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Abstract. Young forest age mapping at a fine spatial resolution is important for increasing the accuracy of
estimating land–atmosphere carbon fluxes and guiding forest management practices. In recent decades, China has
actively conducted afforestation and forest protection projects, thereby laying the foundation for the realization
of carbon neutrality. However, very few studies have been conducted which map the ages of young forests for
the whole of China at a fine spatial resolution. In this research, a continuous change detection and classification
(CCDC)-based method suitable for large-scale forest age mapping is proposed and used to estimate young forest
ages across China in 2020 at a spatial resolution of 30 m. First, a 10 m spatial-resolution land cover dataset
(WorldCover2020) from the European Space Agency (ESA) was used to determine the forest cover areas in
2020. Then, the CCDC algorithm was used to identify stand-replacing disturbances to determine the stand age
based on 436 967 Landsat tiles across China from 1990 to 2020. A validation sample set composed of multiple
land use and land cover (LULC) products was used to calculate the overall accuracy (OA) of the 2020 young
forest age (1–31-year) map of China, and the OA was 90.28 %. The reliability and applicability of the proposed
CCDC-based forest age mapping method were validated by comparing the forest age map with Hansen’s forest
change dataset, Max Planck Institute for Biogeochemistry (MPI-BGC) 1 km global forest age datasets, and field
measurements. The CCDC-based method has strong application potential in real-time mapping of the age of
young forests at the global scale. The produced forest age map provides a basic dataset for research on the forest
carbon cycle and forest ecosystem services as well as important guidance for government departments, such as
the National Forestry and Grassland Administration and the National Development and Reform Commission in
China. Data presented in this study is available at https://doi.org/10.6084/m9.figshare.21627023.v7 (Xiao, 2022).

1 Introduction

The industrial revolution and the use of fossil fuels has led
to a continuous increase in the concentration of greenhouse
gases, particularly carbon dioxide, in the atmosphere, which
has caused an increase in global temperatures. Forest growth
plays a significant role in reducing atmospheric carbon diox-
ide levels, and stand age has been recognized as an im-
portant parameter in forest carbon cycle models (He et al.,
2011; Vilen et al., 2012; Zhang et al., 2014). In existing stud-
ies, differences in the carbon sequestration capacity of forest
stands with different ages have not been considered, which
has led to large uncertainties in estimates of carbon sources

and sinks in forest ecosystems (Piao et al., 2022). Loboda
and Chen (2017) pointed out that young boreal forests (for-
est age<30 years) are stable carbon sources, while temper-
ate forests transition from large carbon sources to significant
carbon sinks in the first 10 years until they mature. There-
fore, studies on the stand age of young restored forests can
contribute to more accurate estimates of forest carbon fluxes.

As a major industrial country, China’s carbon dioxide
emissions have continued to increase in recent decades, and
problems such as land degradation, air pollution, and climate
change have emerged. To address these problems, China
has developed a series of plans to protect and expand its
forests (Chen et al., 2019). For example, in recent decades,
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China has implemented afforestation and forest conservation
projects to restore natural forests and improve ecosystem ser-
vices (Lu et al., 2017). Chen et al. (2019) showed that China
ranked first in the world in the production of new green areas
from 2000 to 2017 and accounted for 25 % of the global net
increase in leaf area, of which forests contributed the most
(42 % of China’s total greenery). It was found that different
land use changes in southern China increased aboveground
carbon stocks by 0.11± 0.05 PgC yr−1 between 2002 and
2017, with 32 % of the carbon sink contributed by young
forests (Tong et al., 2020). Wang et al. (2020) found that
the global contribution of China’s forest carbon uptake was
underestimated. More precisely, land carbon sinks in south-
western China (Yunnan, Guizhou, and Guangxi provinces)
were underestimated throughout the year, and land carbon
sinks in northeastern China (especially in Heilongjiang and
Jilin provinces) were underestimated in the summer months.

Although a large amount of literature has focused on for-
est cover and carbon sinks in China, few studies have investi-
gated forest age and the spatial distribution of young forests
in China. In particular, fine-spatial-resolution data on forest
age are missing. Presently, forest age products in China are
available mainly at 1 km spatial resolution. For example, for-
est age maps of forests and plantations at 1 km spatial res-
olution in China were successively produced by Zhang et
al. (2014, 2017) and Yu et al. (2020). However, most forests
in China are distributed in mountainous areas with strong
spatial heterogeneity. Generally, the existing forest age data
are of too coarse a spatial resolution to support stand calcu-
lations for these regions.

The traditional method of forest age mapping is based
mainly on field investigation, which is time-consuming
and labor-intensive (i.e., it requires considerable human re-
sources and material resources) (Racine et al., 2014), espe-
cially in steep mountain forests and areas with inconvenient
access. This form of forest age surveying makes it very diffi-
cult to map large areas. In addition, there exist further prob-
lems such as poor timeliness and slow updating, which se-
riously affect the reliability of the collected forest age data
(Pan et al., 2011).

Remote-sensing images represent a systematic tool for
estimating large-scale biophysical variables owing to their
wide spatial coverage and frequent data updates (Diao et al.,
2020). Generally, the basic physical mechanism for estimat-
ing forest age using remote-sensing images is that forests of
different ages exhibit different physical characteristics, such
as spectral reflectance, tree crown texture, light transmit-
tance, and biomass (Champion et al., 2014; Kuusinen et al.,
2014; Thom and Keeton, 2019). In particular, regional forest
age can be estimated by combining remote-sensing data with
field survey (such as forest inventory data). The main prin-
ciple underlying such approaches is that forest age is corre-
lated with the (i) spectral reflectance and/or vegetation index
of optical remote-sensing images and (ii) the backscattering
coefficient and interference coherence of radar images (Diao

et al., 2020). For example, Besnard et al. (2021) used for-
est inventories, biomass, and climate data to map the global
forest age around 2010, and He et al. (2011) used forest in-
ventory and analysis data to find a threshold for the normal-
ized difference disturbance index to distinguish disturbances
from regenerating forests. Combining SPOT 4 satellite sen-
sor data, historical fire data, and forest inventory data, Pan et
al. (2011) generated a 1 km spatial-resolution stand age map
for the North American continent. Vilen et al. (2012) used
remote-sensing-based European forest cover data and forest
inventory maps to estimate the age of European forests be-
tween 1950 and 2010. The relationship between forest age
and forest structure (such as tree height) in measured data has
also been used to estimate forest age (Racine et al., 2014).

