Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3365-2023
https://doi.org/10.5194/essd-15-3365-2023
Data description paper
 | 
02 Aug 2023
Data description paper |  | 02 Aug 2023

Thirty-meter map of young forest age in China

Yuelong Xiao, Qunming Wang, Xiaohua Tong, and Peter M. Atkinson

Related authors

Spatial Pattern Investigation of Olivine on Mars using OMEGA and MOLA Remote Sensing Data: A Case Study at Valles Marineris and Nili Fossae
Leilei Jiao, Yusheng Xu, Rong Huang, Zhen Ye, Sicong Liu, Shijie Liu, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 629–635, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-629-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-629-2024, 2024
Generative 3D Reconstruction of Martian Surfaces using Monocular Images
Jiarui Cao, Rong Huang, Zhen Ye, Yusheng Xu, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 51–56, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-51-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-51-2024, 2024
A full-coverage satellite-based global atmospheric CO2 dataset at 0.05° resolution from 2015 to 2021 for exploring global carbon dynamics
Zhige Wang, Ce Zhang, Kejian Shi, Yulin Shangguan, Bifeng Hu, Xueyao Chen, Danqing Wei, Songchao Chen, Peter M. Atkinson, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-315,https://doi.org/10.5194/essd-2024-315, 2024
Preprint under review for ESSD
Short summary
Global DEM Product Generation by Correcting ASTER GDEM Elevation with ICESat-2 Altimeter Data
Binbin Li, Huan Xie, Shijie Liu, Zhen Ye, Zhonghua Hong, Qihao Weng, Yuan Sun, Qi Xu, and Xiaohua Tong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-277,https://doi.org/10.5194/essd-2024-277, 2024
Revised manuscript accepted for ESSD
Short summary
3D POINT CLOUD COMPLETION USING TERRAIN-CONTINUOUS CONSTRAINTS AND DISTANCE-WEIGHTED INTERPOLATION FOR LUNAR TOPOGRAPHIC MAPPING
S. Xu, R. Huang, Y. Xu, Z. Ye, H. Xie, and X. Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 771–776, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-771-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-771-2023, 2023

Related subject area

Domain: ESSD – Land | Subject: Biogeosciences and biodiversity
A spectral–structural characterization of European temperate, hemiboreal, and boreal forests
Miina Rautiainen, Aarne Hovi, Daniel Schraik, Jan Hanuš, Petr Lukeš, Zuzana Lhotáková, and Lucie Homolová
Earth Syst. Sci. Data, 16, 5069–5087, https://doi.org/10.5194/essd-16-5069-2024,https://doi.org/10.5194/essd-16-5069-2024, 2024
Short summary
VODCA v2: multi-sensor, multi-frequency vegetation optical depth data for long-term canopy dynamics and biomass monitoring
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024,https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
Crop-specific management history of phosphorus fertilizer input (CMH-P) in the croplands of the United States: reconciliation of top-down and bottom-up data sources
Peiyu Cao, Bo Yi, Franco Bilotto, Carlos Gonzalez Fischer, Mario Herrero, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 4557–4572, https://doi.org/10.5194/essd-16-4557-2024,https://doi.org/10.5194/essd-16-4557-2024, 2024
Short summary
Enhancing long-term vegetation monitoring in Australia: a new approach for harmonising the Advanced Very High Resolution Radiometer normalised-difference vegetation (NVDI) with MODIS NDVI
Chad A. Burton, Sami W. Rifai, Luigi J. Renzullo, and Albert I. J. M. Van Dijk
Earth Syst. Sci. Data, 16, 4389–4416, https://doi.org/10.5194/essd-16-4389-2024,https://doi.org/10.5194/essd-16-4389-2024, 2024
Short summary
A synthesized field survey database of vegetation and active-layer properties for the Alaskan tundra (1972–2020)
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024,https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary

Cited articles

Arévalo, P., Bullock, E. L., Woodcock, C. E., and Olofsson, P.: A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine, Front. Clim., 2, 111051, https://doi.org/10.3389/fclim.2020.576740, 2020. 
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and climate data, Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, 2021. 
Betts, M. G., Yang, Z., Hadley, A. S., Smith, A. C., Rousseau, J. S., Northrup, J. M., Nocera, J. J., Gorelick, N., and Gerber, B. D.: Forest degradation drives widespread avian habitat and population declines, Nature Ecology & Evolution, 6, 709–719, https://doi.org/10.1038/s41559-022-01737-8, 2022. 
Bullock, E. L., Woodcock, C. E., and Olofsson, P.: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis, Remote Sens. Environ., 238, 110968, https://doi.org/10.1016/j.rse.2018.11.011, 2020. 
Champion, I., Germain, C., Da Costa, J. P., Alborini, A., and Dubois-Fernandez, P.: Retrieval of Forest Stand Age From SAR Image Texture for Varying Distance and Orientation Values of the Gray Level Co-Occurrence Matrix, IEEE Geosci. Remote S., 11, 5–9, https://doi.org/10.1109/LGRS.2013.2244060, 2014. 
Download
Short summary
Forest age is closely related to forest production, carbon cycles, and other ecosystem services. Existing stand age products in China derived from remote-sensing images are of a coarse spatial resolution and are not suitable for applications at the regional scale. Here, we mapped young forest ages across China at an unprecedented fine spatial resolution of 30 m. The overall accuracy (OA) of the generated map of young forest stand ages across China was 90.28 %.
Altmetrics
Final-revised paper
Preprint