Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1165-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1165-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks
Samuel W. Scott
CORRESPONDING AUTHOR
Institute of Earth Sciences, University of Iceland, 101 Reykjavik,
Iceland
Department of Engineering, Reykjavik University, 101 Reykjavik,
Iceland
Léa Lévy
Iceland GeoSurvey, 101 Reykjavik, Iceland
Faculty of Engineering, Lund University, 223 63 Lund, Sweden
Cari Covell
Department of Engineering, Reykjavik University, 101 Reykjavik,
Iceland
Hjalti Franzson
Iceland GeoSurvey, 101 Reykjavik, Iceland
Benoit Gibert
Department of Geosciences, University of Montpellier, 34095 Montpellier, France
Ágúst Valfells
Department of Engineering, Reykjavik University, 101 Reykjavik,
Iceland
Juliet Newson
Department of Engineering, Reykjavik University, 101 Reykjavik,
Iceland
Julia Frolova
Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia
Egill Júlíusson
Arctic Green Energy, 203 Kópavogur, Iceland
María Sigríður Guðjónsdóttir
Department of Engineering, Reykjavik University, 101 Reykjavik,
Iceland
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
The China Active Faults Database (CAFD) and its web system
A regolith lead isoscape of Australia
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania region (Italy): Statistical combination of different predictions for spatial thickness estimation
High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen
Integration by design: Driving mineral system knowledge using multi modal, collocated, scale-consistent characterization
High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia
A global zircon U–Th–Pb geochronological database
Subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy)
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
IESDB – the Iberian Evaporite Structure Database
Spectral Library of European Pegmatites, Pegmatite Minerals and Pegmatite Host-Rocks – the GREENPEG project database
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Digital soil mapping of lithium in Australia
A multi-dimensional dataset of Ordovician to Silurian graptolite specimens for virtual examination, global correlation, and shale gas exploration
A strontium isoscape of northern Australia
A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy
Pan-Arctic soil element bioavailability estimations
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
OCTOPUS database (v.2)
A national landslide inventory for Denmark
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024, https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Short summary
This study presents a national-scale database (1:4000 000) of active faults in China and its adjacent regions in tandem with an associated web-based query system. This database integrates regional-scale studies and surveys conducted over the past 2 decades (at reference scales from 1:250 000 to 1:50 000). Our system hosts this nation-scale database accessible through a Web Geographic Information System (GIS) application.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Pooria Ebrahimi, Fabio Matano, Vincenzo Amato, Raffaele Mattera, and Germana Scepi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-44, https://doi.org/10.5194/essd-2024-44, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly influence landscape evolution, hydrology, erosion, and slope stability processes. Accurate mapping the thickness spatial variations of these fallout pyroclastic deposits over large hillslope areas remains a knowledge gap. We attempt to bridge this gap by applying statistical techniques on a field-based thickness measurement dataset for making representative predictions.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
James Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-464, https://doi.org/10.5194/essd-2023-464, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Cloncurry METAL aims to shift the “Big Data” paradigm in mineral system science by developing a quantitative, fully integrated, multi-modal, scale-consistent methodology for system characterisation. The data comprises collocated petrophysical-mineralogical-geochemical-structural-metasomatic characterisation of 23 deposits from a highly complex mineral system. This approach allows translation of mineral system processes into physics, providing a framework for smarter geophysics-based exploration.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Yujing Wu, Xianjun Fang, and Jianqing Ji
Earth Syst. Sci. Data, 15, 5171–5181, https://doi.org/10.5194/essd-15-5171-2023, https://doi.org/10.5194/essd-15-5171-2023, 2023
Short summary
Short summary
We introduce a zircon U‒Th‒Pb chronological database of the global continental crust. This database provides comprehensive research materials for Earth system science in deep time and space due to its large amount of data (~2 million records), long time span (4.4 billion years), global sampling range, comprehensive zircon samples, and various dating instruments.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Kristen Chiama, Morgan Gabor, Isabella Lupini, Randolph Rutledge, Julia Ann Nord, Shuang Zhang, Asmaa Boujibar, Emma S. Bullock, Michael J. Walter, Kerstin Lehnert, Frank Spear, Shaunna M. Morrison, and Robert M. Hazen
Earth Syst. Sci. Data, 15, 4235–4259, https://doi.org/10.5194/essd-15-4235-2023, https://doi.org/10.5194/essd-15-4235-2023, 2023
Short summary
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Joana Cardoso-Fernandes, Douglas Santos, Cátia Rodrigues de Almeida, Alexandre Lima, Ana C. Teodoro, and GREENPEG project team
Earth Syst. Sci. Data, 15, 3111–3129, https://doi.org/10.5194/essd-15-3111-2023, https://doi.org/10.5194/essd-15-3111-2023, 2023
Short summary
Short summary
GREENPEG aims to develop tools for pegmatite exploration and to enhance European databases, adding new data on pegmatite properties, such as the spectral signature. Samples comprise pegmatites and wall rocks from Austria, Ireland, Norway, Portugal, and Spain. A detailed description of the spectral database is presented as well as reflectance spectra, photographs, and absorption features. Its European scale comprises pegmatites with distinct characteristics, providing a reference for exploration.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Hong-He Xu, Zhi-Bin Niu, Yan-Sen Chen, Xuan Ma, Xiao-Jing Tong, Yi-Tong Sun, Xiao-Yan Dong, Dan-Ni Fan, Shuang-Shuang Song, Yan-Yan Zhu, Ning Yang, and Qing Xia
Earth Syst. Sci. Data, 15, 2213–2221, https://doi.org/10.5194/essd-15-2213-2023, https://doi.org/10.5194/essd-15-2213-2023, 2023
Short summary
Short summary
A multi-dimensional and integrated dataset of fossil specimens is described. The dataset potentially contributes to a range of scientific activities and provides easy access to and virtual examination of fossil specimens in a convenient and low-cost way. It will greatly benefit paleontology in research, teaching, and science communication.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Cited articles
Adelinet M., Fortin, J., Guégin, Y., Schubnel, A., and Geoffroy, L.:
Frequency and fluid effects on elastic properties of basalt: Experimental
investigations, Geophys. Res. Lett., 37, L02303,
https://doi.org/10.1029/2009GL041660, 2010.
Adelinet M., Fortin, J., Schubnel, A., and Guéguen, Y.: Deformation
modes in an Icelandic basalt: From brittle failure to localized deformation
bands, J. Volcanol. Geoth. Res., 255, 15–25,
https://doi.org/10.1016/j.jvolgeores.2013.01.011, 2013.
Aladejare, A. E. and Wang, Y.: Evaluation of rock property variability,
Georisk Assess. Manag. Risk Eng. Syst. Geohazards, 11, 22–41,
https://doi.org/10.1080/17499518.2016.1207784, 2017.
Al-Harthi, A. A., Al-Amri, R. M., and Shehata, W. M.: The porosity and
engineering properties of vesicular basalt in Saudi Arabia, Eng. Geol., 54,
313–320, https://doi.org/10.1016/S0013-7952(99)00050-2, 1999.
American Society for Testing Materials: ASTM D7012-13. Standard test methods
for compressive strength and elastic moduli of intact rock core specimens
under varying states of stress and temperatures, American Society for
Testing Materials, Pennsylvania, USA, https://doi.org/10.1520/D7012-13, 2013.
Anovitz, L. M. and Cole, D. R.: Characterization and analysis of porosity
and pore structures, Rev. Mineral. Geochem., 80, 61–164,
https://doi.org/10.2138/rmg.2015.80.04, 2015.