In addition to optical images, synthetic aperture radar
(SAR) images play an important role in forest age mapping
because of their advantages of all-weather, all-day monitor-
ing. Pinto et al. (2013) found that the interferometric coher-
ence of the L-band airborne sensor Uninhabited Aerial SAR
(UAVSAR) was able to estimate forest age with great accu-
racy, overcoming the “saturation” problem that occurs in op-
tical image-based forest age mapping. Lidar data have also
been used for forest age mapping. For example, Racine et
al. (2014) used airborne lidar data and ground data to esti-
mate forest age in Quebec, eastern Canada.

In studies of Chinese forests, age has been widely esti-
mated using the direct relationship between forest age and
tree height. For example, Zhang et al. (2014) constructed the
relationship between age and height retrieved from field ob-
servations to generate a 1 km spatial-resolution map of for-
est age in China. Zhang et al. (2017) used climate data, for-
est height data, and provincial statistical data from the na-
tional forest inventory to produce a downscaling-based 1 km
spatial-resolution map of forest age distribution in China. Yu
et al. (2020) used data such as field measurements, national
forest inventory data, and remote-sensing-based forest height
maps to map the ages and types of planted forests in China
at a spatial resolution of 1 km.

Although the strategy of combining remote-sensing data
and field survey data has dominated forest age mapping, it
still suffers from the following problems. First, the availabil-
ity of field survey data is difficult to guarantee. The usability
problem depends mainly on the positioning accuracy of the
sample points, regional differences, and number of samples.
The positioning accuracy is affected mainly by measure-
ment errors, while regional differences are reflected mainly
in the differences in data availability caused by various re-
gional policies, laws, and regulations. Second, the influence
of the saturation phenomenon of spectral reflectance and/or
the backscattering coefficient cannot be ignored. This sat-
uration phenomenon means that, at large values of forest
variables, such as biomass and age, the spectral reflectance
and/or backscattering coefficients of remote-sensing images
are no longer sensitive to changes in these variables (Zhao
et al., 2016). For example, mature forests have a more stable
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canopy texture and canopy area than young forests. In addi-
tion, the saturation problem varies based on stand species and
forest structure (Zhao et al., 2016; Lu et al., 2016), which fur-
ther increases the difficulty in estimating forest age directly
from spectral reflectance or backscattering coefficients. Al-
though studies have shown that lidar data can solve the sat-
uration problem (Lu et al., 2016), the limited spatial cover-
age and availability of the observed data hinder widespread
application. Third, complex stand compositions and forest
structures make it difficult for a single classification model
to achieve reliable forest age mapping. Specifically, the ac-
curacy varies greatly with spectral reflectance, backscatter-
ing coefficient, canopy texture, and other characteristics of
mixed forests.

Methods of estimating forest age based on forest distur-
bance time can overcome the above problems effectively.
This type of method uses time-series images (Powell et al.,
2010; Zhu and Liu, 2015; Zhao et al., 2016) and/or distur-
bance historical data (such as burn scar maps) to infer the
time of the last stand-replacing disturbance to estimate forest
age through time. Common forest disturbance detection al-
gorithms include disturbance and trend detection (Kennedy
et al., 2010), the vegetation change tracker (VCT) (Huang
et al., 2010), continuous change detection and classification
(CCDC) (Zhu and Woodcock, 2014), and breaks for addi-
tive season and trend (Verbesselt et al., 2012; DeVries et
al., 2015). Chen et al. (2016) developed the stand-replacing
fire-mapping method using Landsat images from 2001 to
2012 to infer the forest age of Siberian larch. Kauffman
and Prisley (2016) used the VCT algorithm to detect distur-
bance events based on Landsat time-series images. Diao et
al. (2020) used the VCT algorithm, spatial analysis, and ran-
dom forest regression to map the ages of three typical planta-
tions in southern China (1987–2017). Methods based on for-
est disturbance monitoring have shown strong potential for
forest age estimation, but as yet there exist only a few related
studies involving large-scale mapping.

This research uses the Google Earth Engine (GEE) cloud
platform with 30 m Landsat images and the CCDC algorithm
to estimate forest age across the whole of China in 2020. The
CCDC algorithm was selected because it can exploit the full
temporal profile of long Landsat time-series data and judge
accurately the disturbance time point (Zhu and Woodcock,
2014), thereby achieving reliable forest age mapping (Shen
et al., 2018; DeVries et al., 2015). At present, there exist very
few studies mapping forest age at a fine spatial resolution and
across large areas. Therefore, this study fills such a research
gap by mapping forest age at 30 m spatial resolution across
the whole of China. In general, the main contributions of this
paper are as follows. (1) A large-scale forest age mapping
method is proposed based on the CCDC algorithm, which
shows potential for mapping global forest ages at a fine spa-
tial resolution of 30 m. (2) A 30 m spatial-resolution forest
age map across China in 2020, as a preliminary result of an-
nual forest age mapping, is produced. The dataset is available

at https://doi.org/10.6084/m9.figshare.21627023.v7 for pub-
lic use (Xiao, 2022).

2 Data

2.1 Landsat images

Landsat Collection 1 (C1) Tier 1 Surface Reflectance (SR)
images were selected, including all available Landsat 4–
8 images from 1985 to 2020. These images were ob-
tained directly from the GEE platform (https://developers.
google.com/earth-engine/datasets/catalog/landsat, last ac-
cess: 20 July 2023), with a total of 436 967 Landsat tiles
across China. Furthermore, these data were atmospherically
corrected using the LaSRC algorithm (Vermote et al., 2018).
We preprocessed the image within China according to the
Landsat SR Quality Assessment (QA) band, including re-
moving shadows, clouds, cloud shadows, and snow-covered
areas. In addition, it was necessary to remove outliers in the
image; thus, pixels with reflectances of less than zero in each
spectral band and pixels with significantly high reflectances
were removed. It should be noted that the earliest available
images for each region are not the same. For example, the
earliest available images in western China were significantly
later than those in the eastern coastal regions. Figure 1a and
b show the year of the earliest available Landsat 4–8 im-
ages covering China before and after masking out non-forest
land, respectively. The masks used were based on the 2020
European Space Agency (ESA) land cover product (World-
Cover2020). It can be seen from Fig. 1b that the available
Landsat 4–8 data after 1990 cover most of the forest land in
China.

