Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3365-2023
https://doi.org/10.5194/essd-15-3365-2023
Data description paper
 | 
02 Aug 2023
Data description paper |  | 02 Aug 2023

Thirty-meter map of young forest age in China

Yuelong Xiao, Qunming Wang, Xiaohua Tong, and Peter M. Atkinson

Related authors

Monitoring planted forest expansion from 1990–2020 in China
Yuelong Xiao and Qunming Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-489,https://doi.org/10.5194/essd-2025-489, 2025
Preprint under review for ESSD
Short summary
Shape Reconstruction and Rotation Axis Estimation of Small Bodies Based on Structure-from-Motion
Huan Xie, Yifan Wang, Xiongfeng Yan, Ming Yang, Yaqiong Wang, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1589–1594, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1589-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1589-2025, 2025
Semantic Segmentation of Martian Landforms with Sparse Scribble Annotations Using a Pseudo-Labeling Strategy
Peiqi Ye, Rong Huang, Puzuo Wang, Yusheng Xu, Zhen Ye, Yongjiu Feng, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1641–1646, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1641-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1641-2025, 2025
Visual-LiDAR Odometry for Planetary Rover with Plane Constraints
Lingxiao Zhang, Rong Huang, Yusheng Xu, Zhen Ye, Changjiang Xiao, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1699–1705, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1699-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1699-2025, 2025
Preliminary Validation of Multimodal Feature Matching Method for Multi-source DEM Registration in Planetary Scenarios
Yi Zhang, Genyi Wan, Dayong Liu, Tao Tao, Changjiang Xiao, Zhen Ye, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1727–1732, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1727-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1727-2025, 2025

Cited articles

Arévalo, P., Bullock, E. L., Woodcock, C. E., and Olofsson, P.: A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine, Front. Clim., 2, 111051, https://doi.org/10.3389/fclim.2020.576740, 2020. 
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and climate data, Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, 2021. 
Betts, M. G., Yang, Z., Hadley, A. S., Smith, A. C., Rousseau, J. S., Northrup, J. M., Nocera, J. J., Gorelick, N., and Gerber, B. D.: Forest degradation drives widespread avian habitat and population declines, Nature Ecology & Evolution, 6, 709–719, https://doi.org/10.1038/s41559-022-01737-8, 2022. 
Bullock, E. L., Woodcock, C. E., and Olofsson, P.: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis, Remote Sens. Environ., 238, 110968, https://doi.org/10.1016/j.rse.2018.11.011, 2020. 
Champion, I., Germain, C., Da Costa, J. P., Alborini, A., and Dubois-Fernandez, P.: Retrieval of Forest Stand Age From SAR Image Texture for Varying Distance and Orientation Values of the Gray Level Co-Occurrence Matrix, IEEE Geosci. Remote S., 11, 5–9, https://doi.org/10.1109/LGRS.2013.2244060, 2014. 
Download
Short summary
Forest age is closely related to forest production, carbon cycles, and other ecosystem services. Existing stand age products in China derived from remote-sensing images are of a coarse spatial resolution and are not suitable for applications at the regional scale. Here, we mapped young forest ages across China at an unprecedented fine spatial resolution of 30 m. The overall accuracy (OA) of the generated map of young forest stand ages across China was 90.28 %.
Share
Altmetrics
Final-revised paper
Preprint