Arnalds, O., Gisladottir, F. O., and Sigurjonsson, H.: Sandy deserts of
Iceland: an overview, J. Arid Environ., 47, 359–371,
https://doi.org/10.1006/jare.2000.0680, 2001.
Árnason, K., Eysteinsson, H., and Hersir, G. P.: Joint 1D inversion of
TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland,
39, 13–34, https://doi.org/10.1016/j.geothermics.2010.01.002, 2010.
Arnórsson, S.: Geothermal systems in Iceland: Structure and conceptual
models–I. High-temperature areas, Geothermics, 24, 561–602, https://doi.org/10.1016/0375-6505(95)00025-9, 1995.
Arngrímsson, H. Ö. and Gunnarsson, Þ. B.: Tunneling in Acidic,
Atered and Sedimentary Rock in Iceland – Búðarhálsvirkjun,
Master's thesis, Technical University of Denmark, 162 pp., 2009.
Asem, P. and Gardoni, P.: A generalized Bayesian approach for prediction of
strength and elastic properties of rock, Eng. Geol., 289, 106187,
https://doi.org/10.1016/j.enggeo.2021.106187, 2021.
Banik, T. J., Wallace, P. J., Höskuldsson, Á., Miller, C. F., Bacon,
C. R., and Furbish, D. J.: Magma–ice–sediment interactions and the origin
of lava/hyaloclastite sequences in the Síða formation, South
Iceland, B. Volcanol., 76, 785,
https://doi.org/10.1007/s00445-013-0785-3, 2013.
Bär, K., Reinsch, T., and Bott, J.: The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties, Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, 2020.
Bergh, S. G. and Sigvaldason, G. E.: Pleistocene mass-flow deposits of
basaltic hyaloclastite on a shallow submarine shelf, South Iceland, B. Volcanol., 53, 597–611, https://doi.org/10.1007/BF00493688, 1991.
Bennett, M. R., Huddart, D., and McCormick, T.: An integrated approach to
the study of glaciolacustrine landforms and sediments: a case study from
Hagavatn, Iceland, Quaternary Sci. Rev., 19, 633–665,
https://doi.org/10.1016/S0277-3791(99)00013-X, 2000.
Bernard, M.-L., Zamora, M., Géraud, Y., and Boudon, G.: Transport
properties of pyroclastic rocks from Montagne Pelée volcano (Martinique,
Lesser Antilles), J. Geophys. Res.-Sol. Ea., 112, B05205,
https://doi.org/10.1029/2006JB004385, 2007.
Bish, D. L., Reynolds, R. C., and Post, J. E.: Sample preparation for X-ray
diffraction, in: Modern Powder Diffraction, edited by:
Bish, D. L. and Post, J. E.,
Rev. Mineral. Geochem., 20, 73-99, 1989.
Björnsson, G. and Bödvarsson, G.: A Survey of Geothermal Reservoir
Properties, Geothermics, 19, 17–27, 1990.
Böðvarsson, G. and Walker, G.: Crustal Drift in Iceland,
Geophys. J. Roy. Astr. S., 8, 285–300, 1964.
Blower, J.: Factors controlling permeability–porosity relationships in
magma, B. Volcanol., 63, 497–504, https://doi.org/10.1007/s004450100172,
2001.
Brace, W. F., Walsh, J. B., and Frangos, W. T.: Permeability of granite
under high pressure, J. Geophys. Res., 73, 2225–2236,
https://doi.org/10.1029/JB073i006p02225, 1968.
Browne, P. R.: Hydrothermal Alteration in Active Geothermal Fields, Annu.
Rev. Earth Planet. Sci., 6, 229–250, 1978.
Burchardt, S. and Gudmundsson, A.: The infrastructure of Geitafell volcano,
southeast Iceland, Stud. Volcanol. Leg. Georg. Walker, Spec. Publ. IAVCEI,
2, 349–370, https://doi.org/10.1144/IAVCEl002.18, 2009.
Cacas, M. C., Ledoux, E., de Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., and Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model, Water Resour. Res., 26, 479–489, https://doi.org/10.1029/WR026i003p00479, 1990.
Cant, J. L., Siratovich, P. A., Cole, J. W., Villeneuve, M. C., and Kennedy, B.
M.: Matrix permeability of reservoir rocks, Ngatamariki geothermal field,
Taupo Volcanic Zone, New Zealand, Geothermal Energy, 6, 2,
https://doi.org/10.1186/s40517-017-0088-6, 2018.
Ceryan, S., Tudes, S., and Ceryan, N.: A new quantitative weathering
classification for igneous rocks, Environ. Geol., 55, 1319–1336,
https://doi.org/10.1007/s00254-007-1080-4, 2008.
Chayes, F.: Petrographic model analysis: an elementary statistical
appraisal, John Wiley and Sons, New York, New York, United States of
America, 1956.
Coats, R., Kendrick, J. E., Wallace, P. A., Miwa, T., Hornby, A. J., Ashworth, J. D., Matsushima, T., and Lavallée, Y.: Failure criteria for porous dome rocks and lavas: a study of Mt. Unzen, Japan, Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, 2018.
Cole, T. L., Torres, M. A., and Kemeny, P. C.: The Hydrochemical Signature
of Incongruent Weathering in Iceland, J. Geophys. Res.-Earth, 127,
e2021JF006450, https://doi.org/10.1029/2021JF006450, 2022.
Colombier, M., Wadsworth, F. B., Gurioli, L., Scheu, B., Kueppers, U., Di
Muro, A., and Dingwell, D. B.: The evolution of pore connectivity in
volcanic rocks, Earth Planet. Sc. Lett., 462, 99–109, https://doi.org/10.1016/j.epsl.2017.01.011, 2017.
Cox, S. F.: Coupling between Deformation, Fluid Pressures, and Fluid Flow in
Ore-Producing Hydrothermal Systems at Depth in the Crust, in: SEG One
Hundredth Anniversary Volume, edited by: Hedenquist, J. W., Thompson, J. F.
H., Goldfarb, R. J., and Richards J. P., Society of Economic Geologists,
Littleton, Colorado, United States of America, https://doi.org/10.5382/AV100.04, 2005.
Cumming, W.: Geophysics and resource conceptual models in geothermal
exploration and development, in: Geothermal Power Generation: Developments
and Innovation, edited by: R. DiPippo, Woodhead Publishing, New York, United
States of America, 33–75,
https://doi.org/10.1016/B978-0-08-100337-4.00003-6, 2016.
Davatzes, N. C. and Hickman, S. H.: The Feedback Between Stress, Faulting,
and Fluid Flow: Lessons from the Coso Geothermal Field, CA, USA, in: Proc.
World Geotherm. Congress 2010, Bali, Indonesia, http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/1267.pdf (last access: 14 March 2023), 25–29 April 2010.
Deer, W. A., Howie, R. A., and Zussman, J.: An Introduction to the
Rock-Forming Minerals, Mineralogical Society of Great Britain and Ireland,
https://doi.org/10.1180/DHZ, 2013.
Dessert, C., Dupré, B., Gaillardet, J., François, L. M.,
Allègre, C. J.: Basalt weathering laws and the impact of basalt
weathering on the global carbon cycle, Chem. Geol., 202, 257–273,
https://doi.org/10.1016/j.chemgeo.2002.10.001, 2003.