2.2 Auxiliary data

This research used several land cover products to produce
reference data to calculate the stand age mapping accuracy,
including the Global Forest/Non-Forest Map (FNF), Global
Forest Change (GFC), Global Forest Cover Change Dataset
(GFCC), Annual Global Land Cover between 2000 and
2015 (AGLC_2000_2015), Global Land Use/Land Cover
Dataset (ESRIGlobal-LULC_10m), and WorldCover2020. A
detailed description of these products is presented in Table 1.

3 Methodology

3.1 CCDC algorithm

The CCDC algorithm is usually used to monitor land cover
changes (Zhu and Woodcock, 2014; C. Li et al., 2021). It fits
a model to spectral observations of Landsat pixels or vege-
tation indices (such as the normalized difference vegetation
index, NDVI) and can reflect three types of pixel changes:
(1) seasonal changes (such as phenology), (2) slow changes
(such as vegetation growth or degradation), and (3) rapid
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Table 1. Auxiliary data used for accuracy evaluation.

ID LULC products Data sources Resolution Selected years References

1 FNF PALSAR-2/PALSAR 25 m 2010, 2015 Shimada et al. (2014)

2 GFC Landsat 30 m 2000–2020 Hansen et al. (2013)

3 GFCC Landsat, MODIS Vegetation
Continuous Fields (VCF) tree
cover data

30 m 2000, 2005, 2010, 2015 Sexton et al. (2013)

4 AGLC_2000_2015 Multiple sets of global land
cover products, Landsat

30 m 2000, 2005, 2010, 2015 Xu et al. (2021)

5 ESRI_Global_LULC_10m Sentinel-2 10 m 2020 Karra et al. (2021)

6 WorldCover2020 Sentinel-1, Sentinel-2 10 m 2020 Zanaga et al. (2021)

Figure 1. The earliest available year of the Landsat images used
in this study. (a) Years for the whole of China. (b) Years for the
non-forest areas masked out.

changes (such as deforestation, insect disasters, storms, and
fires) (Zhu and Woodcock, 2014). CCDC uses robust iter-
atively reweighted least squares (RIRLS) (Dumouchel and
O’Brien, 1992) to fit to the observed values, which can re-
flect the phenological characteristics and changing trends of
ground features. The mathematical expression of the fitted
line is as follows:

ρ̂(i,x)RIRLS = a0,i + a1,i cos
(

2π
T
x

)
+ b1,i sin

(
2π
T
x

)
+ a2,i cos

(
2π
NT

x

)
+ b2,i sin

(
2π
NT

x

)
, (1)

where x represents Julian day, i represents the ith band of
the image, T represents the number of days each year, and
N represents the number of years of Landsat data. The coef-
ficient a0,i represents the overall values of the ith band, a1,i
and b1,i represent the intra-annual change in the ith band,
and a2,i and b2,i represent the inter-annual change in the ith
band. Finally, ρ̂(i,x)RIRLS represents the predicted value for
the ith band corresponding to the xth Julian day based on
RIRLS fitting.

3.2 Forest age mapping based on CCDC

In this research, the CCDC-based method is proposed for
large-scale forest age mapping (using Landsat images from
the GEE cloud platform and the CCDC algorithm). Arévalo
et al. (2020) provided the CCDC application programming
interface on the GEE platform so that the algorithm could be
employed conveniently.

3.2.1 Dividing the country into small grid cells

The CCDC algorithm performs time-series analysis per
pixel, and the large-scale calculations require significant
computing power. Although GEE has powerful computing
capacity, it is still difficult to analyze the time series at a na-
tional scale. For this reason, the country was divided into 62
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grid cells of 5◦× 5◦ (Fig. 2), as this scale not only requires
less GEE computing power, but also avoids increasing data
management costs.

3.2.2 Determining the 2020 forest distribution mask

This research utilizes existing 2020 land use and land cover
(LULC) classification products to map forest distribution.
Given these data, it was necessary only to identify the wood-
land area in the year of mapping (i.e., 2020 in this paper) and
the time of the last land-replacing change in that area to esti-
mate forest age. For example, if a pixel in the image is forest
land in 2020 and the last time the area changed to forest land
was in 2015, then the forest land is 5 years old.

Since 2020 is the target year of forest age mapping, we ex-
tracted the forest area from WorldCover2020 to generate the
forest mask in 2020 (referred to as “Forest mask 2020”). The
accuracy of the WorldCover2020 forest classification is suffi-
cient for large-scale forest age mapping (producers’ accuracy
and users’ accuracy are 89.9 % and 80.8 %, respectively). In
addition, the spatial resolution of WorldCover2020 is 10 m,
which makes it straightforward to match with the 30 m reso-
lution of Landsat data (i.e., 10 m WorldCover2020 data can
be degraded to 30 m conveniently).

3.2.3 Determining the breakpoints of the model

CCDC performs time-series analyses for each pixel. The
model contains two key parameters, chi-squared probability
(chiSquareProbability) and the minimum number of consec-
utive observations (minObservations) that trigger breakpoint
conditions. It should be noted that the chiSquareProbability
value ranged from 0 to 1. The larger the parameter value, the
fewer the breakpoints detected by the model. The value of
minObservations is a positive integer, which affects the sen-
sitivity of the algorithm to breakpoint detection. For exam-
ple, if the sensitivity is too high, then slow forest degradation
(owing to, e.g., insect pests and selective logging) will also
be detected as breakpoints. Because there is no land cover
type change in this process, a high sensitivity will lead to
an underestimation of forest age and vice versa. Therefore,
finding the most suitable parameter threshold is the key to
reliable forest age mapping.

3.2.4 Calculating the stand age

First, we determined the endpoint of the final fitted curve cor-
responding to each forest pixel (extracted using the Forest
mask 2020). It should be noted that the Forest mask 2020
can represent only the forest extent at a certain time in 2020,
and thus this paper assumes that the Forest mask 2020 rep-
resents the forest extent on 1 September 2020 (i.e., at the
end of summer characterized by green vegetation). Figure 3
shows a schematic diagram illustrating forest age determina-
tion based on time-series analysis and the Forest mask 2020.

The solid line represents the time-series fitting curve of the
surface reflectance of a certain pixel, the red dotted line is
the time point on 1 September 2020, and the purple curve
intersecting the red dotted line indicates that the forest did
not change during this period. Breakpoint B1 indicates that
a severe disturbance has occurred at the corresponding time.
Point C1 indicates that the location began to gradually re-
cover to forest (afforestation or natural restoration) after a
drastic change. Therefore, the forest age at target time point
D can be estimated from the distance of C–D.

