Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4235-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4235-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Department of Earth and Planetary Sciences, Harvard University, 20
Oxford St., Cambridge, MA 02138, USA
Morgan Gabor
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Isabella Lupini
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Department of Geology, Kansas State University, Manhattan, KS
66506, USA
Randolph Rutledge
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Julia Ann Nord
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Shuang Zhang
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Department of Oceanography, Texas A&M University, College
Station, TX 77843, USA
Asmaa Boujibar
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Emma S. Bullock
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Michael J. Walter
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Kerstin Lehnert
Lamont-Doherty Earth Observatory, Columbia University, New York,
NY 10027, USA
Frank Spear
Department of Earth and Environmental Sciences, Rensselaer
Polytechnic Institute, Troy, NY 12180, USA
Shaunna M. Morrison
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Robert M. Hazen
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Related authors
No articles found.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
The China Active Faults Database (CAFD) and its web system
A regolith lead isoscape of Australia
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania region (Italy): Statistical combination of different predictions for spatial thickness estimation
High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen
Integration by design: Driving mineral system knowledge using multi modal, collocated, scale-consistent characterization
High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia
A global zircon U–Th–Pb geochronological database
Subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy)
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
IESDB – the Iberian Evaporite Structure Database
Spectral Library of European Pegmatites, Pegmatite Minerals and Pegmatite Host-Rocks – the GREENPEG project database
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Digital soil mapping of lithium in Australia
A multi-dimensional dataset of Ordovician to Silurian graptolite specimens for virtual examination, global correlation, and shale gas exploration
A strontium isoscape of northern Australia
Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks
A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy
Pan-Arctic soil element bioavailability estimations
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
OCTOPUS database (v.2)
A national landslide inventory for Denmark
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024, https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Short summary
This study presents a national-scale database (1:4000 000) of active faults in China and its adjacent regions in tandem with an associated web-based query system. This database integrates regional-scale studies and surveys conducted over the past 2 decades (at reference scales from 1:250 000 to 1:50 000). Our system hosts this nation-scale database accessible through a Web Geographic Information System (GIS) application.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Pooria Ebrahimi, Fabio Matano, Vincenzo Amato, Raffaele Mattera, and Germana Scepi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-44, https://doi.org/10.5194/essd-2024-44, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly influence landscape evolution, hydrology, erosion, and slope stability processes. Accurate mapping the thickness spatial variations of these fallout pyroclastic deposits over large hillslope areas remains a knowledge gap. We attempt to bridge this gap by applying statistical techniques on a field-based thickness measurement dataset for making representative predictions.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
James Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-464, https://doi.org/10.5194/essd-2023-464, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Cloncurry METAL aims to shift the “Big Data” paradigm in mineral system science by developing a quantitative, fully integrated, multi-modal, scale-consistent methodology for system characterisation. The data comprises collocated petrophysical-mineralogical-geochemical-structural-metasomatic characterisation of 23 deposits from a highly complex mineral system. This approach allows translation of mineral system processes into physics, providing a framework for smarter geophysics-based exploration.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Yujing Wu, Xianjun Fang, and Jianqing Ji
