Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4235-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4235-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Department of Earth and Planetary Sciences, Harvard University, 20
Oxford St., Cambridge, MA 02138, USA
Morgan Gabor
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Isabella Lupini
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Department of Geology, Kansas State University, Manhattan, KS
66506, USA
Randolph Rutledge
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Julia Ann Nord
Atmospheric, Oceanic and Earth Science, George Mason University,
Fairfax, VA 22030, USA
Shuang Zhang
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Department of Oceanography, Texas A&M University, College
Station, TX 77843, USA
Asmaa Boujibar
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Emma S. Bullock
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Michael J. Walter
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Kerstin Lehnert
Lamont-Doherty Earth Observatory, Columbia University, New York,
NY 10027, USA
Frank Spear
Department of Earth and Environmental Sciences, Rensselaer
Polytechnic Institute, Troy, NY 12180, USA
Shaunna M. Morrison
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Robert M. Hazen
Earth and Planets Laboratory, Carnegie Institution for Science,
Washington, DC 20015, USA
Related authors
No articles found.
Samuel Shou-En Tsao, Tim Jesper Surhoff, Giuseppe Amatulli, Maya Almaraz, Jonathan Gewirtzman, Beck Woollen, Eric W. Slessarev, James E. Saiers, Christopher T. Reinhard, Shuang Zhang, Noah J. Planavsky, and Peter A. Raymond
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-411, https://doi.org/10.5194/essd-2025-411, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first detailed map of how much agricultural lime has been used across the United States from 1930 to 1987. Lime helps improve soil health and crop growth. Our study shows that how and where lime is used depends on climate, soil, and farming practices. By using machine learning, we found patterns that help explain these differences. This work helps us better understand the environmental role of lime and its impact on farming and climate.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
Cited articles
Alizai, A., Clift, P. D., and Still, J.: Indus Basin sediment provenance
constrained using garnet geochemistry, J. Asian Earth Sci., 126,
29–57, https://doi.org/10.1016/j.jseaes.2016.05.023, 2016.
Bauer, A. M., Reimink, J. R., Chacko, T., Foley, B. J., Shirey, S. B., and
Pearson, D. G.: Hafnium isotopes in zircons document the gradual onset of
mobile-lid tectonics, Geochemical Perspectives Letters, 14, 1–6,
https://doi.org/10.7185/geochemlet.2015, 2020.
Baxter, E. F. and Scherer, E. E.: Garnet geochronology: Timekeeper of
tectonometamorphic processes, Elements, 9, 433–438,
https://doi.org/10.2113/gselements.9.6.433, 2013.
Baxter, E. F., Caddick, M. J., and Dragovic, B.: Garnet: A rock-forming
mineral petrochronometer, Rev. Mineral. Geochem., 83,
469–533, https://doi.org/10.2138/rmg.2017.83.15, 2017.
Boujibar, A., Howell, S., Zhang, S., Hystad, G., Prabhu, A., Liu, N., Stephan, T.,
Narkar, S., Eleish, A., Morrison, S. M., Hazen, R. M., and Nittler, L. R.: Cluster
analysis of presolar silicon carbide grains: evaluation of their
classification and astrophysical implications, Astrophys. J.
Lett., 907,
L39, https://doi.org/10.3847/2041-8213/abd102, 2021.
Cawood, P., Chowdhury, P., Mulder, J., Hawkesworth, C., Capitanio, F.,
Gunawardana, P., and Nebel, O.: Secular Evolution of Continents and the
Earth System, Rev. Geophys., 60, e2022RG000789, https://doi.org/10.1029/2022RG000789, 2022.
Chassé, M., Griffin, W. L., Alard, O., O'Reilly, S. Y., and Calas, G.:
Insights into the mantle geochemistry of scandium from a meta-analysis of
garnet data, Lithos, 310–311, 409–421, https://doi.org/10.1016/j.lithos.2018.03.026, 2018.
Chen, Y.-X., Zhou, K., Zheng, Y.-F., Chen, R.-X., and Hu, Z.: Garnet
geochemistry records the action of metamorphic fluids in ultrahigh-pressure
dioritic gneiss from the Sulu orogen, Chem. Geol., 398, 46–60,
https://doi.org/10.1016/j.chemgeo.2015.01.021, 2015.
Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J. A., Zhang, S.,
Boujibar, A., Bullock, E. S., Walter, M. J., Lehnert, K., Spear, F.,
Morrison, S., and Hazen, R. M.: Garnet mineral geochemistry data download
from the MetPetDB (re3data.org) August 2019, Version 1.0., Interdisciplinary
Earth Data Alliance (IEDA) [data set],
https://doi.org/10.26022/IEDA/112173, 2021a.
Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J. A., Zhang, S.,
Boujibar, A., Bullock, E. S., Walter, M. J., Lehnert, K., Spear, F.,
Morrison, S., and Hazen, R. M.: Garnet mineral geochemistry data download
from the EarthChem Portal August 2019, Version 1.0., Interdisciplinary Earth
Data Alliance (IEDA) [data set], https://doi.org/10.26022/IEDA/112171, 2021b.
Chiama, K., Gabor, M., Lupini, I., Rutledge, R., Nord, J. A., Zhang, S.,
Boujibar, A., Bullock, E. S., Walter, M. J., Lehnert, K., Spear, F.,
Morrison, S. M., and Hazen, R. M.: ESMD – Garnet Dataset,
Open Data Repository [data set], https://doi.org/10.48484/camh-xy98, 2022.
Čopjaková, R., Sulovský, P., and Paterson, B.A.: Major and trace
elements in pyrope–almandine garnets as sediment provenance indicators of
the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif,
Lithos, 82, 51–70, https://doi.org/10.1016/j.lithos.2004.12.006, 2005.
Deer, W. A., Howie, R. A., and Zussman, J.: Rock-Forming Minerals: Volume 1A
Orthosilicates, Second Edition, New York: Longman, 1982.
Droop, G.: A general equation for estimating Fe3 concentrations in
ferromagnesian silicates and oxides from microprobe analyses, using
stoichiometric criteria, Mineral. Mag., 51, 431–435,
https://doi.org/10.1180/minmag.1987.051.361.10, 1987.
EarthChem Portal: EarthChem Portal [data set], https://www.earthchem.org, last access:
22 September 2023.
Fagan, T. J., Guan, Y., MacPherson, G. J., and Huss, G. R.:
Al-Mg isotopic evidence for separate nebular and parent-body alteration
events in two allende CAls, Lunar and Planetary Sciences, https://www.lpi.usra.edu/meetings/lpsc2005/pdf/1820.pdf (last access: 21 September 2023), 2005.
Farré-de-Pablo, J., Proenza, J. A., González-Jiménez, J. M.,
Aiglsperger, T., Torro, L., Domenech, C., and Garcia-Casco, A.: Low-temperature
hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites
from the Dominican Republic, Miner. Deposita, 57, 955–976, https://doi.org/10.1007/s00126-021-01079-8, 2022.
Gatewood, M. P., Dragovic, B., Stowell, H. H., Baxter, E. F., Hirsch, D. M., and
Bloom, R.: Evaluating chemical equilibrium in metamorphic rocks using major
element and Sm–Nd isotopic age zoning in garnet, Townshend Dam, Vermont,
USA, Chem. Geol., 401, 151–168,
https://doi.org/10.1016/j.chemgeo.2015.02.017, 2015.
Geiger, C. A: A tale of two garnets: The role of solid solution in the
development toward a modern mineralogy, Am. Mineral., 101,
1735–1749, https://doi.org/10.2138/am-2016-5522, 2016.
GeoReM: Geological and Environmental [data set], http://georem.mpch-mainz.gwdg.de/, last access: 21
September 2023.
GeoRoc: Geochemistry of Rocks of the Oceans and Continents [data set], http://georoc.mpch-mainz.gwdg.de/georoc/Start.asp, last
access: 21
September 2023
Ghosh, B. and Morishita, T.: Andradite-uvarovite solid solution from
hydrothermally altered podiform chromite, Rutland ophiolite, Andaman, India,
Can. Mineral., 49, 573–580,
https://doi.org/10.3749/canmin.49.2.573, 2011.
Ghosh, B., Morishita, T., Ray, J., Tamura, A., Mizukami, T., Soda, Y., and
Ovung, T. N.: A new occurrence of titanian (hydro)andradite from the Nagaland
ophiolite, India: Implications for element mobility in hydrothermal
environments, Chem. Geol., 457, 47–60,
https://doi.org/10.1016/j.chemgeo.2017.03.012, 2017.
Golden, J. J.: Mineral Evolution Database: Data Model for Mineral Age
Associations, M.S. Thesis, University of Arizona, Tucson AZ, 2019.
Grew, E. S., Locock, A. J., Mills, S. J., Galuskina, I. O., Galuskin, E. V., and
Hålenius, U.: Nomenclature of the garnet supergroup, Am. Mineral., 98, 785–811, https://doi.org/10.2138/am.2013.4201, 2013.