Figure 4 shows the time-series curve of a pixel analyzed
by CCDC. The first row of images is the true color Landsat
image at each time point centered at the pixel (red dot), and
the second row is the corresponding fitting curve. The CCDC
model detected two breakpoints in this pixel from 2004 to
2021. Specifically, the forest has degraded slowly since 2004,
and the image shows that it still belonged to woodland on
22 June 2016. After that, the model detected a breakpoint,
indicating that the woodland was disturbed rapidly and the
land cover type changed. The image on 9 August 2016 shows
that the location was covered by bare land at this time, and
after a period of restoration, vegetation began to regrow. The
images on 7 August and 28 August 2018 show that it was
fully restored to woodland finally.

3.3 Generation of validation samples using LULC
products

Accuracy assessment for large areas generally requires a
large number of validation samples. The existing large-scale
validation sample sets often contain data in a certain year
only, but accuracy evaluation of forest age requires multi-
period sample sets. Currently, many LULC products are
available, and researchers have invested considerable work
in ensuring product accuracy. Therefore, this research used
these LULC products comprehensively to generate valida-
tion samples. To ensure the reliability of the samples, only
land cover products after 2000 were used because there were
few existing land cover products before 2000.

The 1–20-year stand age was grouped into four stand age
classes: 16–20 years, 11–15 years, 6–10 years, and 1–5 years.
These were then converted into binary classification maps
with two classes: regrowth and non-regrowth. For the refer-
ence data, we used the LULC products to generate regrowth
and non-regrowth samples every 5 years after 2000. Re-
growth samples from 2000–2005, 2006–2010, 2011–2015,
and 2016–2020 were used to create four stand age classes:
16–20 years, 11–15 years, 6–10 years, and 1–5 years, respec-
tively. If they are unified, then the predicted age of the pixel
is considered correct; otherwise, it is considered misclassi-
fied. Figure 5 is a flowchart showing how the LULC products
were used to generate the validation samples. The following
section introduces explicitly the accuracy evaluation process.
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Figure 2. The divided grids (62 5◦× 5◦ grids) for the national land area.

Figure 3. Schematic diagram of forest age estimation. A1 and C1
represent the starts of the first fitting curve and second fitting curve,
respectively, and B1 represents the breakpoint of first disturbance.
A, B, and C represent the time points of A1, B1, and C1, respec-
tively. D indicates 1 September 2020.

1. Extracting forest areas of selected years from LULC
products. Because the available years for each prod-
uct are not uniform, several years were selected from
the available years, with multiple products at the same
time in these years normally available. We identified 5
years: 2000, 2005, 2010, 2015, and 2020. The forest
mask (FM) for these 5 years was first extracted from
the LULC products. To ensure the reliability of the sam-

ple, the intersection of the FM of different LULC prod-
ucts each year (areas that were classified as forest by all
LULC products) was determined, and the intersection
area was considered the consensus forest (CF), while
areas that were classified as forest by only one product
were designated as undefined forest (UF).

2. Differencing. Differencing of the FMs of the years be-
fore and after each period was performed to assess the
consensus regrowth (CR) in the four periods, i.e., 2000–
2005, 2005–2010, 2010–2015, and 2015–2020. Since
UF cannot determine whether it is forest, the UF of the
years before and after each period does not participate
in the differencing process. The union of these two ar-
eas was defined as undefined regrowth (UR). The area
remaining in the image after removing the CR and UR
was defined as consensus non-regrowth (CN). Specifi-
cally, UR, CR, and CN are expressed as follows: UR= UFt1 ∪UFt2,

CR= CFt2−CFt1−UR,
CN= I −UR−CR,

(2)

where CR, UR, CF, UF, and CN represent the spatial
sets of CR, UR, CF, UF, and CN, respectively, I rep-
resents the spatial set of the entire image area, t1 and
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Figure 4. Time-series analysis of a pixel by CCDC (only showing the blue band of Landsat images).

t2 represent the 2 years before and after each period,
respectively, and ∪ represents the union of the sets.

3. Random sampling and confusion matrix calculation.
Stratified random sampling was used to generate vali-
dation sample sets. First, we confirmed the area of CR
and CN with four periods (i.e., 2000–2005, 2005–2010,
2010–2015, and 2015–2020). Second, about 1000 re-
growth samples and 5000 non-regrowth samples were
randomly generated from the CR and CN of each pe-
riod. Considering the possibility of regrowth events oc-
curring in each period within the same pixel, only the
regrowth samples in the most recent period were re-
tained for the regrowth samples in the four periods. As
a result, 2618 regrowth samples (red dots in Fig. 6) and
21 007 non-regrowth samples (blue dots in Fig. 6) were
obtained.

4 Results

4.1 Validation of the produced forest age map

4.1.1 National- and provincial-level performance

The validation samples (reference data) in each period and
the forest age predicted by the model (predicted data) were
compared to form a confusion matrix. The overall accuracy
(OA) of the national young forest age mapping was found
to be 90.28 % (Table 2). In addition, this research consid-
ered the cartographic performance of the proposed method
in various provinces in China (Fig. 7). To ensure consis-
tency in the number of samples used, the number of re-
growth and non-regrowth samples for each province was
controlled at around 400. In general, the OA of young forest
age mapping in all provinces in China was larger than 54 %,
and the OAs of Ningxia, Macau, Tianjin, Fujian, Zhejiang,
Anhui, and Guangdong were all larger than 80 %. Except
for Ningxia, the other six provinces (cities and autonomous
regions) are located in eastern and southern China. The

provinces with relatively weak classification performances
were Gansu, Jiangxi, Shaanxi, and Beijing (in order), and the
OAs of these four provinces were lower than 60 %. Except
for the above provinces, the OAs of the remaining provinces
were between 60 % and 80 %. In general, the classification
performances of the southern provinces were more accurate
than those of the northern provinces.

4.1.2 Comparison with existing products

We compared visually the forest age map produced by the
proposed method with the Max Planck Institute for Biogeo-
chemistry (MPI-BGC) forest age dataset (at 1 km spatial res-
olution) (Besnard et al., 2021). Figure 8 shows three cases for
comparison. In case 1, MPI-BGC presents much less infor-
mation on the forest age compared to the proposed method.
The reason may be that MPI-BGC is produced based on the
relationship between forest age and forest biomass, which is
influenced greatly by different forest types. However, this re-
search estimates forest age based on the history of forest dis-
turbance and, thus, is not affected by the forest type. More-
over, there are more age classes mixed within the area of
each 1 km pixel, and the MPI-BGC forest age dataset can-
not present the information explicitly. In case 2, MPI-BGC
depicted only the forest age in the northern part of the re-
gion. It is difficult for MPI-BGC to map the age of small-
scale forests in the southern part because of the coarse spa-
tial resolution (i.e., the small-scale forests were incorrectly
identified as non-forests in the 1 km data). In case 3, we se-
lected an area dominated by small-scale forests. It is seen
that MPI-BGC cannot depict the age of these forests. The
forest age map produced by this research presents clear in-
formation at the 30 m spatial resolution, which is helpful for
monitoring small-scale deforestation activities and estimat-
ing land–atmosphere carbon fluxes.