Dobson, P. F., Kneafsey, T. J., Hulen, J., and Simmons, A.: Porosity,
permeability, and fluid flow in the Yellowstone geothermal system, Wyoming,
J. Volcanol. Geoth. Res., 123, 313–324, 2003.
Drury, M. J.: The Iceland research drilling project crustal section:
physical properties of some basalts from the Reydarfjordur borehole,
Iceland, Can. J. Earth Sci., 22, 1588–1593,
https://doi.org/10.1139/e85-167, 1985.
Durán, E. L., Adam, L., Wallis, I. C., and Barnhoorn, A.: Mineral
Alteration and Fracture Influence on the Elastic Properties of
Volcaniclastic Rocks, J. Geophys. Res.-Sol. Ea., 124, 4576–4600,
https://doi.org/10.1029/2018JB016617, 2019.
Eggertsson, G. H., Kendrick, J., Weaver, J., Wallace, P., Utley, J.,
Bedford, J., Allen, M., Markússon, S., Worden, R., Faulkner, D., and
Lavallée, Y.: Compaction of hyaloclastite from the active geothermal
system at Krafla volcano, Iceland, Geofluids, 2020, 3878503,
https://doi.org/10.1155/2020/3878503, 2020a.
Eggertsson, G. H., Lavallée, Y., Kendrick, J. E., and Markússon, S.
H.: Improving fluid flow in geothermal reservoirs by thermal and mechanical
stimulation: The case of Krafla volcano, Iceland, J. Volcanol. Geoth. Res., 391, 106351, https://doi.org/10.1016/j.jvolgeores.2018.04.008, 2020b.
Escobedo, D.: Study of hydrothermal alteration and petrophysical properties
of well KH6, Krafla geothermal field, NE Iceland, Master's thesis,
University of Montpellier, 2017.
Escobedo, D., Patrier, P., Beaufort, D., Gibert, B., Levy, L., Findling, N., and Mortensen, A.: Contribution of the Paragenetic Sequence of Clay Minerals to Re-Examination of the Alteration Zoning in the Krafla Geothermal System, Minerals, 11, 935, https://doi.org/10.3390/min11090935, 2021.
Eiríksson, J. and Símonarson, L. A.: A Review of the Research
History of the Tjörnes Sequence, North Iceland BT – Pacific – Atlantic
Mollusc Migration: Pliocene Inter-Ocean Gateway Archives on Tjörnes,
North Iceland, edited by: Eiríksson, J. and Símonarson, L. A.,
Springer International Publishing, Cham, 57–91,
https://doi.org/10.1007/978-3-030-59663-7_4, 2021.
Escobedo, D., Patrier, P., Beaufort, D., Gibert, B., Levy, L., Findling, N.,
and Mortensen, A.: Contribution of the paragenetic sequence of clay minerals
to re-examination of the alteration zoning in the Krafla geothermal system,
Minerals, 11, 935, https://doi.org/10.3390/min11090935, 2021.
Farquharson, J. I. and Wadsworth, F. B.: Upscaling permeability in
anisotropic volcanic systems, J. Volcanol. Geoth. Res., 364, 35–47,
https://doi.org/10.1016/j.jvolgeores.2018.09.002, 2018.
Farquharson, J., Heap, M. J., Varley, N. R., Baud, P., and Reuschlé, T.:
Permeability and porosity relationships of edifice-forming andesites: A
combined field and laboratory study, J. Volcanol. Geoth. Res., 297,
52–68, https://doi.org/10.1016/j.jvolgeores.2015.03.016,
2015.
Farquharson, J. I., Baud, P., and Heap, M. J.: Inelastic compaction and permeability evolution in volcanic rock, Solid Earth, 8, 561–581, https://doi.org/10.5194/se-8-561-2017, 2017.
Farquharson, J. I., Wild, B., Kushnir, A. R. L., Heap, M. J., Baud, P., and
Kennedy, B.: Acid-Induced Dissolution of Andesite: Evolution of Permeability
and Strength, J. Geophys. Res.-Sol. Ea., 124, 257–273,
https://doi.org/10.1029/2018JB016130, 2019.
Filomena, C. M., Hornung, J., and Stollhofen, H.: Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices, Solid Earth, 5, 1–11, https://doi.org/10.5194/se-5-1-2014, 2014.
Flóvenz, Ó. G. and Saemundsson, K.: Heat flow and geothermal
processes in Iceland, Tectonophysics, 225, 123–138,
https://doi.org/10.1016/0040-1951(93)90253-G, 1993.
Flóvenz, Ó. G., Georgsson, L. S., and Árnason, K.: Resistivity
structure of the upper crust in Iceland, J. Geophys. Res.-Sol. Ea., 90,
10136–10150, https://doi.org/10.1029/JB090iB12p10136, 1985.
Flóvenz, Ó. G., Spangenberg, E., Kulenkampff, J., Árnason, K.,
Karlsdóttir, R. and Huenges, E.: The Role of Electrical Interface
Conduction in Geothermal Exploration, in: Proceedings World Geothermal
Congress, Antalya, Turkey, http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0742.pdf (last access: 14 March 2023), 24–29 April 2005.
Foged, N. N. and Andreassen, K. A.: Strength and deformation properties of
volcanic rocks in Iceland, in: Proc. 17th Nord. Geotech. Meet., Reykjavik,
Iceland, https://www.ngm2016.com/uploads/2/1/7/9/21790806/039-137-ngm_2016_-_strength_and_deformation_properties_of_volcanic_rocks_in_iceland_foged.pdf (last access: 14 March 2023), 25–28 May 2016.
Forchheimer, P.: Wasserbewegung durch boden, Z. Ver. Deutsch, Ing., 45,
1782–1788, 1901.
Franzson, H.: Structure and petrochemistry of the
Hafnarfjall-Skarðsheiði central volcano and the surrounding basalt
succession, W-Iceland, PhD thesis, University of Edinburgh, 264 pp., http://hdl.handle.net/1842/9679, 1978.
Franzson, H. and Gunnlaugsson, E.: Formation of clays and chlorites in the
upper Icelandic crust, in: Proceedings World Geothermal Congress 2020+1,
Reykjavik, Iceland, April–October 2021, http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/12007.pdf (last access: 14 March 2023), 2020.
Franzson, H. and Tulinius, H.: Rannsóknir á kjarna úr holu
ÖJ-1, Ölkelduhálsi (Research on core from hole ÖJ-1,
Ölkelduháls), Orkustofnun (OS-99024), Reykjavik, Iceland, https://orkustofnun.is/gogn/Skyrslur/OS-1999/OS-99024.pdf (last access: 14 March 2023), 1999.
Franzson, H., Friðleifsson, G. O., Guðmundsson, A., and
Vilmundardóttir, E. G.: Forðafræðistuðlar,
Staðabergfræðirannsókna í lok 1997, (Reservoir
Parameters, Status of petrological studies by the end of 1997), Orkustofnun,
OS-97077, Reykjavik, Iceland, https://orkustofnun.is/gogn/Skyrslur/OS-1997/OS-97077.pdf (last access: 14 March 2023), 1997.
Franzson, H., Guðlaugsson, S. Þ., and Friðleifsson, G. Ó.:
Petrophysical properties of Icelandic rocks, in: Proceedings of the 6th
Nordic Symposium on Petrophysics, Trondheim, Norway, http://www.ipt.ntnu.no/nordic/Papers/6th_Nordic_Franzson.pdf (last access: 14 March 2023), 15–16 May 2001.