Griffin, W. L., Fisher, N. I., Friedman, J. H., Ryan, C. G., and O'Reilly, S. Y.:
Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics
and relations to tectonic settings, J. Petrol., 40, 679–704,
https://doi.org/10.1093/petroj/40.5.679, 1999a.
Griffin, W. L., Shee, S. R., Ryan, C. G., Win, T. T., and Wyatt, B. A.:
Harzburgite to lherzolite and back again: metasomatic processes in
ultramafic xenoliths from the Wesselton Kimberlite, Kimberley, South Africa,
Contrib. Mineral. Petr., 134, 232–250, https://doi.org/10.1007/s004100050481, 1999b.
Hawkesworth, C. J., Cawood, P. A., and Dhuime, B.: The Evolution of the
Continental Crust and the Onset of Plate Tectonics, Front. Earth
Sci., 8, 326, https://doi.org/10.3389/feart.2020.00326, 2020.
Hazen, R. M.: Data-driven abductive discovery in mineralogy, Am. Mineral., 99, 2165–2170,
https://doi.org/10.2138/am-2014-4895, 2014.
Hazen, R. M.: An evolutionary system of mineralogy: Proposal for a
classification of planetary materials based on natural kind clustering,
Am. Mineral., 104, 810–816,
https://doi.org/10.2138/am-2019-6709CCBYNCND, 2019.
Hazen, R. M. and Morrison, S. M.: An evolutionary system of mineralogy, Part
I: stellar mineralogy (>13 to 4.6 Ga), Am. Mineral.,
105, 627–651, https://doi.org/10.2138/am-2020-7173, 2020.
Hazen, R. M. and Morrison, S. M.: An evolutionary system of mineralogy, Part
V: Aqueous and thermal alteration of planetesimals (∼4565 to
4550 Ma), Am. Mineral., 106, 1388–1419,
https://doi.org/10.2138/am-2021-7760, 2021.
Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy,
T. J., Sverjensky, D. A., and Yang, H.: Mineral evolution, Am. Mineral., 93, 1693–1720,
https://doi.org/10.2138/am.2008.2955, 2008.
Hazen, R. M., Golden, J., Downs, R. T., Hystad, G., Grew, E. S., Azzolini, D.,
and Sverjensky, D. A.: Mercury (Hg) mineral evolution: A mineralogical record
of supercontinent assembly, changing ocean geochemistry, and the emerging
terrestrial biosphere, Am. Mineral., 97, 1013–1042,
https://doi.org/10.2138/am.2012.3922, 2012.
Hazen, R. M., Liu, X.-M., Downs, R. T., Golden, J., Pires, A. J., Grew, E. S.,
Hystad, G., Estrada, C., and Sverjensky, D. A.: Mineral Evolution: Episodic
Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and
Biosphere, Econ. Geol. Special Publication, 18, 1–15, 2014.
Hazen, R. M., Downs, R. T., Eleish, A., Fox, P., Gagné, O. C., Golden,
J. J., Grew, E. S., Hummer, D. R., Hystad, G., Krivovichev, S. V., Li, C., Liu,
C., Ma, X., Morrison, S. M., Pan, F., Pires, A. J., Prabhu, A., Ralph, J.,
Runyon, S. E., and Zhong, H.: Data-driven discovery in mineralogy: Recent
advances in data resources, analysis, and visualization, Engineering, 5,
397–405, https://doi.org/10.1016/j.eng.2019.03.006, 2019.
Hazen, R. M., Morrison, S. M., and Prabhu, A.: An evolutionary system of
mineralogy, Part III: Primary chondrule mineralogy (4566 to 4561 Ma),
Am. Mineral., 106, 325–350,
https://doi.org/10.2138/am-2020-7564, 2020.
Höfer, H. E., Weinbrunch, S., McCammon, C. A., and Brey, G. P.: Comparison
of two electron probe microanalysis techniques to determine ferric iron in
synthetic wustite samples, Eur. J. Mineral, 12 , 63–71,
https://doi.org/10.1127/0935-1221/2000/0012-0063, 2000.
International Generic Sample Number (IGSN): https://www.igsn.org/,
last access: 27 September 2020.
Inglis, J. D., Hefferan, K., Samson, S. D., Admou, H., and Saquaque, A.:
Determining Age of Pan African Metamorphism using Sm-Nd Garnet-Whole Rock
Geochronology and Phase Equilibria Modeling in the Tasriwine Ophiolite,
Sirwa, Anti-Atlas Morocco, J. Afr. Earth Sci., 127, 88–98,
https://doi.org/10.1016/j.jafrearsci.2016.06.021, 2017.