To further examine the reliability of the forest age map
produced by this research, Pearson’s product–moment corre-
lation coefficient was calculated between the predicted years
of regrowth and years of forest loss extracted from Hansen’s
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Figure 5. Validation samples generated using LULC products.

Table 2. Confusion matrix of regrowth and non-regrowth.

Predicted data

Non-regrowth Regrowth Total Producers’ accuracy (%)

Non-regrowth 19 299 589 19 888 97.04
Regrowth 1708 2029 3737 54.29

Reference data Total 21 007 2618 23 625
Users’ accuracy (%) 91.87 77.50

Overall accuracy: 90.28 %

product (FLH). FLH was chosen for comparison with the for-
est age map produced by this research, as forest age products
with the same time range and spatial resolution are not avail-
able. However, FLH depicts the distribution of annual forest
loss at the global scale with a spatial resolution of 30 m from
2000 to 2020. Generally, forest regrowth occurs during the
recovery phase after forest loss. Therefore, the soundness of
the proposed method can be reflected to some extent by this

Pearson product–moment correlation analysis. Specifically,
after 2000, 10 000 samples were selected randomly from the
regrowth areas in the country. The results showed that there
was a large correlation between the years of forest regrowth
predicted by this research and the years of FLH, with a Pear-
son correlation coefficient of 0.62. As shown in Fig. 9, a large
number of sample points were distributed on the diagonal
line (y = x) or near the right side because the forest at these
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Figure 6. Distribution map of validation samples.

Figure 7. Overall accuracy of young forest age mapping across different provinces in China.
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observation points could be quickly restored to forest after
being disturbed. At the same time, the point density in the
lower-right part of the diagonal is significantly larger than
that in the upper-left part, indicating that the forest age esti-
mation for most of the sample points is reasonable. Observa-
tions in the upper-left part of the diagonal line represent areas
where forest age may be underestimated or misclassified as
forest loss from FLH.

4.1.3 Evaluation based on field measurements

The data of field measurements are composed of two parts.
The first part was derived from 150 relevant papers published
after 2020 from the China National Knowledge Infrastruc-
ture (CNKI). We searched them using the following key-
words: “China” and “forest age”. The second part was de-
rived from Wu et al. (2023). It should be pointed out that
three preprocessing steps were performed on this dataset.
First, we updated the forest age in field measurements based
on the investigation year of sampling plots. For example, if
the sampling time was 2010 and the corresponding recorded
forest age was 7 years, then, in 2020, the forest age should be
2020–2010+ 7= 17 years. It should be noted that this calcu-
lation is based on the assumption that there has been no log-
ging or land use conversion since the survey time of the sam-
pling points. Second, we filtered out the observation points
related to longitude or latitude recorded in decimal degree
notation with only two or three decimal places retained, be-
cause no precise geographical coordinates are available for
these sampling plots. Third, observation points with forest
ages older than 31 were also filtered out because we only
calculated 1–31-year old forests in our product.

Then we used the coordinates of these observation points
to find out the predicted forest age in our product. If the pre-
dicted age is less than the value of 2020 minus the year of
investigation, we will delete this observation, as we cannot
determine whether forest succession has occurred at the ob-
servation point after the year of investigation. Finally, we ob-
tained 51 field measurements (Table 3) with accurate geo-
graphical locations. Figure 10 shows the scatter plot between
the field measurements and predicted forest age. Referring to
the field measurements, the predicted forest age has a correla-
tion coefficient of 0.77 and a root mean square error (RMSE)
of 5.15, suggesting an acceptable correlation with the field
measurements.

4.2 Analysis of key parameters in CCDC

The sensitivity of the model to breakpoint detection directly
affects the accuracy of stand age mapping, and the two
parameters chiSquareProbability and minObservations play
important roles in the model. To determine the optimal pa-
rameters, we selected eight regions in China (Fig. 11) for
testing. These eight regions are all sized 0.5◦× 0.5◦ and dis-
tributed in the east (Area 1 and Area 5), southwest (Area

2), central (Area 3), northeast (Area 4), northwest (Area 6),
north (Area 7), and south (Area 8) regions of China. In this
research, the value of the chiSquareProbability parameter
was increased from 0.50 to 0.99, while minObservations was
increased from 2 to 20.

4.2.1 Analysis of chiSquareProbability

Figure 12a shows that the OA of stand age mapping in the
eight areas varies with the choice of different chiSquareProb-
ability values. The largest OAs of the other four areas ex-
cept Area 3 and Area 8 occur when the chiSquareProbability
value is around 0.98, whereas the largest OAs of Area 3 and
Area 8 occur when the chiSquareProbability value is 0.82
and 0.80, respectively. The OAs of Area 3 and Area 8 reach
the largest value earlier, as the forest land in these two areas
is disturbed more frequently. In this case, the CCDC model
requires a smaller chiSquareProbability value to detect more
breakpoints. In addition, Fig. 12a shows that the OA increase
in Area 2 is the fastest, with the smallest OA (70.16 %) ob-
served when the chiSquareProbability value is 0.50 and the
largest OA (90.35 %) observed when the chiSquareProba-
bility value is 0.99. The largest and smallest OAs presented
a difference of 20.19 %. The reasons for this phenomenon
may be that the disturbance year of the forest in Area 2
was relatively late and that the forest experienced less dis-
turbance. When the chiSquareProbability value is too small,
more breakpoints will be detected incorrectly, which affects
the OA of the forest age mapping.

Figure 13 shows the model performance when differ-
ent chiSquareProbability values were used. Specifically,
columns 1, 2, and 3 show the stand age maps of the eight
regions when the parameter chiSquareProbability values are
0.50, 0.74, and 0.99, respectively. As the value of the pa-
rameter chiSquareProbability increases, the area of regrowth
detected by the CCDC algorithm decreases. When the value
was 0.50, the stand age map for each region contains a large
number of misclassified regrowth areas. These misclassi-
fied regrowth areas are due mainly to the small values of
chiSquareProbability, which make the model extremely sen-
sitive to breakpoint detection.