Franzson, H., Zierenberg, R., and Schiffman, P.: Chemical transport in
geothermal systems in Iceland, J. Volcanol. Geoth. Res., 173, 217–229,
https://doi.org/10.1016/j.jvolgeores.2008.01.027, 2008.
Franzson, H., Guðfinnsson, G., and Helgadóttir, H.: Porosity, density
and chemical composition relationships in altered Icelandic hyaloclastites,
Water-Rock Interaction, edited by: Birkle, B. and Torres-Alvarado, I. S., Taylor &
Francis Group, London, 199–202, https://doi.org/10.1201/b10556, 2010.
Franzson, H., Guðfinnsson, G. H., Frolova, J., Helgadóttir, H. M.,
Mortensen, A. K., and Jakobsson, S. P. Icelandic Hyaloclastite Tuffs, Iceland
Geosurvey, ÍSOR-2011/064, https://orkustofnun.is/gogn/Skyrslur/ISOR-2011/ISOR-2011-064.pdf (last access: 14 March 2023), 2011.
Friðleifsson, G. Ó.: Geology and alteration history of the Geitafell
central volcano, Southeast Iceland, PhD thesis, University of Edinburgh,
385 pp., http://hdl.handle.net/1842/13860, 1983a.
Friðleifsson, G. Ó.: Mineralogical evolution of a hydrothermal
system, in: Geothermal Resources Council Transactions, 7, 147–152, 1983b.
Friðleifsson, G. Ó.: Mineralogical evolution of a hydrothermal
system. II, Heat sources-fluid interactions, in: Geothermal Resources
Council Transactions, 8, 119-123, 1984.
Friðleifsson, I. B.: Petrology and structure of the Esja quaternary
volcanic region, southwest Iceland, PhD thesis, University of Oxford, https://ora.ox.ac.uk/objects/uuid:862173b9-7600-43b7-970f-09eb7da90dbe (last access: 14 March 2023),
1973.
Friðleifsson, I. B.: Lithology and structure of geothermal reservoir
rocks in Iceland, Orkustofnun, OS-JHD-7531, Reykjavik, Iceland, https://orkustofnun.is/gogn/Skyrslur/1975/OS-JHD-7531.pdf (last access: 14 March 2023), 1975.
Friðleifsson, I. B.: Applied volcanology in geothermal exploration in
Iceland, Pure Appl. Geophys., 117, 242–252, 1978.
Friðleifsson, G. Ó., and Vilmundardóttir, E. G.: Reservoir
parameters TCP-project: A thin-section study of the Öskuhlíð
samples, Orkustofnun, Reykjavik, Iceland, OS-98041, https://doi.org/10.1007/BF00879750, 1998.
Frolova, J., Ladygin, V., Rychagov, S., and Zukhubaya, D.: Effects of
hydrothermal alterations on physical and mechanical properties of rocks in
the Kuril-Kamchatka island arc, Eng. Geol., 183, 80–95,
https://doi.org/10.1016/j.enggeo.2014.10.011, 2014.
Frolova, Y. V.: Patterns of transformations in the compositions and
properties of Icelandic hyaloclastites during lithogenesis, Moscow Univ.
Geol. Bull., 65, 104–114, https://doi.org/10.3103/s0145875210020067, 2010.
Frolova, J. V., Ladygin, V. M., Franzson, H., Sigurðsson, O.,
Stefánsson, V., and Shustrov, V.: Petrophysical properties of fresh to
mildly altered hyaloclastite tuffs, in: Proceedings World Geothermal
Congress, Antalya, Turkey, https://orkustofnun.is/gogn/Skyrslur/OS-1998/OS-98041.pdf (last access: 14 March 2023), 24–29 April 2005.
Frolova, J. V, Chernov, M. S., Rychagov, S. N., Ladygin, V. M., Sokolov, V.
N., and Kuznetsov, R. A.: The influence of hydrothermal argillization on the
physical and mechanical properties of tuffaceous rocks: a case study from
the Upper Pauzhetsky thermal field, Kamchatka, B. Eng. Geol. Environ.,
80, 1635–1651, https://doi.org/10.1007/s10064-020-02007-2, 2021.
Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
Gibert, B., Loggia, D., Parat, F., Escobedo, D., Lévy, L.,
Friðleifsson, G. O., Pezard, P. A., Marino, N., and Zierenberg, R. A.:
Petrophysical Properties of IDDP-2 Core Samples from Depths of 3650 to
4650m, in: Proceedings World Geothermal Congress 2020+1, Reykjavik,
Iceland, http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0624.pdf (last access: 14 March 2023), April–October 2021, 2020.
Gislason, S. R. and Eugster, H.: Meteoric water-basalt interactions. I: A
laboratory study, Geochim. Cosmochim. Ac., 51, 2827–2840,
https://doi.org/10.1016/0016-7037(87)90161-X, 1987.
Grab, M., Zürcher, B., Maurer, H., and Greenhalgh, S. Seismic velocity
structure of a fossilized Icelandic geothermal system: A combined laboratory
and field study, Geothermics, 57, 84–94, https://doi.org/10.1016/j.geothermics.2015.06.004, 2015.
Greenfield, L., Millett, J. M., Howell, J., Jerram, D. A., Watton, T.,
Healy, D., Hole, M. J., and Planke, S.: The 3D facies architecture and
petrophysical properties of hyaloclastite delta deposits: An integrated
photogrammetry and petrophysical study from southern Iceland, Basin Res.,
32, 1091–1114, https://doi.org/10.1111/bre.12415, 2020.
Guðlaugsson, S. Þ.: An usual permeability anomaly in a Pleistocene
shield-lava in Öskuhlið, Iceland – A study based on empirical
relationships between petrophysical parameters, mineralogy and chemical
composition, Orkustofnun, Reykjavik, Iceland, SÞG 01/00, http://hdl.handle.net/10802/27758, 2000.
Guðmundsson, A., Franzson, H., and Friðleifsson, G. Ó.
Forðafræðistuðlar. Söfnun sýna. (Reservoir
parameters. Sample collection), Orkustofnun, Reykjavik, Iceland,
OS-95017/JHD-11 B, https://orkustofnun.is/gogn/Skyrslur/OS-1995/OS-95017.pdf (last access: 14 March 2023), 1995.
Gysi, A. P.: Numerical simulations of CO2 sequestration in basaltic
rock formations: Challenges for optimizing mineral-fluid reactions, Pure
Appl. Chem., 89, 581–596, https://doi.org/10.1515/pac-2016-1016, 2017.
Harðardóttir, S., Matthews, S., Halldórsson, S. A., and Jackson,
M. G.: Spatial distribution and geochemical characterization of Icelandic
mantle end-members: Implications for plume geometry and melting processes,
Chem. Geol., 604, 120930, https://doi.org/10.1016/j.chemgeo.2022.120930, 2022.
Harnett, C. E., Kendrick, J. E., Lamur, A., Thomas, M. E., Stinton, A.,
Wallace, P. A., Utley, J. E. P., Murphy, W., Neuberg, J., and Lavallée,
Y.: Evolution of Mechanical Properties of Lava Dome Rocks Across the
1995–2010 Eruption of Soufrière Hills Volcano, Montserrat, Front. Earth Sci., 7, 7,
https://doi.org/10.3389/feart.2019.00007, 2019.
Heap, M. J. and Kennedy, B. M.: Exploring the scale-dependent permeability
of fractured andesite, Earth Planet. Sc. Lett., 447, 139–150,
https://doi.org/10.1016/j.epsl.2016.05.004, 2015.
