy around 75 %. The confusion matrix reveals
the frequent misclassifications (Table 3). Typically, broad-
leaved species such as ash, hornbeam, and lime are misclas-
sified – ash and lime are misclassified as oak, and hornbeam
is misclassified as oak and beech species, while coniferous
Douglas fir is misclassified as pine. Similarly, in the study
of Hemmerling et al. (2021), a less common species classi-
fied with relatively high accuracy was black locust. This is
a result of its unique spectral–temporal properties as, usu-
ally, it leaves out later than other broad-leaved species, and
it is characterized by late-spring flowering (Rusňák et al.,
2022; Somodi et al., 2012). This is a promising result, tak-
ing into account the invasiveness of this non-native species
in Europe (Richardson and Rejmánek, 2011). The visual in-
spection also indicates that frequent misclassifications in-
clude younger stands, such as oak, misclassified as other
broad-leaved species, e.g. alder. Importantly, the age struc-
ture within the examined species differs largely (based on
the FDB), with average values between approx. 50 years for
birch, larch, and alder; around 70 years for spruce and pine;
and above 80 years for beech, oak, and fir. The species classi-
fication in young forests, characterized by the spectral char-
acteristics different than the mature ones, is challenging. Fi-
nally, not all species occurring in Poland were classified.

3.3 Limitations in large-area species mapping and
proposed solutions

In the country-wide or other large-extent mapping cases,
there are several challenges and limitations. Larger regions
are often characterized by higher diversity in terms of species
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Figure 5. Examples of classification (middle) compared with high-resolution orthoimagery (left) and dominant species from the Forest Data
Bank (right): (a) Czarna Białostocka Forest District, NE Poland lowlands; (b) Baligród Forest District, SE Poland, Bieszczady Mountains;
(c) Kłodawa Forest District, NW Poland lowlands; (d) Sulechów Forest District, W Poland lowlands. Orthoimagery is openly available from
the Polish Geoportal (https://mapy.geoportal.gov.pl/, last access: 14 June 2024; Head Office of Geodesy and Cartography).

and environmental conditions. Certain species occur only
in spatially limited areas – for example, in Poland, silver
fir is typical for the mountain areas only, while oaks and
hornbeams tend to occur more often in the lowlands. In ad-
dition, due to the variability in meteorological conditions,
the optimal period for the classification of specific species

may differ largely among regions, particularly during the
spring, when processes of leaf unfolding take place, and au-
tumn, when leaf colouring occurs. Furthermore, these opti-
mal periods may vary from year to year due to variations
in spring temperatures and other meteorological conditions
(Grabska-Szwagrzyk and Tymińska-Czabańska, 2024). Fu-
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Figure 6. F1 score for 16 analysed species using two approaches: proportional sample allocation and disproportional allocation, with down-
sampling of pine and oversampling of other classes.

Table 3. Area-adjusted confusion matrix for the disproportional sample allocation (populated by estimated proportions of area).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Beech (1) 7.51 0.12 0.28 0.00 0.46 0.01 0.08 0.13 0.02 0.01 0.17 0.01 0.08 0.01 0.02 0.00
Birch (2) 0.07 7.14 0.35 0.02 0.07 0.02 0.01 0.01 0.02 0.21 0.29 0.05 0.34 0.01 0.01 0.00
Oak (3) 0.85 1.16 10.77 0.00 0.81 0.01 0.21 0.16 0.27 0.13 0.21 0.00 0.40 0.00 0.10 0.00
Douglas f. (4) 0.00 0.01 0.00 0.61 0.00 0.25 0.01 0.00 0.00 0.01 0.01 0.12 0.00 0.04 0.00 0.00
Hornbeam (5) 0.27 0.03 0.10 0.00 1.12 0.00 0.03 0.14 0.15 0.00 0.09 0.00 0.02 0.00 0.00 0.00
Fir (6) 0.03 0.00 0.00 0.08 0.01 5.50 0.00 0.00 0.00 0.01 0.01 0.13 0.00 0.18 0.00 0.00
Ash (7) 0.03 0.03 0.06 0.00 0.06 0.00 0.46 0.07 0.08 0.00 0.34 0.00 0.02 0.00 0.04 0.00
Maple (8) 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.42 0.01 0.00 0.05 0.00 0.01 0.01 0.00 0.00
Lime (9) 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Larch (10) 0.03 0.54 0.02 0.01 0.01 0.07 0.00 0.00 0.01 3.57 0.03 0.16 0.04 0.05 0.00 0.00
Alder (11) 0.15 0.90 0.13 0.00 0.10 0.01 0.15 0.03 0.03 0.01 7.29 0.04 0.06 0.03 0.08 0.00
Pine (12) 0.00 0.28 0.01 0.22 0.00 0.14 0.00 0.00 0.00 0.20 0.03 29.56 0.02 0.44 0.02 0.06
Poplar (13) 0.00 0.16 0.06 0.00 0.05 0.00 0.02 0.01 0.06 0.01 0.02 0.00 0.91 0.00 0.00 0.00
Spruce (14) 0.01 0.00 0.00 0.08 0.00 0.90 0.00 0.00 0.00 0.03 0.00 0.51 0.00 7.43 0.00 0.08
Black l. (15) 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.66 0.00
Dwarf p. (16) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.68
Prop (ref.) 8.98 10.42 11.82 1.02 2.70 6.89 0.97 0.97 1.03 4.19 8.58 30.57 1.91 8.20 0.93 0.82
Prop (map) 8.88 8.60 15.09 1.05 1.96 5.93 1.18 0.54 0.43 4.53 9.01 30.97 1.29 9.04 0.80 0.69
PA 83.6 68.5 91.1 60.3 41.4 79.9 47.0 43.0 38.3 85.3 85.0 96.7 47.4 90.6 70.8 83.6
UA 84.6 83.0 71.4 58.2 57.0 92.8 38.5 77.7 91.5 78.8 80.9 95.4 70.3 82.2 82.9 99.2