Generally, there is a close relationship between forest
restoration and forest loss. For this reason, FLH was added
to the fourth column for convenient visual comparison. The
color of FLH indicates the year of forest loss. As the ear-
liest available year for FLH is 2000, the fourth column of
Fig. 13 shows only the years of forest loss after 2000. The
fifth column of Fig. 13 shows the corresponding fine-spatial-
resolution Google Earth maps (GEMs). Clear traces of forest
disturbance can be observed in the eight regions from the
GEMs. These areas are more consistent with the dark red ar-
eas in the third column of the stand age maps.
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Table 3. Information on the 51 field measurements.

ID Longitude Latitude Observed Predicted Year of Source
forest age forest age investigation

1 109.328858 23.050233 3 3 2021 P. Li et al. (2021)
2 109.332939 23.053525 8 8 2021 P. Li et al. (2021)
3 109.242036 23.111756 18 16 2021 P. Li et al. (2021)
4 109.160242 23.053275 21 25 2021 P. Li et al. (2021)
5 109.159194 23.040914 29 34 2021 P. Li et al. (2021)
6 122.491287 42.717326 20 9 2015 Han et al. (2022)
7 122.571380 42.684847 30 35 2015 Han et al. (2022)
8 113.421000 23.245000 6 6 2020 Chen et al. (2022)
9 113.393000 23.226000 10 23 2020 Chen et al. (2022)
10 113.419000 23.256000 15 18 2020 Chen et al. (2022)
11 113.394000 23.212000 20 13 2020 Chen et al. (2022)
12 113.381000 23.255000 30 27 2020 Chen et al. (2022)
13 106.740000 26.520000 11 12 2019 Yin et al. (2021)
14 110.465833 22.048333 5 5 2020 Song et al. (2021)
15 110.500833 21.919167 15 15 2020 Song et al. (2021)
16 110.500278 22.022222 5 7 2020 Song et al. (2021)
17 110.517500 21.908056 15 8 2020 Song et al. (2021)
18 110.516111 21.908056 10 1 2020 Song et al. (2021)
19 117.935278 26.881389 7 9 2017 Feng et al. (2021)
20 118.451667 26.243333 2 7 2020 Hong et al. (2021)
21 116.650833 25.172778 3 9 2020 Hong et al. (2021)
22 118.351389 27.317500 7 12 2020 Hong et al. (2021)
23 117.802222 27.275556 9 17 2020 Hong et al. (2021)
24 104.5672222 28.60166667 17 15 2011 Wu et al. (2023)
25 104.5769 28.6093 8 5 2015 Wu et al. (2023)
26 106.8760472 22.06267778 13 11 2013 Wu et al. (2023)
27 106.9072889 22.02632778 23 15 2013 Wu et al. (2023)
28 106.910175 22.02430833 23 17 2013 Wu et al. (2023)
29 106.9112 22.03783056 13 13 2013 Wu et al. (2023)
30 106.9132222 22.02641667 23 23 2013 Wu et al. (2023)
31 108.1666667 22.86666667 17 15 2012 Wu et al. (2023)
32 109.1713889 36.07972222 30 19 2015 Wu et al. (2023)
33 109.2833333 21.96666667 22 20 2012 Wu et al. (2023)
34 109.3582222 19.51252778 13 16 2012 Wu et al. (2023)
35 109.4833333 23.91666667 17 19 2009 Wu et al. (2023)
36 109.6075556 26.69930556 13 15 2010 Wu et al. (2023)
37 109.6076667 26.70025 13 13 2010 Wu et al. (2023)
38 109.8933333 24.76333333 13 7 2012 Wu et al. (2023)
39 110.1018333 21.26166667 6 13 2015 Wu et al. (2023)
40 110.10185 21.26188333 7 13 2015 Wu et al. (2023)
41 110.4028833 34.0909 17 13 2012 Wu et al. (2023)
42 110.6969444 30.91891667 25 15 2015 Wu et al. (2023)
43 112.8481306 27.29384722 11 12 2013 Wu et al. (2023)
44 112.8485611 27.29428611 10 16 2013 Wu et al. (2023)
45 113.3548833 27.35978889 11 12 2013 Wu et al. (2023)
46 113.3865194 27.35451667 18 10 2013 Wu et al. (2023)
47 116.4591167 25.63750278 17 15 2011 Wu et al. (2023)
48 117.5247222 26.81388889 21 17 2014 Wu et al. (2023)
49 117.5408333 26.80722222 16 14 2014 Wu et al. (2023)
50 119.8430556 30.24833333 31 29 2014 Wu et al. (2023)
51 122.5455556 52.97833333 26 29 2010 Wu et al. (2023)
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Figure 8. Three scenarios for comparison between the 30 m spatial-resolution product (based on CCDC) and the 1 km spatial-resolution
product (based on MPI-BGC). White pixels of the forest age maps in the second and third columns indicate non-forest or no data.

4.2.2 Analysis of minObservations

Figure 12b shows that the OAs of stand age in the eight re-
gions varied with minObservations. The OAs of stand age
in the eight areas show a trend of initially increasing and
then decreasing. This means that when the minObservations
value is smaller, the CCDC model can detect more break-
points while producing more misclassified regrowth values.
When the minObservations value exceeds the optimal thresh-
old, the model presents incorrect detection results. When the
parameter is less than six, the OAs of the eight regions in-
crease rapidly. When the parameter is greater than 12, the
OAs of each region enter a stage of rapid decay. The largest
OAs for both Area 1 (94.98 %) and Area 3 (85.78 %) occur
when the values of minObservations are equal to six. The
OAs of Area 8, Area 5, and Area 6 reach the maximum value
when minObservations is four, five, and seven, respectively,
while Area 4, Area 2, and Area 7 reach the maximum OA
(94.75 %, 93.37 %, and 91.58 %, respectively) when the val-
ues of minObservations are 10, 12, and 16, respectively.