Jackson, I.: OneGeology: from concept to reality, Episodes Journal of
International Geoscience, 31, 344–345, 2008.
Javanmard, S. R., Tahmasbi, Z., Ding, X., Khalaji, A. A., and Hetherington,
C. J.: Geochemistry of garnet in pegmatites from the Boroujerd Intrusive
Complex, Sanandaj-Sirjan Zone, western Iran: implications for the origin of
pegmatite melts, Miner. Petrol., 112, 837–856,
https://doi.org/10.1007/s00710-018-0591-x, 2018.
Jochum, K. P., Nohl, U., Herwig, K, Lammel, E., Stoll, B., and Hofmann, A. W.:
GeoReM: A New Geochemical Database for Reference Materials and Isotopic
Standards, Geostand. Geoanal. Res., 29, 333–338,
https://doi.org/10.1111/j.1751-908X.2005.tb00904.x, 2007.
Korinevsky, V. G.: Spessartine-Andradite In Scapolite Pegmatite, Ilmeny
Mountains, Russia, Can. Mineral., 53, 623–632,
https://doi.org/10.3749/canmin.4354, 2015.
Kotková, J. and Harley, S. L.: Anatexis during High-pressure Crustal
Metamorphism: Evidence from Garnet–Whole-rock REE Relationships and
Zircon–Rutile Ti–Zr Thermometry in Leucogranulites from the Bohemian
Massif, J. Petrol., 51, 1967–2001,
https://doi.org/10.1093/petrology/egq045, 2010.
Krippner, A., Meinhold, G., Morton, A. C., Schönig, J., and Von Eynatten,
H.: Heavy minerals and garnet geochemistry of stream sediments and bedrocks
from the Almklovdalen area, Western Gneiss Region, SW Norway: Implications
for provenance analysis, Sediment. Geol., 336, 96–105,
https://doi.org/10.1016/j.sedgeo.2015.09.009, 2016.
Lafuente B., Downs R. T., Yang H., and Stone, N.: The power of databases: the
RRUFF project, in: Highlights in Mineralogical Crystallography, edited by:
Armbruster, T. and Danisi, R. M., Berlin, Germany, W. De Gruyter, 1–30,
https://doi.org/10.1515/9783110417104-003, 2015.
Lehnert, K. and Wyborn, L. A.: OneGeochemistry: Toward a global network of geochemical data, AGU Fall Meeting 2019, AGU, 2019.
Lehnert, K., Su, Y., Langmuir, C., Sarbas, B., and Nohl, U.: A global
geochemical database structure for rocks, Geochem. Geophy.
Geosy. 1, 1012, https://doi.org/10.1029/1999GC000026, 2000.
Lehnert, K., Wyborn, L., Bennett, V. C., Hezel, D., McInnes, B. I. A., Plank,
T., and Rubin, K.: OneGeochemistry: Towards an Interoperable Global Network
of FAIR Geochemical Data, CODATA: Towards Next-Generation Data-Driven
Science September 2019 (CODATA2019), Beijing, China, Zenodo,
https://doi.org/10.5281/zenodo.5767950, 2021.
Locock, A. J.: An Excel spreadsheet to recast analyses of garnet into
end-member components, and a synopsis of the crystal chemistry of natural
silicate garnets, Comput. Geosci., 34, 1769–1780,
https://doi.org/10.1016/j.cageo.2007.12.013, 2008.
Makrygina, V. A. and Suvorova, L. F.: Spessartine in the greenschist facies:
Crystallization conditions, Geochem. Int., 49, 299–308,
https://doi.org/10.1134/S0016702911030074, 2011.
Manton, R. J., Buckman, S., Nutman, A. P., Bennett, V. C., and Belousova, E. A.:
U-Pb-Hf-REE-Ti zircon and REE garnet geochemistry of the Cambrian Attunga
eclogite, New England Orogen, Australia: Implications for continental growth
along eastern Gondwana: Orogens and Oceanic Terranes, Tectonics, 36,
1580–1613, https://doi.org/10.1002/2016TC004408, 2017.
Melcher, F., Grum, W., Simon G., Thalhammer, T. V., and Stumpfl, E. F.:
Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai,
Kazakhstan: a Study of Solid and Fluid Inclusions in Chromite, J.
Petrol., 38, 1419–1458,
https://doi.org/10.1093/petroj/38.10.1419, 1997.