Earth Syst. Sci. Data, 15, 5171–5181, https://doi.org/10.5194/essd-15-5171-2023, https://doi.org/10.5194/essd-15-5171-2023, 2023
Short summary
Short summary
We introduce a zircon U‒Th‒Pb chronological database of the global continental crust. This database provides comprehensive research materials for Earth system science in deep time and space due to its large amount of data (~2 million records), long time span (4.4 billion years), global sampling range, comprehensive zircon samples, and various dating instruments.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Joana Cardoso-Fernandes, Douglas Santos, Cátia Rodrigues de Almeida, Alexandre Lima, Ana C. Teodoro, and GREENPEG project team
Earth Syst. Sci. Data, 15, 3111–3129, https://doi.org/10.5194/essd-15-3111-2023, https://doi.org/10.5194/essd-15-3111-2023, 2023
Short summary
Short summary
GREENPEG aims to develop tools for pegmatite exploration and to enhance European databases, adding new data on pegmatite properties, such as the spectral signature. Samples comprise pegmatites and wall rocks from Austria, Ireland, Norway, Portugal, and Spain. A detailed description of the spectral database is presented as well as reflectance spectra, photographs, and absorption features. Its European scale comprises pegmatites with distinct characteristics, providing a reference for exploration.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Hong-He Xu, Zhi-Bin Niu, Yan-Sen Chen, Xuan Ma, Xiao-Jing Tong, Yi-Tong Sun, Xiao-Yan Dong, Dan-Ni Fan, Shuang-Shuang Song, Yan-Yan Zhu, Ning Yang, and Qing Xia
Earth Syst. Sci. Data, 15, 2213–2221, https://doi.org/10.5194/essd-15-2213-2023, https://doi.org/10.5194/essd-15-2213-2023, 2023
Short summary
Short summary
A multi-dimensional and integrated dataset of fossil specimens is described. The dataset potentially contributes to a range of scientific activities and provides easy access to and virtual examination of fossil specimens in a convenient and low-cost way. It will greatly benefit paleontology in research, teaching, and science communication.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Samuel W. Scott, Léa Lévy, Cari Covell, Hjalti Franzson, Benoit Gibert, Ágúst Valfells, Juliet Newson, Julia Frolova, Egill Júlíusson, and María Sigríður Guðjónsdóttir
Earth Syst. Sci. Data, 15, 1165–1195, https://doi.org/10.5194/essd-15-1165-2023, https://doi.org/10.5194/essd-15-1165-2023, 2023
Short summary
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical, and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, these data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Cited articles
Alizai, A., Clift, P. D., and Still, J.: Indus Basin sediment provenance
constrained using garnet geochemistry, J. Asian Earth Sci., 126,
29–57, https://doi.org/10.1016/j.jseaes.2016.05.023, 2016.
Bauer, A. M., Reimink, J. R., Chacko, T., Foley, B. J., Shirey, S. B., and
Pearson, D. G.: Hafnium isotopes in zircons document the gradual onset of
mobile-lid tectonics, Geochemical Perspectives Letters, 14, 1–6,
https://doi.org/10.7185/geochemlet.2015, 2020.
Baxter, E. F. and Scherer, E. E.: Garnet geochronology: Timekeeper of
tectonometamorphic processes, Elements, 9, 433–438,
https://doi.org/10.2113/gselements.9.6.433, 2013.
Baxter, E. F., Caddick, M. J., and Dragovic, B.: Garnet: A rock-forming
mineral petrochronometer, Rev. Mineral. Geochem., 83,
469–533, https://doi.org/10.2138/rmg.2017.83.15, 2017.
Boujibar, A., Howell, S., Zhang, S., Hystad, G., Prabhu, A., Liu, N., Stephan, T.,
Narkar, S., Eleish, A., Morrison, S. M., Hazen, R. M., and Nittler, L. R.: Cluster
analysis of presolar silicon carbide grains: evaluation of their
classification and astrophysical implications, Astrophys. J.
Lett., 907,
L39, https://doi.org/10.3847/2041-8213/abd102, 2021.
Cawood, P., Chowdhury, P., Mulder, J., Hawkesworth, C., Capitanio, F.,
Gunawardana, P., and Nebel, O.: Secular Evolution of Continents and the
Earth System, Rev. Geophys., 60, e2022RG000789, https://doi.org/10.1029/2022RG000789, 2022.
Chassé, M., Griffin, W. L., Alard, O., O'Reilly, S. Y., and Calas, G.:
Insights into the mantle geochemistry of scandium from a meta-analysis of
garnet data, Lithos, 310–311, 409–421, https://doi.org/10.1016/j.lithos.2018.03.026, 2018.
Chen, Y.-X., Zhou, K., Zheng, Y.-F., Chen, R.-X., and Hu, Z.: Garnet
geochemistry records the action of metamorphic fluids in ultrahigh-pressure
dioritic gneiss from the Sulu orogen, Chem. Geol., 398, 46–60,
https://doi.org/10.1016/j.chemgeo.2015.01.021, 2015.
Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J. A., Zhang, S.,
Boujibar, A., Bullock, E. S., Walter, M. J., Lehnert, K., Spear, F.,
Morrison, S., and Hazen, R. M.: Garnet mineral geochemistry data download
from the MetPetDB (re3data.org) August 2019, Version 1.0., Interdisciplinary
Earth Data Alliance (IEDA) [data set],
https://doi.org/10.26022/IEDA/112173, 2021a.
Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J. A., Zhang, S.,
Boujibar, A., Bullock, E. S., Walter, M. J., Lehnert, K., Spear, F.,
Morrison, S., and Hazen, R. M.: Garnet mineral geochemistry data download
from the EarthChem Portal August 2019, Version 1.0., Interdisciplinary Earth
Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112171, 2021b.
Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J. A., Zhang, S.,
Boujibar, A., Bullock, E. S., Walter, M. J., Lehnert, K., Spear, F.,
Morrison, S. M., and Hazen, R. M.: ESMD – Garnet Dataset,
Open Data Repository [data set], https://doi.org/10.48484/camh-xy98, 2022.
Čopjaková, R., Sulovský, P., and Paterson, B.A.: Major and trace
elements in pyrope–almandine garnets as sediment provenance indicators of
the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif,
Lithos, 82, 51–70, https://doi.org/10.1016/j.lithos.2004.12.006, 2005.
Deer, W. A., Howie, R. A., and Zussman, J.: Rock-Forming Minerals: Volume 1A
Orthosilicates, Second Edition, New York: Longman, 1982.
Droop, G.: A general equation for estimating Fe3 concentrations in
ferromagnesian silicates and oxides from microprobe analyses, using
stoichiometric criteria, Mineral. Mag., 51, 431–435,
https://doi.org/10.1180/minmag.1987.051.361.10, 1987.
EarthChem Portal: EarthChem Portal [data set], https://www.earthchem.org, last access:
22 September 2023.
Fagan, T. J., Guan, Y., MacPherson, G. J., and Huss, G. R.:
Al-Mg isotopic evidence for separate nebular and parent-body alteration
events in two allende CAls, Lunar and Planetary Sciences, https://www.lpi.usra.edu/meetings/lpsc2005/pdf/1820.pdf (last access: 21 September 2023), 2005.
Farré-de-Pablo, J., Proenza, J. A., González-Jiménez, J. M.,
Aiglsperger, T., Torro, L., Domenech, C., and Garcia-Casco, A.: Low-temperature
hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites
from the Dominican Republic, Miner. Deposita, 57, 955–976, https://doi.org/10.1007/s00126-021-01079-8, 2022.
Gatewood, M. P., Dragovic, B., Stowell, H. H., Baxter, E. F., Hirsch, D. M., and
Bloom, R.: Evaluating chemical equilibrium in metamorphic rocks using major
element and Sm–Nd isotopic age zoning in garnet, Townshend Dam, Vermont,
USA, Chem. Geol., 401, 151–168,
https://doi.org/10.1016/j.chemgeo.2015.02.017, 2015.
Geiger, C. A: A tale of two garnets: The role of solid solution in the
development toward a modern mineralogy, Am. Mineral., 101,
1735–1749, https://doi.org/10.2138/am-2016-5522, 2016.
GeoReM: Geological and Environmental [data set], http://georem.mpch-mainz.gwdg.de/, last access: 21
September 2023.
GeoRoc: Geochemistry of Rocks of the Oceans and Continents [data set], http://georoc.mpch-mainz.gwdg.de/georoc/Start.asp, last
access: 21
September 2023
Ghosh, B. and Morishita, T.: Andradite-uvarovite solid solution from
hydrothermally altered podiform chromite, Rutland ophiolite, Andaman, India,
Can. Mineral., 49, 573–580,
https://doi.org/10.3749/canmin.49.2.573, 2011.
Ghosh, B., Morishita, T., Ray, J., Tamura, A., Mizukami, T., Soda, Y., and
Ovung, T. N.: A new occurrence of titanian (hydro)andradite from the Nagaland
ophiolite, India: Implications for element mobility in hydrothermal
environments, Chem. Geol., 457, 47–60,
https://doi.org/10.1016/j.chemgeo.2017.03.012, 2017.
Golden, J. J.: Mineral Evolution Database: Data Model for Mineral Age
Associations, M.S. Thesis, University of Arizona, Tucson AZ, 2019.
Grew, E. S., Locock, A. J., Mills, S. J., Galuskina, I. O., Galuskin, E. V., and
Hålenius, U.: Nomenclature of the garnet supergroup, Am. Mineral., 98, 785–811, https://doi.org/10.2138/am.2013.4201, 2013.
Griffin, W. L., Fisher, N. I., Friedman, J. H., Ryan, C. G., and O'Reilly, S. Y.:
Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics
and relations to tectonic settings, J. Petrol., 40, 679–704,
https://doi.org/10.1093/petroj/40.5.679, 1999a.