5 Discussion

5.1 Spatial distribution of young forests in China

This research produced a young forest stand age map of
China in 2020 with a spatial resolution of 30 m (Fig. 14a). To
show the spatial distribution of young forest age more clearly,
we divided the forest into four stand age classes, i.e., stand
age classes I (1–10 years), II (11–20 years), III (21–31 years),
and IV (>31 years). In the 1–31-year old forests, stand age
class III accounted for the largest proportion (39.32 %), fol-
lowed by stand age class II (38.34 %). Stand age class I
(22.34 %) accounted for the smallest proportion. We referred
to the fifth, sixth, seventh, and eighth national forest inven-
tory data and found that the area of net gain planted forest is
102 520, 65 924, 84 311, and 76 416 km2 during 1994–1998,
1999–2003, 2004–2008, and 2009–2013, respectively (Liu et
al., 2021). This means that there was less planted forest after
1999, which is consistent with our findings. Another reason
may be that the country’s early policies (specifically, the Re-
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Figure 9. Years of predicted regrowth versus years of FLH after
2000. The value of the color bar represents the number of samples
that fall within each pixel.

turning Farmland to Forest Program and the Afforestation
Program) were implemented effectively, and by 2000 many
areas suitable for afforestation had been occupied.

Young forest land in China is distributed mainly in the
southern provinces of China, such as Yunnan, Guangxi,
Guangdong, and Fujian. As these provinces are located in
a subtropical climate zone, abundant rainfall and suitable cli-
matic conditions make them suitable for tree growth. In ad-
dition, Fig. 14c shows that there is more young regrowth
in the Daxing’anling region of northeastern Inner Mongo-
lia, partly because of the large possibility of forest fires in
the virgin forests in this area, and large areas of forest have
recovered to young regrowth after fire disturbance (Zhang et
al., 2017). In addition, we found that this area is character-
ized by long snow accumulation periods and large mountain
slopes; therefore, many pixels in this area were misclassified
as young regrowth. In general, the growth rate of young re-
growth in China showed a decreasing trend during the study
period (1990–2020), indicating a decrease in the area avail-
able for afforestation.

5.2 Average age of young forests in different provinces

Figure 15 shows the average age distribution of young forests
across the provinces of China. Interestingly, the age is larger
in the north than in the south and larger in the west than in the
east. This phenomenon is driven mainly by natural and an-
thropogenic factors. Generally, tree growth in western China
is restricted by the natural environment. The fragile eco-
logical environment forces people to protect forests in this
area, and the proportion of economically productive forests
is small. Moreover, the Three-North Shelter Forest Program,
which began in 1978, has enabled the effective protection of

forest land in the northern region (Wang et al., 2007; Qiu et
al., 2017). Therefore, the average forest age in the west is
relatively large. On the other hand, a large number of euca-
lyptus plantations were distributed in southern China, leading
to young forest regrowth in the south. Therefore, the average
forest age is smaller. In addition, forests have experienced
more disturbance due to rapid urban expansion in eastern and
southern China (Meng et al., 2020).

The average age of young forests in each province was
ranked in ascending order, with Tianjin, Guangxi, Shan-
dong, and Guangdong ranking first (11.3 years), second
(11.7 years), third (11.9 years), and fourth (12.2 years), re-
spectively. These provinces are located in southern and east-
ern China. Furthermore, the average age of young forests in
the Ningxia Hui Autonomous Region is relatively young and
ranks fifth (12.6 years) as the forest resources of the Ningxia
Hui Autonomous Region have further increased in the past
30 years based on the Returning Farmland to Forest Pro-
gram, the Afforestation Program, and the Three-North Shel-
ter Forest Program (Wang et al., 2007; Qiu et al., 2017).
When the average age of young forests in each province
was ranked in descending order, the top five provinces (cities
and autonomous regions) were Xinjiang (25.7 years), Hong
Kong Special Administrative Region (SAR) (20.3 years), Ti-
bet (19.5 years), Qinghai (18.9 years), Sichuan (18.6 years),
and Shaanxi (18.3 years). Except for Hong Kong SAR, the
other four provinces are all in the western region because the
special natural conditions in western China make afforesta-
tion or natural restoration of forests difficult. The average age
of young forests in Hong Kong SAR is relatively large be-
cause of the limited afforestation in the area. Therefore, to
further strengthen the role of China’s young forest land in
the “carbon neutrality” initiative, it is particularly important
to carry out afforestation suitability assessments in China (es-
pecially in the western and northwestern regions) (Zhang et
al., 2022).

5.3 Effect of input features on the model

Several studies have used the normalized degradation frac-
tion index (NDFI) to increase the accuracy of forest distur-
bance detection (Souza et al., 2005; Bullock et al., 2020;
Chen et al., 2021). The NDFI is calculated from the abun-
dance of several endmembers, including soil, shadow, green
vegetation (GV), and nonphotosynthetic vegetation (NPV),
through spectral unmixing. To explore the influence of dif-
ferent features on forest age mapping, this research first set
the two parameters of chiSquareProbability and minObser-
vations to 0.99 and 6, respectively, and then input the follow-
ing different features into the CCDC model: spectral bands
of Landsat images (spectral), abundance of four endmem-
bers (GV, Shade, NPV, and Soil), and index features (NDFI,
NDVI, normalized burning index (NBR), normalized differ-
ence moisture index (NDMI), and enhanced vegetation in-
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Figure 10. Comparison between the forest age derived from field measurements (observed forest age) and predicted forest age.

Figure 11. Spatial distribution of the eight test areas for analyzing the influence of key parameters.
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Figure 12. OA of forest age under different values of (a) chiSquareProbability and (b) minObservations in eight regions.

dex, EVI). The steps of spectral unmixing were described by
Chen et al. (2021).

Figure 16 shows the OAs of the eight regions with the in-
put of different features. Using the original Landsat bands
as the input to the model can achieve the greatest map-
ping accuracy. Except for the spectral feature, whose per-
formance is relatively stable in the eight regions, the perfor-
mance of the other features in the eight regions is quite dif-
ferent. For example, in Area 1, the mapping performance of
the NDFI-based feature is the most satisfactory one (the OA
is 90.29 %), and the performance of the GV-based feature is
the weakest one (76.00 %); in Area 2, the performance of
the GV-based feature is the most satisfactory one (the OA is
82.28 %), and the performance of the soil-based feature is the
weakest one (the OA is 71.85 %). Generally, EVI (71.83 %),
EVI and/or NDVI (82.43 %), and EVI (60.07 %) were the
least predictive features in these three regions.