Heap, M. J. and Violay, M. E. S.: The mechanical behaviour and failure modes
of volcanic rocks: a review, B. Volcanol., 83, 33,
https://doi.org/10.1007/s00445-021-01447-2, 2021.
Heap, M. J., Xu, T., and Chen, C.: The influence of porosity and vesicle
size on the brittle strength of volcanic rocks and magma, B. Volcanol.,
76, 856, https://doi.org/10.1007/s00445-014-0856-0, 2014.
Heap, M. J., Kennedy, B. M., Pernin, N., Jacquemard, L., Baud, P.,
Farquharson, J. I., Scheu, B., Lavallée, Y., Gilg, H. A., Letham-Brake,
M., Mayer, K., Jolly, A. D., Reuschlé, T., and Dingwell, D. B.:
Mechanical behaviour and failure modes in the Whakaari (White Island
volcano) hydrothermal system, New Zealand, J. Volcanol. Geoth. Res., 295,
26–42, https://doi.org/10.1016/j.jvolgeores.2015.02.012,
2015.
Heap, M. J., Kennedy, B. M., Farquharson, J. I., Ashworth, J., Mayer, K.,
Letham-Brake, M., Reuschlé, T., Gilg, H. A., Scheu, B., Lavallée,
Y., Siratovich, P., Cole, J., Jolly, A. D., Baud, P., and Dingwell, D. B.: A
multidisciplinary approach to quantify the permeability of the
Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New
Zealand), J. Volcanol. Geoth. Res., 332, 88–108, https://doi.org/10.1016/j.jvolgeores.2016.12.004, 2017a.
Heap, M. J., Kushnir, A. R. L., Gilg, H. A., Wadsworth, F. B., Reuschlé,
T., and Baud, P.: Microstructural and petrophysical properties of the
Permo-Triassic sandstones (Buntsandstein) from the Soultz-sous-Forêts
geothermal site (France), Geotherm. Energy, 5, 26,
https://doi.org/10.1186/s40517-017-0085-9, 2017b.
Heap, M. J., Reuschlé, T., Farquharson, J. I., and Baud, P.:
Permeability of volcanic rocks to gas and water, J. Volcanol. Geoth. Res., 354, 29–38, https://doi.org/10.1016/j.jvolgeores.2018.02.002, 2018.
Heap, M. J., Gravley, D. M., Kennedy, B. M., Gilg, H. A., Bertolett, E., and
Barker, S. L. L.: Quantifying the role of hydrothermal alteration in creating
geothermal and epithermal mineral resources: The Ohakuri ignimbrite
(Taupō Volcanic Zone, New Zealand), J. Volcanol. Geoth. Res., 390,
106703, https://doi.org/10.1016/j.jvolgeores.2019.106703, 2020a.
Heap, M. J., Villeneuve, M., Albino, F., Farquharson, J. I., Brothelande,
E., Amelung, F., Got, J.-L., and Baud, P.: Towards more realistic values of
elastic moduli for volcano modelling, J. Volcanol. Geoth. Res., 390,
106684, https://doi.org/10.1016/j.jvolgeores.2019.106684, 2020b.
Heap, M. J., Baumann, T., Gilg, H. A., Kolzenburg, S., Ryan, A. G.,
Villeneuve, M., Russell, J. K., Kennedy, L. A., Rosas-Carbajal, M., and
Clynne, M. A.: Hydrothermal alteration can result in pore pressurization and
volcano instability, Geology, 49, 1348–1352,
https://doi.org/10.1130/G49063.1, 2021.
Heap, M. J., Harnett, C. E., Wadsworth, F. B., Gilg, H. A., Carbillet, L.,
Rosas-Carbajal, M., Komorowski, J. C., Baud, P., Troll, V. R., Deegan, F. M.,
Holohan, E. P., and Moretti, R.: The tensile strength of hydrothermally altered
volcanic rocks, J. Volcanol. Geoth. Res., 428, 107576,
https://doi.org/10.1016/j.jvolgeores.2022.107576, 2022a.
Heap, M. J., Jessop, D. E., Wadsworth, F. B., Rosas-Carbajal, M.,
Komorowski, J.-C., Gilg, H. A., Aron, N., Buscetti, M., Gential, L., Goupil,
M., Masson, M., Hervieu, L., Kushnir, A. R. L., Baud, P., Carbillet, L.,
Ryan, A. G., and Moretti, R.: The thermal properties of hydrothermally
altered andesites from La Soufrière de Guadeloupe (Eastern Caribbean),
J. Volcanol. Geoth. Res., 421, 107444,
https://doi.org/10.1016/j.jvolgeores.2021.107444, 2022b.
Jaya, M. S., Shapiro, S. A., Kristinsdóttir, L. H., Bruhn, D., Milsch,
H., and Spangenberg, E.: Temperature dependence of seismic properties in
geothermal rocks at reservoir conditions, Geothermics, 39, 115–123,
https://doi.org/10.1016/j.geothermics.2009.12.002, 2010.
Johnson, J. and Boitnott, G. N.: Velocity, Permeability, Resistivity and
Pore Structure Models of Selected Basalts from Iceland, New England
Research, Vermont, USA, 1998.
Jolie, E., Scott, S., Faulds, J. E., Chambefort, I., Axelsson, G.,
Gutiérrez-negrín, L. C., Regenspurg, S., Ziegler, M., and Ayling,
B.: Geological controls on geothermal resources for power generation,
Nat. Rev. Earth Environ., 2, 324–339,
https://doi.org/10.1038/s43017-021-00154-y, 2021.
Kahraman, S.: The correlations between the saturated and dry P-wave velocity
of rocks, Ultrasonics, 46, 341–348,
https://doi.org/10.1016/j.ultras.2007.05.003, 2007.
Kahraman, S., Fener, M., and Kilic, C. O.: Estimating the Wet-Rock P-Wave
Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks, Pure Appl.
Geophys., 174, 2621–2629, https://doi.org/10.1007/s00024-017-1561-7, 2017.
Kennedy, B. M., Jellinek, A. M., Russell, J. K., Nichols, A. R. L., and
Vigouroux, N.: Time-and temperature-dependent conduit wall porosity: A key
control on degassing and explosivity at Tarawera volcano, New Zealand, Earth Planet. Sc. Lett., 299, 126–137,
https://doi.org/10.1016/j.epsl.2010.08.028, 2010.
Klinkenberg, L. J.: The permeability of porous media to liquids and gases,
in: Drilling and production practice, American Petroleum Institute, 200–213, 1941.
Kristinsdóttir, L. H., Flóvenz, Ó. G., Árnason, K., Bruhn,
D., Milsch, H., Spangenberg, E., and Kulenkampff, J.: Electrical
conductivity and P-wave velocity in rock samples from high-temperature
Icelandic geothermal fields, Geothermics, 39, 94–105,
https://doi.org/10.1016/j.geothermics.2009.12.001, 2010.
Kristmannsdóttir, H.: Alteration of basaltic rocks by hydrothermal
activity at 100-300C, Dev. Sedimentol., 27, 359–367, 1979.
Kristmannsdottir, H. and Tomasson, J.: Zeolite zones in geothermal areas
in Iceland, Orkustofnun, Reykjavik, Iceland, OS-JHD-7649, https://orkustofnun.is/gogn/Skyrslur/1976/OS-JHD-7649.pdf (last access: 14 March 2023), 1978.