MetPetDB: editing status 2019-02-01; – Registry of
Research Data Repositories [data set], https://doi.org/10.17616/R3ZN2S,
last access: 15 October 2020.
Mindat: Mindat.org [data set], https://www.mindat.org, last access: 21 September 2023.
Morrison, S. M. and Hazen, R. M.: An evolutionary system of mineralogy. Part
II: Interstellar and solar nebula primary condensation mineralogy
(>4.565 Ga), Am. Mineral., 105, 1508–1535,
https://doi.org/10.2138/am-2020-7447, 2020.
Morrison, S. M. and Hazen, R. M.: An evolutionary system of mineralogy, Part
IV: Planetesimal differentiation and impact mineralization (4566 to 4560
Ma), Am. Mineral., 106, 730–761, https://doi.org/10.2138/am-2021-7632, 2021.
Morrison, S. M., Buongiorno, J., Downs, R. T., Eleish, A., Fox, P.,
Giovannelli, D., Golden, J. J., Hummer, D. R., Hystad, G., Kellogg, L. H.,
Kreylos, O., Krivovichev, S. V., Liu, C., Prabhu, A., Ralph, J., Runyon,
S. E., Zahirovic, S., and Hazen, R. M.: Exploring carbon mineral systems:
Recent advances in C mineral evolution, mineral ecology, and network
analysis, Front. Earth Sci., 8, 1–12,
https://doi.org/10.3389/feart.2020.00208, 2020.
Morton, A., Hallsworth, C., and Chalton, B.: Garnet compositions in Scottish and
Norwegian basement terrains: a framework for interpretation of North Sea
sandstone provenance, Mar. Petrol. Geol., 21, 393–410,
https://doi.org/10.1016/j.marpetgeo.2004.01.001, 2004.
Nesse, W. D.: Introduction to Optical Mineralogy, 4th edition, Oxford
University Press, New York, NY, USA, 253–255, 2013.
Nickel, K. G. and Green, D. H.: Empirical geothermobarometry for garnet
peridotites and implications for the nature of the lithosphere, kimberlites
and diamonds, Earth Planet. Sc. Lett., 73, 158–170,
https://doi.org/10.1016/0012-821x(85)90043-3, 1985.
Nimis, P. and Grutter, H.: Internally consistent geothermometers for garnet
peridotites and pyroxenites, Contrib. Mineral. Petr., 159,
411–427, https://doi.org/10.1007/s00410-009-0455-9, 2010.
Parthasarathy, G., Balaram, V., and Srinivasan, R.: Characterization of
green garnets from an Archean calc-silicate rock, Bandihalli, Karnataka,
India: Evidence for a continuous solid solution between uvarovite and
grandite, J. Asian Earth Sci., 17, 345–352, https://doi.org/10.1016/S0743-9547(98)00064-6, 1999.
Patranabis-Deb, S., Schieber, J., and Basu, A.: Almandine garnet phenocrysts
in a ∼1 Ga rhyolitic tuff from central India, Geol.
Mag., 146, 133–143,
https://doi.org/10.1017/S0016756808005293, 2009.
PetDB: EarthChem PetDB Search [data set], http://www.earthchem.org/petdb, last access: 21 September 2023.
Prabhu, A., Morrison, S., Eleish, A., Zhong, H., Huang, F., Golden, J.,
Perry, S., Hummer, D., Runyon, S., Fontaine, K., Krivovichev, S., Downs, R.,
Hazen, R. M., and Fox, P.: Global Earth mineral inventory: A data legacy,
Geosci. Data J., 1, 1–16, https://doi.org/10.1002/gdj3.106, 2020.
Prabhu, A., Morrison, S. M., Fox, P. A., Ma, X., Wong, M. L., Williams, J.,
McGuinness, K. N., Krivovichev, S., Lehnert, K., Ralph, J., Lafuente, B., Downs,
R. T., Walter, M. J., and Hazen, R. M.: What is mineral informatics?, Am. Mineral., 108, 1242–1257, https://doi.org/10.2138/am-2022-8613, 2023.
Rosenfeld, J.: Rotated garnets in metamorphic rocks, Geological Society of
America, Boulder, Colorado, https://doi.org/10.1130/SPE129,
1970.
Schönig, J., Meinhold, G., Von Eynatten, H., and Lünsdorf, N. K.:
Provenance information recorded by mineral inclusions in detrital garnet,
Sediment. Geol., 376, 32–49,
https://doi.org/10.1016/j.sedgeo.2018.07.009, 2018.