5.4 Whether to choose vegetation growing season
images

To eliminate the influence of winter ice and snow and to im-
prove model fitting, images of the peak vegetation growth
season in a year are often selected as observation data, such
as Landsat images from the 150th to 300th days of each year
(Chen et al., 2021). However, this method of selecting parts
of images of the year reduces the available information, espe-
cially in warmer regions (where snow and ice are short-lived
or largely unaffected by snow and ice). This research com-
pared the mapping accuracy when all the images and some
images (the images of the 150th to 300th days of each year)
were selected from the annual images as the model input. The
OA of young forest stand age mapping using partial data as
model input was 88.53 %. When using partial images, the OA
of the national young forest age mapping was 1.75 % smaller
than that when using all the images (90.28 %).

To further explore the mapping differences between the
two input strategies, the difference in the OA for each
province was calculated, as shown in Fig. 17. Except for
Tianjin, the Ningxia Hui Autonomous Region, Heilongjiang,
Jilin, and Qinghai, the OAs of using partial data in the other
27 provinces (cities and autonomous regions) are smaller
than those from using all data. Among the 27 provinces
(cities and autonomous regions), Tibet, Yunnan, and Guang-
dong show large differences, with differences in OA rang-
ing from 14.93 % to 19.69 %, followed by Guangxi, Jiangsu,
Shanghai, Henan, Fujian, Anhui, Hunan, and Hong Kong
SAR (OA differences between 14.93 % and 4.70 %). Except
for the abovementioned provinces (cities and autonomous re-
gions), the OAs of the remaining provinces (cities and au-
tonomous regions) are within a 4.70 % difference. The above
comparison shows that the use of partial image sets generally
reduces the mapping accuracy in most areas.

5.5 Application potential of the proposed method

This research used 436 967 Landsat tiles across China to map
forest age at a spatial resolution of 30 m, which validated the
feasibility of the proposed method for “big” data process-
ing. In future, the model can be used to generate a global-
scale young forest age dataset. This dataset will help build
a global-scale forest carbon cycle model and potentially in-
crease the estimation accuracy of carbon sources and sinks
(Wang et al., 2020; Piao et al., 2022). In addition, studies
have shown that multi-aged stands have a stronger carbon
sink recovery ability after disturbance than even-aged stands
(Tang et al., 2017); therefore, fine-spatial-resolution stand
age datasets can be used to study the carbon sink potential
of two types of stands at the global scale after disturbance.

This research not only provides basic scientific data for
researchers, but also provides important references for poli-
cymakers and forest managers. Previous studies have shown
that young forests have certain advantages in carbon seques-
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Figure 13. Stand age maps of the eight regions (marked in Fig. 11) under different values of chiSquareProbability (0.55, 0.74, and 0.99).
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Figure 14. Stand age map in China at 30 m spatial resolution. (a)
Chinese stand ages and stand age classes, (b) 1–10 years, (c) 11–
20 years, (d) 21–31 years, and (e) >31 years.

tration but are weak in ecosystem services (Jonsson et al.,
2020). That is, old forests are still irreplaceable in terms of
services such as maintaining species diversity (Betts et al.,
2022). Therefore, it is also necessary to maintain ecosystem
services while increasing the carbon sequestration capacity
of forest ecosystems under a climate change environment.
The proposed CCDC-based method can estimate young for-
est age in real time and thus has the potential to be applied
for dynamic monitoring of stand age structure, such as timely
detection of forest age structure and prevention of rapid for-
est rejuvenation.

5.6 Uncertainty analysis

This research uses WorldCover2020 to determine the forest
distribution; however, the classification process used for its
products has certain uncertainties. Specifically, the data rep-
resent the state of forest cover in 2020 rather than the cover
at a certain time of the year. Therefore, this paper assumed
that WorldCover2020 represents the state of forest cover on
1 September 2020, which may lead to uncertainty, mainly for
areas where forest disturbances occurred in 2020. The accu-
racy analysis of different provinces shows that the proposed
method exhibits obvious differences in performance between
different provinces. The reason may be that the forests in
different regions have different climatic conditions and ge-
ographical environments (such as topography, slope, or al-
titude). This uncertainty also exists in the process of cur-
rent studies that estimate stand age using the relationship be-
tween height and age of forest or the relationship between
biomass and age of forest (Zhang et al., 2014, 2017). Dif-
ferent disturbance frequencies also have a certain impact on
the model. For example, forest succession is faster in south-
ern China (high disturbance frequency) but relatively slow in
western and northeastern China (low disturbance frequency).
Therefore, the values of chiSquareProbability and minObser-
vations should be controlled adaptively for different forest
disturbance frequencies.

This research predicted the annual forest age across China.
However, it is difficult to validate the produced forest age at
a temporal resolution of 1 year due to the lack of reference
data. In this paper, coarse forest age classes (with 5-year in-
tervals) were created to match the validation set by integrat-
ing multiple LULC products, which brings uncertainty in as-
sessing the accuracy of the produced maps. In general, if for-
est age classes with finer temporal resolution are created, the
accuracy is likely to be greater. However, a sufficient number
of LULC products are needed to ensure the reliability of the
reference data. Thus, it is necessary to maintain the balance
between the temporal resolution of forest age classes and the
number of LULC products. In future, it will be of great inter-
est to evaluate the performance of the produced dataset using
age classes with finer temporal resolution if the appropriate
validation sets become available.

6 Data availability

The produced 30 m map of young forest age
across China in this research is openly available at
https://doi.org/10.6084/m9.figshare.21627023.v7 (Xiao,
2022). The Landsat data and the auxiliary data are
from the public data archive and user team of GEE
(https://code.earthengine.google.com/, last access:
20 July 2023).
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Figure 15. The average age of young forests in various provinces in China.

Figure 16. OA of the CCDC-based method with different input features in eight regions.

7 Conclusion

Mapping the age of young forest stands is of great signifi-
cance for China’s strategic target of carbon neutrality. Con-
ventional stand age mapping methods rely heavily on forest
inventory data, but the existing forest inventory data in China
are difficult to obtain and are updated slowly. Moreover, the
existing stand age products in China derived from remote-

sensing images are of a coarse spatial resolution, which can-
not meet the needs of stand calculations at the regional scale.
In this research, we analyzed Landsat time-series images
based on the CCDC model to produce a map of young stand
age across the whole of China at 30 m spatial resolution. The
advantage of the mapping method is that it does not rely on
forest inventory data and enables rapid mapping of young
forests on a global scale using the GEE platform. The results
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Figure 17. Difference in OA (in units of province) between the use of partial and full data.

showed that the OA of the generated map of young stand
age across China was 90.28 %. This dataset is significant for
studying the ecosystem services and carbon cycles of young
forests in China. The proposed CCDC-based method can be
extended in future to global mapping of young forests.
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