Kummerow, J., Raab, S., Schuessler, J. A., and Meyer, R.: Non-reactive and
reactive experiments to determine the electrical conductivities of aqueous
geothermal solutions up to supercritical conditions, J. Volcanol. Geoth. Res., 391, 106388, doi.org/10.1016/j.jvolgeores.2018.05.014, 2020.
Lamur, A., Kendrick, J. E., Eggertsson, G. H., Wall, R. J., Ashworth, J. D.,
and Lavallée, Y.: The permeability of fractured rocks in pressurised
volcanic and geothermal systems, Sci. Rep., 7, 6173,
https://doi.org/10.1038/s41598-017-05460-4, 2017.
Le Maitre, R., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., and
Bateman, P.: Igneous Rocks: A classification and glossary of terms:
Recommendations of the international union of geological sciences
subcommission on the systematics of igneous rocks (2nd Edn.), Cambridge,
Cambridge University Press, https://doi.org/10.1017/CBO9780511535581, 2002.
Lévy, L., Gibert, B., Sigmundsson, F., Flóvenz, O. G., Hersir, G.
P., Briole, P., and Pezard, P. A.: The role of smectites in the electrical
conductivity of active hydrothermal systems: Electrical properties of core
samples from Krafla volcano, Iceland, Geophys. J. Int., 215, 1558–1582,
https://doi.org/10.1093/gji/ggy342, 2018.
Lévy, L., Gibert, B., Sigmundsson, F., Deldicque, D., Parat, F., and
Hersir, G. P.: Tracking Magmatic Hydrogen Sulfur Circulations Using
Electrical Impedance: Complex Electrical Properties of Core Samples at the
Krafla Volcano, Iceland, J. Geophys. Res.-Sol. Ea., 124, 2492–2509,
https://doi.org/10.1029/2018JB016814, 2019a.
Lévy, L., Weller, A., and Gibert, B.: Influence of smectite and salinity
on the imaginary and surface conductivity of volcanic rocks, Near Surf.
Geophys., 17, 653–673, https://doi.org/10.1002/nsg.12069, 2019b.
Lévy, L., Friðriksson, T., Findling, N., Lanson, B., Fraisse, B.,
Marino, N., and Gibert, B.: Smectite quantification in hydrothermally
altered volcanic rocks, 85, 101748, https://doi.org/10.1016/j.geothermics.2019.101748, 2020a.
Lévy, L. E., Gibert, B., Escobedo, D., Patrier, P., Lanson, B.,
Beaufort, D., Loggia, D., Pezard, P. A., and Marino, N.: Relationships
between lithology, permeability, clay mineralogy and electrical conductivity
in Icelandic altered volcanic rocks, in: Proceedings World Geothermal
Congress 2020+1, Reykjavik, Iceland, http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/11093.pdf (last access: 14 March 2023), April–October 2020b.
Liotta, D., Brogi, A., Ruggieri, G., Rimondi, V., Zucchi, M.,
Helgadóttir, H. M., Montegrossi, G., and Friðleifsson, G. Ó.:
Fracture analysis, hydrothermal mineralization and fluid pathways in the
Neogene Geitafell central volcano: insights for the Krafla active geothermal
system, Iceland, J. Volcanol. Geoth. Res., 391, 106502, https://doi.org/10.1016/j.jvolgeores.2018.11.023, 2020.
Lonker, S. W., Franzson, H., and Kristmannsdöttir, H.: Mineral-fluid
interactions in the Reykjanes and Svartsengi geothermal systems, Iceland,
Am. J. Sci., 293, 605–670, 1993.
Manning, C. E. and Bird, D. K.: Porosity, permeability and basalt
metamorphism, 123–140, in: Low-Grade Metamorphism of Mafic Rocks, edited
by: Schiffman, P. and Day, H. W., Geological Society of America Special Paper
296, https://doi.org/10.1130/SPE296-p123, 1995.
Mavko, G., Mukerji, T., and Dvorkin, J.: The Rock Physics Handbook: Tools
for Seismic Analysis of Porous Media, 2nd Edn., Cambridge University Press,
Cambridge, https://doi.org/10.1017/CBO9780511626753, 2009.
Meier, L. P. and Kahr, G.: Determination of the Cation Exchange Capacity (CEC) of Clay Minerals Using the Complexes of Copper(II) Ion with Triethylenetetramine and Tetraethylenepentamine, Clays Clay Miner., 47, 386–388, https://doi.org/10.1346/ccmn.1999.0470315, 1999.
Meller, C. and Kohl, T.: The significance of hydrothermal alteration zones
for the mechanical behavior of a geothermal reservoir, Geotherm. Energy, 2,
12, https://doi.org/10.1186/s40517-014-0012-2, 2014.
Meller, C. and Ledésert, B.: Is There a Link Between Mineralogy,
Petrophysics, and the Hydraulic and Seismic Behaviors of the
Soultz-sous-Forêts Granite During Stimulation? A Review and
Reinterpretation of Petro-Hydromechanical Data Toward a Better Understanding
of Induced Seismicity, J. Geophys. Res.-Sol. Ea., 122, 9755–9774,
https://doi.org/10.1002/2017JB014648, 2017.
Milsch, H., Kristinsdóttir, L. H., Spangenberg, E., Bruhn, D., and
Flóvenz, Ó. G.: Effect of the water-steam phase transition of the
electrical conductivity of porous rocks, Geothermics, 39, 106–114, https://doi.org/10.1016/j.geothermics.2009.09.001, 2010.
Mordensky, S. P., Villeneuve, M. C., Kennedy, B. M., Heap, M. J., Gravley,
D. M., Farquharson, J. I., and Reuschlé, T.: Physical and mechanical
property relationships of a shallow intrusion and volcanic host rock,
Pinnacle Ridge, Mt. Ruapehu, New Zealand, J. Volcanol. Geoth. Res., 359,
1–20, https://doi.org/10.1016/j.jvolgeores.2018.05.020, 2018.
Mordensky, S. P., Heap, M. J., Kennedy, B. M., Gilg, H. A., Villeneuve, M.
C., Farquharson, J. I., and Gravley, D. M.: Influence of alteration on the
mechanical behaviour and failure mode of andesite: implications for shallow
seismicity and volcano monitoring, B. Volcanol., 81, 44,
https://doi.org/10.1007/s00445-019-1306-9, 2019.
Muñoz, G.: Exploring for Geothermal Resources with Electromagnetic
Methods, Surv. Geophys., 35, 101–122,
https://doi.org/10.1007/s10712-013-9236-0, 2014.
Nara, Y., Meredith, P. G., Yoneda, T., and Kaneko, K.: Influence of
macro-fractures and micro-fractures on permeability and elastic wave
velocities in basalt at elevated pressure, Tectonophysics, 503, 52–59,
https://doi.org/10.1016/j.tecto.2010.09.027, 2011.
Navelot, V., Géraud, Y., Favier, A., Diraison, M., Corsini, M.,
Lardeaux, J. M., Verati, C., Mercier de Lépinay, J., Legendre, L.,
and Beauchamps, G.: Petrophysical properties of volcanic rocks and impacts
of hydrothermal alteration in the Guadeloupe Archipelago (West Indies), J. Volcanol. Geoth. Res., 360, 1–21,
https://doi.org/10.1016/j.jvolgeores.2018.07.004, 2018.
Nelson, P. H. and Anderson, L. A.: Physical properties of ash flow tuff from
Yucca Mountain, Nevada, J. Geophys. Res., 97, 6823–6841,
https://doi.org/10.1029/92JB00350, 1992.