Griffin, W. L., Shee, S. R., Ryan, C. G., Win, T. T., and Wyatt, B. A.:
Harzburgite to lherzolite and back again: metasomatic processes in
ultramafic xenoliths from the Wesselton Kimberlite, Kimberley, South Africa,
Contrib. Mineral. Petr., 134, 232–250, https://doi.org/10.1007/s004100050481, 1999b.
Hawkesworth, C. J., Cawood, P. A., and Dhuime, B.: The Evolution of the
Continental Crust and the Onset of Plate Tectonics, Front. Earth
Sci., 8, 326, https://doi.org/10.3389/feart.2020.00326, 2020.
Hazen, R. M.: Data-driven abductive discovery in mineralogy, Am. Mineral., 99, 2165–2170,
https://doi.org/10.2138/am-2014-4895, 2014.
Hazen, R. M.: An evolutionary system of mineralogy: Proposal for a
classification of planetary materials based on natural kind clustering,
Am. Mineral., 104, 810–816,
https://doi.org/10.2138/am-2019-6709CCBYNCND, 2019.
Hazen, R. M. and Morrison, S. M.: An evolutionary system of mineralogy, Part
I: stellar mineralogy (>13 to 4.6 Ga), Am. Mineral.,
105, 627–651, https://doi.org/10.2138/am-2020-7173, 2020.
Hazen, R. M. and Morrison, S. M.: An evolutionary system of mineralogy, Part
V: Aqueous and thermal alteration of planetesimals (∼4565 to
4550 Ma), Am. Mineral., 106, 1388–1419,
https://doi.org/10.2138/am-2021-7760, 2021.
Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy,
T. J., Sverjensky, D. A., and Yang, H.: Mineral evolution, Am. Mineral., 93, 1693–1720,
https://doi.org/10.2138/am.2008.2955, 2008.
Hazen, R. M., Golden, J., Downs, R. T., Hystad, G., Grew, E. S., Azzolini, D.,
and Sverjensky, D. A.: Mercury (Hg) mineral evolution: A mineralogical record
of supercontinent assembly, changing ocean geochemistry, and the emerging
terrestrial biosphere, Am. Mineral., 97, 1013–1042,
https://doi.org/10.2138/am.2012.3922, 2012.
Hazen, R. M., Liu, X.-M., Downs, R. T., Golden, J., Pires, A. J., Grew, E. S.,
Hystad, G., Estrada, C., and Sverjensky, D. A.: Mineral Evolution: Episodic
Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and
Biosphere, Econ. Geol. Special Publication, 18, 1–15, 2014.
Hazen, R. M., Downs, R. T., Eleish, A., Fox, P., Gagné, O. C., Golden,
J. J., Grew, E. S., Hummer, D. R., Hystad, G., Krivovichev, S. V., Li, C., Liu,
C., Ma, X., Morrison, S. M., Pan, F., Pires, A. J., Prabhu, A., Ralph, J.,
Runyon, S. E., and Zhong, H.: Data-driven discovery in mineralogy: Recent
advances in data resources, analysis, and visualization, Engineering, 5,
397–405, https://doi.org/10.1016/j.eng.2019.03.006, 2019.
Hazen, R. M., Morrison, S. M., and Prabhu, A.: An evolutionary system of
mineralogy, Part III: Primary chondrule mineralogy (4566 to 4561 Ma),
Am. Mineral., 106, 325–350,
https://doi.org/10.2138/am-2020-7564, 2020.
Höfer, H. E., Weinbrunch, S., McCammon, C. A., and Brey, G. P.: Comparison
of two electron probe microanalysis techniques to determine ferric iron in
synthetic wustite samples, Eur. J. Mineral, 12 , 63–71,
https://doi.org/10.1127/0935-1221/2000/0012-0063, 2000.
International Generic Sample Number (IGSN): https://www.igsn.org/,
last access: 27 September 2020.
Inglis, J. D., Hefferan, K., Samson, S. D., Admou, H., and Saquaque, A.:
Determining Age of Pan African Metamorphism using Sm-Nd Garnet-Whole Rock
Geochronology and Phase Equilibria Modeling in the Tasriwine Ophiolite,
Sirwa, Anti-Atlas Morocco, J. Afr. Earth Sci., 127, 88–98,
https://doi.org/10.1016/j.jafrearsci.2016.06.021, 2017.