Sieck, P., López-Doncel, R., Dávila-Harris, P., Aguillón-Robles,
A., Wemmer, K., and Maury, R. C.: Almandine garnet-bearing rhyolites
associated to bimodal volcanism in the Mesa Central of Mexico: Geochemical,
petrological and geochronological evolution, J. S. Am. Earth
Sci., 92, 310–328, https://doi.org/10.1016/j.jsames.2019.03.018, 2019.
Spear, F. S. and Daniel, C. G.: Diffusion control of garnet growth, Harpswell
Neck, Maine, USA, J. Metamorph. Geol., 19, 179–195,
https://doi.org/10.1046/j.0263-4929.2000.00306.x, 2001.
Spear, F. S., Hallett, B., Pyle, J. M., Adalı, S., Szymanski, B. K., Waters,
A., Linder, Z., Pearce, S. O., Fyffe, M., Goldfarb, D., Glickenhouse, N.,
and Buletti, H.: MetPetDB: A database for metamorphic geochemistry, Geochem.
Geophys. Geosy., 10, Q12005,
https://doi.org/10.1029/2009GC002766, 2009.
Suwa, K., Suzuki, K., and Agata, T.: Vanadium grossular from the Mozambique
metamorphic rocks, south Kenya, J. Southe. Asian Earth,
14, 299–308,
https://doi.org/10.1016/S0743-9547(96)00066-9, 1996.
The Gemology Project Color Grading: Color Grading, http://gemologyproject.com/wiki/index.php?title=Color_grading, last access: 10 October 2020.
The RRUFF Project: The RRUFF Project, https://rruff-2.geo.arizona.edu, last access: 21 September 2023.
Thomson, A. R., Kohn, S. C., Prabhu, A., and Walter, M. J.: Evaluating the
Formation Pressure of Diamond-Hosted Majoritic Garnets: A Machine Learning
Majorite Barometer, J. Geophys. Res.-Sol. Ea., 126, e2020JB02060,
https://doi.org/10.1029/2020jb020604, 2021.
Walter, M. J., Thomson, A. R., and Smith, E.: Geochemistry of
silicate and oxide inclusions in sub-lithospheric diamonds, Reviews in
Mineralogy and Geochemistry, Mineralogical Society of America, 88, 393–450, https://doi.org/10.2138/rmg.2022.88.07,
2022.
Wang, C., Hazen, R. M., Cheng, Q., Stephenson, M. H., Zhou, C., Fox, P., Shen,
S.-Z., Oberhänsli, R., Hou, Z., Ma, X., Feng, Z., Fan, J., Ma, C., Hu,
X., Luo, B., Wang, J., and Schiffries,C. M.: The Deep-Time Digital Earth program:
data-driven discovery in geosciences, Nat. Sci. Rev., 8,
nwab027, https://doi.org/10.1093/nsr/nwab027, 2021.
Wang, D., Mitchell, R. N., Guo, J., and Liu, F.: Exhumation of an Archean
Granulite Terrane by Paleoproterozoic Orogenesis: Evidence from the North
China Craton, J. Petrol., 64, egad035,
https://doi.org/10.1093/petrology/egad035, 2023.
Web Colors: Web Colors, https://en.wikipedia.org/wiki/Web_colors, last access: 16 October 2020.
Whitney, D. L. and Seaton, N. C.A .: Garnet polycrystals and the significance
of clustered crystallization, Contrib. Mineral. Petr.,
160, 591–607, https://doi.org/10.1007/s00410-010-0495-1,
2010.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management
and stewardship, Sci. Data, 3, 160018,
https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, C. M. and Zhao, G. C.: The applicability of garnet-orthopyroxene
geobarometry in mantle xenoliths, Lithos, 125, 1–9,
https://doi.org/10.1016/j.lithos.2011.02.018, 2011.
Yang, J., Peng, J., Hu, R., Bi, X., Zhao, J., Fu, Y., and Shen, N.-P.:
Garnet geochemistry of tungsten-mineralized Xihuashan granites in South
China, Lithos, 177, 79–90,
https://doi.org/10.1016/j.lithos.2013.06.008, 2013.
Zhong, S., Li, S., Liu, Y., Cawood, P. A., and Seltmann, R.: I-type and
S-type granites in the Earth's earliest continental crust, Commun.
Earth Environ., 4, 61,
https://doi.org/10.1038/s43247-023-00731-7, 2023.
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data...
Altmetrics
Final-revised paper
Preprint