Neuhoff, P., Fridriksson, T., Arnórsson, S., and Bird, D. K.: Porosity
evolution and mineral paragenesis during low-grade metamorphism of basaltic
lavas at Teigarhorn, eastern Iceland, Am. J. Sci., 299, 467–501, 1999.
Neuzil, C. E.: How permeable are clays and shales?, Water Resour. Res., 30,
145–150, https://doi.org/10.1029/93WR02930, 1994.
Nicolas, A., Lévy, L., Sissmann, O., Li, Z., Fortin, J., Gibert, B.,
and Sigmundsson, F.: Influence of hydrothermal alteration on the elastic
behaviour and failure of heat-treated andesite from Guadeloupe, Geophys. J.
Int., 223, 2038–2053, https://doi.org/10.1093/gji/ggaa437, 2020.
Nono, F., Gibert, B., Parat, F., Loggia, D., Cichy, S. B., and Violay, M.:
Electrical conductivity of Icelandic deep geothermal reservoirs up to
supercritical conditions: Insight from laboratory experiments, J. Volcanol. Geoth. Res., 391, 106364,
https://doi.org/10.1016/j.jvolgeores.2018.04.021, 2020.
Nur, A. and Simmons, G.: The effect of saturation on velocity in low
porosity rocks, Earth Planet. Sc. Lett., 7, 183–193,
https://doi.org/10.1016/0012-821X(69)90035-1, 1969.
Orkustofnun: Valgarður – Gagnagrunnur forðafræðistuðla gerður aðgengilegur (Valgarður – Database of Reservoir Properties Made Available), https://orkustofnun.is/orkustofnun/frettir/valgardur-gagnagrunnur-fordafraedistudla-gerdur-adgengilegur,
(last access: 5 October 2022), 2018.
Oxburgh, E. R. and Agrell, S. O.: Thermal conductivity and temperature
structure of the Reydardjordur borehole (Iceland), J. Geophys. Res., 87,
6423–6428, https://doi.org/10.1029/JB087iB08p06423, 1982.
Pálmason, G.: A continuum model of crustal generation in
Iceland-kinematic aspects, J. Geophys., 47, 7–18, 1980.
Pálsson, S.: Mælingar á eðlisþyngd og poruhluta bergs
(Measurements of the density and porosity of rock), Orkustofnun, Reykjavik,
Iceland, https://orkustofnun.is/gogn/Skyrslur/1972/OS-1972-Maelingar-a-edlisthyngd-og-poruhluta-bergs.pdf (last access: 14 March 2023), 1972.
Pálsson, S., Haraldsson, G. I., and Vigfússon, G. H.: Eðlismassi
og poruhluti bergs (Density and Porosity of Rock), Orkustofnun, Reykjavik,
Iceland, 35 pp., OS-84048, https://orkustofnun.is/gogn/Skyrslur/OS-1984/OS-84048.pdf (last access: 14 March 2023), 1984.
Petford, N.: Controls on primary porosity and permeability development in
igneous rocks, Geol. Soc. London, Spec. Publ., 214, 93–107,
https://doi.org/10.1144/GSL.SP.2003.214.01.06, 2003.
Pola, A., Crosta, G., Fusi, N., Barberini, V., and Norini, G.: Influence of
alteration on physical properties of volcanic rocks, Tectonophysics, 566–567, 67–86,
https://doi.org/10.1016/j.tecto.2012.07.017, 2012.
Pola, A., Crosta, G. B., Fusi, N., and Castellanza, R.: General
characterization of the mechanical behaviour of different volcanic rocks
with respect to alteration, Eng. Geol., 169, 1–13, https://doi.org/10.1016/j.enggeo.2013.11.011, 2014.
Potts, P. J. and Webb, P. C.: X-ray fluorescence spectrometry,
J. Geochem. Explor., 44, 251–296,
https://doi.org/10.1016/0375-6742(92)90052-A, 1992.
Pruess, K. and Narasimhan, T. N.: A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media, Soc. Pet. Eng. J., 25, 14–26, https://doi.org/10.2118/10509-PA, 1985.
Rink, M. and Schopper, J. R.: Interface conductivity and its implications
to electric logging, in: SPWLA 15th Annual Logging Symposium, McAllen,
Texas, June 1974, SPWLA-1974-J, https://onepetro.org/SPWLAALS/proceedings-abstract/SPWLA-1974/All-SPWLA-1974/SPWLA-1974-J/19759 (last access: 14 March 2023), 1974.
Robertson, E. C. and Peck, D. L.: Thermal conductivity of vesicular basalt
from Hawaii, J. Geophys. Res., 79, 4875–4888, https://doi.org/10.1029/jb079i032p04875, 1974.
Rousseau, R. M., Willis, J. P., and Duncan, A. R.: Practical XRF Calibration
Procedures for Major and Trace Elements, X-Ray Spectrometry, 25, 179–189,
https://doi.org/10.1002/(SICI)1097-4539(199607)25:4<179::AID-XRS162>3.0.CO;2-Y, 1996.
Ruether, J.: The Validation of the LMC device: Analysis of Icelandic
basaltic rocks, Master's thesis, The School for Renewable Energy Science, http://hdl.handle.net/1946/7744,
2011.
Sanchez-Alfaro, P., Reich, M., Arancibia, G., Pérez-Flores, P.,
Cembrano, J., Driesner, T., Lizama, M., Rowland, J., Morata, D., Heinrich,
C. A., Tardani, D., and Campos, E.: Physical, chemical and mineralogical
evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights
into the interplay between hydrothermal alteration and brittle deformation,
J. Volcanol. Geoth. Res., 324, 88–104,
https://doi.org/10.1016/j.jvolgeores.2016.05.009, 2016.
Saar, M. O. and Manga, M.: Permeability-porosity relationships in vesicular
basalts, Geophys. Res. Lett., 26, 111–114, https://doi.org/10.1029/1998GL900256, 1999.
Saripalli, K. P., Meyer, P. D., Bacon, D. H., and Freedman, V. L.: Changes
in Hydrologic Properties of Aquifer Media Due to Chemical Reactions: A
Review, Crit. Rev. Environ. Sci. Technol., 31, 311–349,
https://doi.org/10.1080/20016491089244, 2001.
Schaefer, L. N., Kendrick, J. E., Oommen, T., Lavallée, Y., and Chigna,
G.: Geomechanical rock properties of a basaltic volcano, Front. Earth Sci.,
3, 29, https://doi.org/10.3389/feart.2015.00029, 2015.
Schopka, H. H., Gudmundsson, M. T., and Tuffen, H.: The formation of
Helgafell, southwest Iceland, a monogenetic subglacial hyaloclastite ridge:
Sedimentology, hydrology and volcano–ice interaction, J. Volcanol. Geoth. Res., 152, 359–377,
https://doi.org/10.1016/j.jvolgeores.2005.11.010, 2006.
Scott, S. W., Covell, C., Júlíusson, E., Valfells, Á., Newson,
J., Hrafnkelsson, B., and Gudjónsdóttir, M. S.: A probabilistic geologic
model of the Krafla geothermal system constrained by gravimetric data,
Geotherm. Energy, 7, 29, https://doi.org/10.1186/s40517-019-0143-6, 2019.