Jackson, I.: OneGeology: from concept to reality, Episodes Journal of
International Geoscience, 31, 344–345, 2008.
Javanmard, S. R., Tahmasbi, Z., Ding, X., Khalaji, A. A., and Hetherington,
C. J.: Geochemistry of garnet in pegmatites from the Boroujerd Intrusive
Complex, Sanandaj-Sirjan Zone, western Iran: implications for the origin of
pegmatite melts, Miner. Petrol., 112, 837–856,
https://doi.org/10.1007/s00710-018-0591-x, 2018.
Jochum, K. P., Nohl, U., Herwig, K, Lammel, E., Stoll, B., and Hofmann, A. W.:
GeoReM: A New Geochemical Database for Reference Materials and Isotopic
Standards, Geostand. Geoanal. Res., 29, 333–338,
https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2007.
Korinevsky, V. G.: Spessartine-Andradite In Scapolite Pegmatite, Ilmeny
Mountains, Russia, Can. Mineral., 53, 623–632,
https://doi.org/10.3749/canmin.4354, 2015.
Kotková, J. and Harley, S. L.: Anatexis during High-pressure Crustal
Metamorphism: Evidence from Garnet–Whole-rock REE Relationships and
Zircon–Rutile Ti–Zr Thermometry in Leucogranulites from the Bohemian
Massif, J. Petrol., 51, 1967–2001,
https://doi.org/10.1093/petrology/egq045, 2010.
Krippner, A., Meinhold, G., Morton, A. C., Schönig, J., and Von Eynatten,
H.: Heavy minerals and garnet geochemistry of stream sediments and bedrocks
from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications
for provenance analysis, Sediment. Geol., 336, 96–105,
https://doi.org/10.1016/j.sedgeo.2015.09.009, 2016.
Lafuente B., Downs R. T., Yang H., and Stone, N.: The power of databases: the
RRUFF project, in: Highlights in Mineralogical Crystallography, edited by:
Armbruster, T. and Danisi, R. M., Berlin, Germany, W. De Gruyter, 1–30,
https://doi.org/10.1515/9783110417104-003, 2015.
Lehnert, K. and Wyborn, L. A.: OneGeochemistry: Toward a global network of geochemical data, AGU Fall Meeting 2019, AGU, 2019.
Lehnert, K., Su, Y., Langmuir, C., Sarbas, B., and Nohl, U.: A global
geochemical database structure for rocks, Geochem. Geophy.
Geosy. 1, 1012, https://doi.org/10.1029/1999GC000026, 2000.
Lehnert, K., Wyborn, L., Bennett, V. C., Hezel, D., McInnes, B. I. A., Plank,
T., and Rubin, K.: OneGeochemistry: Towards an Interoperable Global Network
of FAIR Geochemical Data, CODATA: Towards Next-Generation Data-Driven
Science September 2019 (CODATA2019), Beijing, China, Zenodo,
https://doi.org/10.5281/zenodo.5767950, 2021.
Locock, A. J.: An Excel spreadsheet to recast analyses of garnet into
end-member components, and a synopsis of the crystal chemistry of natural
silicate garnets, Comput. Geosci., 34, 1769–1780,
https://doi.org/10.1016/j.cageo.2007.12.013, 2008.
Makrygina, V. A. and Suvorova, L. F.: Spessartine in the greenschist facies:
Crystallization conditions, Geochem. Int., 49, 299–308,
https://doi.org/10.1134/S0016702911030074, 2011.
Manton, R. J., Buckman, S., Nutman, A. P., Bennett, V. C., and Belousova, E. A.:
U-Pb-Hf-REE-Ti zircon and REE garnet geochemistry of the Cambrian Attunga
eclogite, New England Orogen, Australia: Implications for continental growth
along eastern Gondwana: Orogens and Oceanic Terranes, Tectonics, 36,
1580–1613, https://doi.org/10.1002/2016TC004408, 2017.
Melcher, F., Grum, W., Simon G., Thalhammer, T. V., and Stumpfl, E. F.:
Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai,
Kazakhstan: a Study of Solid and Fluid Inclusions in Chromite, J.
Petrol., 38, 1419–1458,
https://doi.org/10.1093/petroj/38.10.1419, 1997.
MetPetDB: editing status 2019-02-01; – Registry of
Research Data Repositories [data set], https://doi.org/10.17616/R3ZN2S,
last access: 15 October 2020.
