Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3365-2023
https://doi.org/10.5194/essd-15-3365-2023
Data description paper
 | 
02 Aug 2023
Data description paper |  | 02 Aug 2023

Thirty-meter map of young forest age in China

Yuelong Xiao, Qunming Wang, Xiaohua Tong, and Peter M. Atkinson

Related authors

Global digital elevation model (GDEM) product generation by correcting ASTER GDEM elevation with ICESat-2 altimeter data
Binbin Li, Huan Xie, Shijie Liu, Zhen Ye, Zhonghua Hong, Qihao Weng, Yuan Sun, Qi Xu, and Xiaohua Tong
Earth Syst. Sci. Data, 17, 205–220, https://doi.org/10.5194/essd-17-205-2025,https://doi.org/10.5194/essd-17-205-2025, 2025
Short summary
Spatial Pattern Investigation of Olivine on Mars using OMEGA and MOLA Remote Sensing Data: A Case Study at Valles Marineris and Nili Fossae
Leilei Jiao, Yusheng Xu, Rong Huang, Zhen Ye, Sicong Liu, Shijie Liu, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 629–635, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-629-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-629-2024, 2024
Generative 3D Reconstruction of Martian Surfaces using Monocular Images
Jiarui Cao, Rong Huang, Zhen Ye, Yusheng Xu, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 51–56, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-51-2024,https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-51-2024, 2024
A full-coverage satellite-based global atmospheric CO2 dataset at 0.05° resolution from 2015 to 2021 for exploring global carbon dynamics
Zhige Wang, Ce Zhang, Kejian Shi, Yulin Shangguan, Bifeng Hu, Xueyao Chen, Danqing Wei, Songchao Chen, Peter M. Atkinson, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-315,https://doi.org/10.5194/essd-2024-315, 2024
Preprint under review for ESSD
Short summary
3D POINT CLOUD COMPLETION USING TERRAIN-CONTINUOUS CONSTRAINTS AND DISTANCE-WEIGHTED INTERPOLATION FOR LUNAR TOPOGRAPHIC MAPPING
S. Xu, R. Huang, Y. Xu, Z. Ye, H. Xie, and X. Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 771–776, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-771-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-771-2023, 2023

Related subject area

Domain: ESSD – Land | Subject: Biogeosciences and biodiversity
A post-processed carbon flux dataset for 34 eddy covariance flux sites across the Heihe River basin, China
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data, 17, 1329–1346, https://doi.org/10.5194/essd-17-1329-2025,https://doi.org/10.5194/essd-17-1329-2025, 2025
Short summary
Century-long reconstruction of gridded phosphorus surplus across Europe (1850–2019)
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data, 17, 881–916, https://doi.org/10.5194/essd-17-881-2025,https://doi.org/10.5194/essd-17-881-2025, 2025
Short summary
High-resolution carbon cycling data from 2019 to 2021 measured at six Austrian long-term ecosystem research sites
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Armin Malli, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Christoph Wohner, Sophie Zechmeister-Boltenstern, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data, 17, 685–702, https://doi.org/10.5194/essd-17-685-2025,https://doi.org/10.5194/essd-17-685-2025, 2025
Short summary
An organic matter database (OMD): consolidating global residue data from agriculture, fisheries, forestry and related industries
Gudeta Weldesemayat Sileshi, Edmundo Barrios, Johannes Lehmann, and Francesco Nicola Tubiello
Earth Syst. Sci. Data, 17, 369–391, https://doi.org/10.5194/essd-17-369-2025,https://doi.org/10.5194/essd-17-369-2025, 2025
Short summary
An expert survey on chamber measurement techniques for methane fluxes
Katharina Jentzsch, Lona van Delden, Matthias Fuchs, and Claire C. Treat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-381,https://doi.org/10.5194/essd-2024-381, 2024
Revised manuscript accepted for ESSD
Short summary

Cited articles

Arévalo, P., Bullock, E. L., Woodcock, C. E., and Olofsson, P.: A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine, Front. Clim., 2, 111051, https://doi.org/10.3389/fclim.2020.576740, 2020. 
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and climate data, Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, 2021. 
Betts, M. G., Yang, Z., Hadley, A. S., Smith, A. C., Rousseau, J. S., Northrup, J. M., Nocera, J. J., Gorelick, N., and Gerber, B. D.: Forest degradation drives widespread avian habitat and population declines, Nature Ecology & Evolution, 6, 709–719, https://doi.org/10.1038/s41559-022-01737-8, 2022. 
Bullock, E. L., Woodcock, C. E., and Olofsson, P.: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis, Remote Sens. Environ., 238, 110968, https://doi.org/10.1016/j.rse.2018.11.011, 2020. 
Champion, I., Germain, C., Da Costa, J. P., Alborini, A., and Dubois-Fernandez, P.: Retrieval of Forest Stand Age From SAR Image Texture for Varying Distance and Orientation Values of the Gray Level Co-Occurrence Matrix, IEEE Geosci. Remote S., 11, 5–9, https://doi.org/10.1109/LGRS.2013.2244060, 2014. 
Download
Short summary
Forest age is closely related to forest production, carbon cycles, and other ecosystem services. Existing stand age products in China derived from remote-sensing images are of a coarse spatial resolution and are not suitable for applications at the regional scale. Here, we mapped young forest ages across China at an unprecedented fine spatial resolution of 30 m. The overall accuracy (OA) of the generated map of young forest stand ages across China was 90.28 %.
Share
Altmetrics
Final-revised paper
Preprint