Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3365-2023
https://doi.org/10.5194/essd-15-3365-2023
Data description paper
 | 
02 Aug 2023
Data description paper |  | 02 Aug 2023

Thirty-meter map of young forest age in China

Yuelong Xiao, Qunming Wang, Xiaohua Tong, and Peter M. Atkinson

Related authors

Shape Reconstruction and Rotation Axis Estimation of Small Bodies Based on Structure-from-Motion
Huan Xie, Yifan Wang, Xiongfeng Yan, Ming Yang, Yaqiong Wang, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1589–1594, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1589-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1589-2025, 2025
Semantic Segmentation of Martian Landforms with Sparse Scribble Annotations Using a Pseudo-Labeling Strategy
Peiqi Ye, Rong Huang, Puzuo Wang, Yusheng Xu, Zhen Ye, Yongjiu Feng, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1641–1646, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1641-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1641-2025, 2025
Visual-LiDAR Odometry for Planetary Rover with Plane Constraints
Lingxiao Zhang, Rong Huang, Yusheng Xu, Zhen Ye, Changjiang Xiao, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1699–1705, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1699-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1699-2025, 2025
Preliminary Validation of Multimodal Feature Matching Method for Multi-source DEM Registration in Planetary Scenarios
Yi Zhang, Genyi Wan, Dayong Liu, Tao Tao, Changjiang Xiao, Zhen Ye, and Xiaohua Tong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1727–1732, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1727-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1727-2025, 2025
Quality assessment of ICESat-2 ATL03 denoising data based on spatial distribution and photon weight
Yuan Sun, Huan Xie, Xiaohua Tong, Qi Xu, Binbin Li, Changda Liu, Min Ji, and Hao Tang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1421–1426, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1421-2025,https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1421-2025, 2025

Related subject area

Domain: ESSD – Land | Subject: Biogeosciences and biodiversity
Multi-temporal high-resolution data products of ecosystem structure derived from country-wide airborne laser scanning surveys of the Netherlands
Yifang Shi, Jinhu Wang, and W. Daniel Kissling
Earth Syst. Sci. Data, 17, 3641–3677, https://doi.org/10.5194/essd-17-3641-2025,https://doi.org/10.5194/essd-17-3641-2025, 2025
Short summary
Remote sensing of young leaf photosynthetic capacity in tropical and subtropical evergreen broadleaved forests
Xueqin Yang, Qingling Sun, Liusheng Han, Jie Tian, Wenping Yuan, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data, 17, 3293–3314, https://doi.org/10.5194/essd-17-3293-2025,https://doi.org/10.5194/essd-17-3293-2025, 2025
Short summary
China's annual forest age dataset at a 30 m spatial resolution from 1986 to 2022
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data, 17, 3219–3241, https://doi.org/10.5194/essd-17-3219-2025,https://doi.org/10.5194/essd-17-3219-2025, 2025
Short summary
CEDAR-GPP: spatiotemporally upscaled estimates of gross primary productivity incorporating CO2 fertilization
Yanghui Kang, Maoya Bassiouni, Max Gaber, Xinchen Lu, and Trevor F. Keenan
Earth Syst. Sci. Data, 17, 3009–3046, https://doi.org/10.5194/essd-17-3009-2025,https://doi.org/10.5194/essd-17-3009-2025, 2025
Short summary
Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025,https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary

Cited articles

Arévalo, P., Bullock, E. L., Woodcock, C. E., and Olofsson, P.: A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine, Front. Clim., 2, 111051, https://doi.org/10.3389/fclim.2020.576740, 2020. 
Besnard, S., Koirala, S., Santoro, M., Weber, U., Nelson, J., Gütter, J., Herault, B., Kassi, J., N'Guessan, A., Neigh, C., Poulter, B., Zhang, T., and Carvalhais, N.: Mapping global forest age from forest inventories, biomass and climate data, Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, 2021. 
Betts, M. G., Yang, Z., Hadley, A. S., Smith, A. C., Rousseau, J. S., Northrup, J. M., Nocera, J. J., Gorelick, N., and Gerber, B. D.: Forest degradation drives widespread avian habitat and population declines, Nature Ecology & Evolution, 6, 709–719, https://doi.org/10.1038/s41559-022-01737-8, 2022. 
Bullock, E. L., Woodcock, C. E., and Olofsson, P.: Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis, Remote Sens. Environ., 238, 110968, https://doi.org/10.1016/j.rse.2018.11.011, 2020. 
Champion, I., Germain, C., Da Costa, J. P., Alborini, A., and Dubois-Fernandez, P.: Retrieval of Forest Stand Age From SAR Image Texture for Varying Distance and Orientation Values of the Gray Level Co-Occurrence Matrix, IEEE Geosci. Remote S., 11, 5–9, https://doi.org/10.1109/LGRS.2013.2244060, 2014. 
Download
Short summary
Forest age is closely related to forest production, carbon cycles, and other ecosystem services. Existing stand age products in China derived from remote-sensing images are of a coarse spatial resolution and are not suitable for applications at the regional scale. Here, we mapped young forest ages across China at an unprecedented fine spatial resolution of 30 m. The overall accuracy (OA) of the generated map of young forest stand ages across China was 90.28 %.
Share
Altmetrics
Final-revised paper
Preprint