Mindat: Mindat.org [data set], https://www.mindat.org, last access: 21 September 2023.
Morrison, S. M. and Hazen, R. M.: An evolutionary system of mineralogy. Part
II: Interstellar and solar nebula primary condensation mineralogy
(>4.565 Ga), Am. Mineral., 105, 1508–1535,
https://doi.org/10.2138/am-2020-7447, 2020.
Morrison, S. M. and Hazen, R. M.: An evolutionary system of mineralogy, Part
IV: Planetesimal differentiation and impact mineralization (4566 to 4560
Ma), Am. Mineral., 106, 730–761, https://doi.org/10.2138/am-2021-7632, 2021.
Morrison, S. M., Buongiorno, J., Downs, R. T., Eleish, A., Fox, P.,
Giovannelli, D., Golden, J. J., Hummer, D. R., Hystad, G., Kellogg, L. H.,
Kreylos, O., Krivovichev, S. V., Liu, C., Prabhu, A., Ralph, J., Runyon,
S. E., Zahirovic, S., and Hazen, R. M.: Exploring carbon mineral systems:
Recent advances in C mineral evolution, mineral ecology, and network
analysis, Front. Earth Sci., 8, 1–12,
https://doi.org/10.3389/feart.2020.00208, 2020.
Morton, A., Hallsworth, C., and Chalton, B.: Garnet compositions in Scottish and
Norwegian basement terrains: a framework for interpretation of North Sea
sandstone provenance, Mar. Petrol. Geol., 21, 393–410,
https://doi.org/10.1016/j.marpetgeo.2004.01.001, 2004.
Nesse, W. D.: Introduction to Optical Mineralogy, 4th edition, Oxford
University Press, New York, NY, USA, 253–255, 2013.
Nickel, K. G. and Green, D. H.: Empirical geothermobarometry for garnet
peridotites and implications for the nature of the lithosphere, kimberlites
and diamonds, Earth Planet. Sc. Lett., 73, 158–170,
https://doi.org/10.1016/0012-821x(85)90043-3, 1985.
Nimis, P. and Grutter, H.: Internally consistent geothermometers for garnet
peridotites and pyroxenites, Contrib. Mineral. Petr., 159,
411–427, https://doi.org/10.1007/s00410-009-0455-9, 2010.
Parthasarathy, G., Balaram, V., and Srinivasan, R.: Characterization of
green garnets from an Archean calc-silicate rock, Bandihalli, Karnataka,
India: Evidence for a continuous solid solution between uvarovite and
grandite, J. Asian Earth Sci., 17, 345–352, https://doi.org/10.1016/S0743-9547(98)00064-6, 1999.
Patranabis-Deb, S., Schieber, J., and Basu, A.: Almandine garnet phenocrysts
in a ∼1 Ga rhyolitic tuff from central India, Geol.
Mag., 146, 133–143,
https://doi.org/10.1017/S0016756808005293, 2009.
PetDB: EarthChem PetDB Search [data set], http://www.earthchem.org/petdb, last access: 21 September 2023.
Prabhu, A., Morrison, S., Eleish, A., Zhong, H., Huang, F., Golden, J.,
Perry, S., Hummer, D., Runyon, S., Fontaine, K., Krivovichev, S., Downs, R.,
Hazen, R. M., and Fox, P.: Global Earth mineral inventory: A data legacy,
Geosci. Data J., 1, 1–16, https://doi.org/10.1002/gdj3.106, 2020.
Prabhu, A., Morrison, S. M., Fox, P. A., Ma, X., Wong, M. L., Williams, J.,
McGuinness, K. N., Krivovichev, S., Lehnert, K., Ralph, J., Lafuente, B., Downs,
R. T., Walter, M. J., and Hazen, R. M.: What is mineral informatics?, Am. Mineral., 108, 1242–1257, https://doi.org/10.2138/am-2022-8613, 2023.
Rosenfeld, J.: Rotated garnets in metamorphic rocks, Geological Society of
America, Boulder, Colorado, https://doi.org/10.1130/SPE129,
1970.
Schönig, J., Meinhold, G., Von Eynatten, H., and Lünsdorf, N. K.:
Provenance information recorded by mineral inclusions in detrital garnet,
Sediment. Geol., 376, 32–49,
https://doi.org/10.1016/j.sedgeo.2018.07.009, 2018.