ture research should also consider specific periods of imagery
acquisition when aiming to distinguish different species, i.e.
covering periods when particular species exhibit the highest
phenological variations. It would be profitable to use multi-
ple autumn (e.g. early and late autumn) STMs; however, this
is very challenging due to the insufficient number of clear
observations during this time of the year.

One solution may be the division of the study area into
smaller regions – in country-wide or other large-extent map-
ping of species composition, the subdivision into smaller

parts may play an important role (this may also be due to
the computational power), similarly to the study by Pazúr
et al. (2022) or Hermosilla et al. (2022). However, another
question arises regarding how to define the optimal borders
of smaller regions to achieve higher accuracy in the obtained
map, which is rarely discussed in studies focused on remote-
sensing-based classification.

Another methodological challenge is the underrepresen-
tation of clear observations in some regions. In this study,
we employed short-period seasonal STMs from Sentinel-2
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time series rather than one seasonal mean as the informa-
tion from specific periods of the growing season is crucial in
distinguishing species. In the calculation of seasonal means,
multi-annual observations were used; still, for some regions,
the underrepresentation of clear observations occurs. This
may have a significant impact on map accuracy in regions
of lower observation frequency. In the case of Poland, this is
particularly observed in the places where two orbits do not
overlap, specifically in autumn (Fig. 3). This issue should be
addressed in studies on species classification for larger re-
gions using Sentinel-2 or similar satellite constellations.

As a result of the above-mentioned factors, the design of
robust training, test, and validation datasets is challenging.
Finally, in certain regions, such as privately owned forests or
lands not officially reported to be forests (e.g. successional
forests that have emerged on previously abandoned agricul-
tural lands), there are no reference data available. These areas
tend to exhibit greater complexity, making the task of assess-
ing the classification accuracy particularly demanding.

4 Data availability

We provide freely accessible resources including, the
forest tree species map and training and validation
data: https://doi.org/10.5281/zenodo.10180469 (Grabska-
Szwagrzyk, 2023a). The map can be explored online: https://
ee-aweaksbarg.projects.earthengine.app/view/speciesmappl
(Grabska-Szwagrzyk, 2023b).

5 Conclusions

We have obtained the first national-scale forest tree species
map for Poland, achieving an accuracy exceeding 80 %. This
was accomplished through a novel approach that involved
the calculation of Sentinel-2 seasonal STMs spanning mul-
tiple years. The resulting map is an important dataset for
both forest management and the scientific community, facili-
tating tasks like modelling biodiversity and monitoring non-
native and invasive species. It can enhance our understanding
of forest ecosystems and support more informed and precise
forestry and conservation efforts. Unlike other existing data
sources, such as the FDB, which primarily provide informa-
tion about the share of species within forest stands, this new
map offers a view of tree species distribution at a finer scale.
Furthermore, our map provides a unique advantage over tra-
ditional forest inventories like the NFI, which offers point-
based data rather than a continuous spatial representation of
species distribution.

Appendix A

Table A1. Variables used for classification.

Group Predictor

Early spring Blue
Green
Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2

Late spring Blue
Green
Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2

Summer Blue
Green
Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2

Autumn Blue
Green
Red
RE1
RE2
RE3
NIR1
NIR2
SWIR1
SWIR2

Topography Elevation

Climate Annual mean temperature (bio01)
Annual precipitation (bio12)
Precipitation of driest quarter (bio17)
Maximum temperature in spring 2018

Soils Soils
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Table A2. Number of test pixels for accuracy assessment using two approaches: proportional and disproportional.

Estimated proportions Proportional Disproportional

Pinus 59 % 11 800 5900
Quercus 8 % 1600 2400
Betula 6.8 % 1360 2040
Fagus 6.2 % 1240 1860
Alnus 5.7 % 1140 1710
Picea 5.3 % 1060 1600
Abies 3.3 % 660 1320
Larix 2 % 400 800
Carpinus 1.3 % 260 520
Populus 1 % 200 400
Fraxinus < 1 % 100 200
Pseudotsuga < 1 % 100 200
Acer < 1 % 100 200
Robinia pseudoacacia < 1 % 100 200
Tilia < 1 % 100 200
Pinus mugo < 1 % 100 200

Figure A1. Importance of variables used in classification.
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