Sieck, P., López-Doncel, R., Dávila-Harris, P., Aguillón-Robles,
A., Wemmer, K., and Maury, R. C.: Almandine garnet-bearing rhyolites
associated to bimodal volcanism in the Mesa Central of Mexico: Geochemical,
petrological and geochronological evolution, J. S. Am. Earth
Sci., 92, 310–328, https://doi.org/10.1016/j.jsames.2019.03.018, 2019.
Spear, F. S. and Daniel, C. G.: Diffusion control of garnet growth, Harpswell
Neck, Maine, USA, J. Metamorph. Geol., 19, 179–195,
https://doi.org/10.1046/j.0263-4929.2000.00306.x, 2001.
Spear, F. S., Hallett, B., Pyle, J. M., Adalı, S., Szymanski, B. K., Waters,
A., Linder, Z., Pearce, S. O., Fyffe, M., Goldfarb, D., Glickenhouse, N.,
and Buletti, H.: MetPetDB: A database for metamorphic geochemistry, Geochem.
Geophys. Geosy., 10, Q12005,
https://doi.org/10.1029/2009GC002766, 2009.
Suwa, K., Suzuki, K., and Agata, T.: Vanadium grossular from the Mozambique
metamorphic rocks, south Kenya, J. Southe. Asian Earth,
14, 299–308,
https://doi.org/10.1016/S0743-9547(96)00066-9, 1996.
The Gemology Project Color Grading: Color Grading, http://gemologyproject.com/wiki/index.php?title=Color_grading, last access: 10 October 2020.
The RRUFF Project: The RRUFF Project, https://rruff-2.geo.arizona.edu, last access: 21 September 2023.
Thomson, A. R., Kohn, S. C., Prabhu, A., and Walter, M. J.: Evaluating the
Formation Pressure of Diamond-Hosted Majoritic Garnets: A Machine Learning
Majorite Barometer, J. Geophys. Res.-Sol. Ea., 126, e2020JB02060,
https://doi.org/10.1029/2020jb020604, 2021.
Walter, M. J., Thomson, A. R., and Smith, E.: Geochemistry of
silicate and oxide inclusions in sub-lithospheric diamonds, Reviews in
Mineralogy and Geochemistry, Mineralogical Society of America, 88, 393–450, https://doi.org/10.2138/rmg.2022.88.07,
2022.
Wang, C., Hazen, R. M., Cheng, Q., Stephenson, M. H., Zhou, C., Fox, P., Shen,
S.-Z., Oberhänsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J., Ma, C., Hu,
X., Luo, B., Wang, J., and Schiffries,C. M.: The Deep-Time Digital Earth program:
data-driven discovery in geosciences, Nat. Sci. Rev., 8,
nwab027, https://doi.org/10.1093/nsr/nwab027, 2021.
Wang, D., Mitchell, R. N., Guo, J., and Liu, F.: Exhumation of an Archean
Granulite Terrane by Paleoproterozoic Orogenesis: Evidence from the North
China Craton, J. Petrol., 64, egad035,
https://doi.org/10.1093/petrology/egad035, 2023.
Web Colors: Web Colors, https://en.wikipedia.org/wiki/Web_colors, last access: 16 October 2020.
Whitney, D. L. and Seaton, N. C.A .: Garnet polycrystals and the significance
of clustered crystallization, Contrib. Mineral. Petr.,
160, 591–607, https://doi.org/10.1007/s00410-010-0495-1,
2010.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management
and stewardship, Sci. Data, 3, 160018,
https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, C. M. and Zhao, G. C.: The applicability of garnet-orthopyroxene
geobarometry in mantle xenoliths, Lithos, 125, 1–9,
https://doi.org/10.1016/j.lithos.2011.02.018, 2011.
Yang, J., Peng, J., Hu, R., Bi, X., Zhao, J., Fu, Y., and Shen, N.-P.:
Garnet geochemistry of tungsten-mineralized Xihuashan granites in South
China, Lithos, 177, 79–90,
https://doi.org/10.1016/j.lithos.2013.06.008, 2013.
Zhong, S., Li, S., Liu, Y., Cawood, P. A., and Seltmann, R.: I-type and
S-type granites in the Earth's earliest continental crust, Commun.
Earth Environ., 4, 61,
https://doi.org/10.1038/s43247-023-00731-7, 2023.
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data...
Altmetrics
Final-revised paper
Preprint