Scott, S. W., Lévy, L., Covell, C., Franzson, H., Gibert, B., Valfells,
Á., Newson, J., Frolova, J., and Guðjónsdóttir, M. S.:
Valgarður: A Database of the Petrophysical, Mineralogical, and Chemical
Properties of Icelandic Rocks (1.1), Zenodo [data set],
https://doi.org/10.5281/zenodo.6980231, 2022a.
Scott, S. W., O'Sullivan, J. P., Maclaren, O. J., Nicholson, R., Covell, C.,
Newson, J., Guðjónsdóttir, M. S.: Bayesian Calibration of a
Natural State Geothermal Reservoir Model, Krafla, North Iceland, Water
Resour. Res., 58, e2021WR031254, https://doi.org/10.1029/2021wr031254, 2022b.
Schön, J. H.: Physical Properties of Rocks, 65, Elsevier,
https://doi.org/10.1016/B978-0-08-100404-3.09990-X, 2015.
Sigmarsson, O. and Steinthórsson, S.: Origin of Icelandic basalts: A
review of their petrology and geochemistry, J. Geodyn., 43, 87–100,
https://doi.org/10.1016/j.jog.2006.09.016, 2007.
Sigmarsson, O., Maclennan, J., and Carpentier, M.: Geochemistry of igneous
rocks in Iceland: a review, Jökull, 58, 139–160, 2008.
Sigurðsson, Ó.: Forðafræðistuðlar, Reynslusamband til
að breyta mældri gaslekt í vatnslekt, Reservoir parameters, An
empirical relationship to change measured gas permeability to water
permeability, Orkustofnun, Reykjavik, Iceland, OS-98065, https://orkustofnun.is/gogn/Skyrslur/OS-1998/OS-98065.pdf (last access: 14 March 2023), 1998a.
Sigurðsson Ó.: Forðafræðistuðlar, Lekt og
hárpípulíkan (Reservoir parameters, Permeability and capillary
tube model), Orkustofnun, Reykjavik, Iceland, OMAR-1998/01, https://orkustofnun.is/gogn/Greinargerdir/Grg-OS-1998/Omar-98-01.pdf (last access: 14 March 2023), 1998b.
Sigurðsson, Ó. and Stefánsson, V.:
Forðafræðistuðlar, Mælingar á bergsýnum,
(Reservoir parameters, Measurements on rock samples), Orkustofnun, Reykjavik,
Iceland, OS-94049/JHD-28B, https://orkustofnun.is/gogn/Skyrslur/OS-1994/OS-94049.pdf (last access: 14 March 2023), 1994.
Sigurðsson, Ó. and Stefánsson, V.: Porosity structure of
Icelandic basalt, Proc. Est. Acad. Sci. Geol., 51, 33–46,
https://doi.org/10.3176/geol.2002.1.03, 2002.
Sigurðsson, Ó., Guðmundsson, Á., Friðleifsson, G.
Ó., Franzson, H., Guðlaugsson, S. Þ., and Stefánsson, V.:
Database on igneous rock properties in Icelandic geothermal systems. Status
and unexpected results, in: Proceedings World Geothermal Congress 2000,
Kyushu – Tohoku, Japan, 28 May–10 June 2000, 2881–2886, http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0212.PDF (last access: 14 March 2023), 2000.
Siratovich, P. A., Heap, M. J., Villenueve, M. C., Cole, J. W., and Reuschlé, T.: Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand, Geotherm. Energy, 2, 10, https://doi.org/10.1186/s40517-014-0010-4, 2014.
Soyer, W., Mackie, R., Hallinan, S., Pavesi, A., Nordquist, G., Suminar, A.,
Intani, R., and Nelson, C.: Geologically consistent multiphysics imaging of
the Darajat geothermal steam field, First Break, 36, 77–83,
https://doi.org/10.3997/1365-2397.n0102, 2018.
Snæbjörnsdóttir, S., Sigfússon, B., Marieni, C., Goldberg,
D., Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage through
mineral carbonation, Nat. Rev. Earth Environ., 1, 90–102, https://doi.org/10.1038/s43017-019-0011-8, 2020.
State Standard 21153.2-84: Rocks. Methods for determination of uniaxial
compressive strength, Publisher of Standards, Moscow, Russia, https://www.russiangost.com/p-54364-gost-211532-84.aspx (last access: 14 March 2023), 1984.
State Standard 21153.7-75: Rocks. Methods for Determination of Compressional
and Shear Wave Velocities, Publisher of Standards, Moscow, 29–35, https://www.russiangost.com/p-53651-gost-211537-75.aspx (last access: 14 March 2023), 1984.
Stefansson, A. and Gislason, S. R.: Chemical weathering of basalts,
southwest Iceland: Effect of rock crystallinity and secondary minerals on
chemical fluxes to the ocean, Am. J. Sci., 301, 513–556,
https://doi.org/10.1126/science.3.53.32, 2001.
Stefánsson, V., Sigurðsson, O., Guðmundsson, Á., Franzson,
H., Friðleifsson, G. Ó., and Tulinius, H.: Core Measurements and
Geothermal Modelling, in: Second Nordic Symposium on Petrophysics: Fractured
reservoirs, edited by: Middleton, M. F., 198–220, 1997.
Stroncik, N. A. and Schmincke, H. U.: Palagonite – A review, Int. J. Earth
Sci., 91, 680–697, https://doi.org/10.1007/s00531-001-0238-7, 2002.
Sveinbjörnsdóttir, Á.: Composition of geothermal minerals from
saline and dilute fluids–Krafla and Reykjanes, Iceland, Lithos, 27, 301–315, https://doi.org/10.1016/0024-4937(91)90005-6,
1992.
Tanikawa, W. and Shimamoto, T.: Comparison of Klinkenberg-corrected gas
permeability and water permeability in sedimentary rocks, Int. J. Rock Mech.
Min. Sci., 46, 229–238, https://doi.org/10.1016/j.ijrmms.2008.03.004, 2009.
Thien, B. M. J., Kosakowski, G., and Kulik, D. A.: Differential alteration
of basaltic lava flows and hyaloclastites in Icelandic hydrothermal systems,
Geotherm. Energy, 3, 11, https://doi.org/10.1186/s40517-015-0031-7, 2015.
Thompson, A. B.: Flow and focusing of metamorphic fluids, in: Fluid Flow and
Transport in Rocks, edited by: Jamtveit, B. and Yardley, B. W. D., Springer Dordrecht, 297–314, https://doi.org/10.1007/978-94-009-1533-6_17, 1997.
Thorpe, M. T., Hurowitz, J. A., and Dehouck, E.: Sediment geochemistry and
mineralogy from a glacial terrain river system in southwest Iceland,
Geochim. Cosmochim. Ac., 263, 140–166,
https://doi.org/10.1016/j.gca.2019.08.003, 2019.
Ulusay, R. and Hudson, J. A. (Eds.): The complete ISRM suggested methods for rock
characterization, testing and monitoring: 1974–2006, International Society for Rock Mechanics Turkish National Group, International Society for Rock Mechanics, https://doi.org/10.1007/978-3-319-07713-0, 2007.
Villeneuve, M. Kennedy, B., Gravley, D., Mordensky, S., Heap, M. J.,
Siratovich, P., Wyering, L., and Cant, J.: Characteristics of altered
volcanic rocks in geothermal reservoirs, in: Rock Mechanics for Natural
Resources and Infrastructure Development, edited by: da Fontoura, S. A. B.,
Rocca, R. J., and Mendoza, J. F. P., CRC Press,
https://doi.org/10.1201/9780367823177, 2019.
Vinciguerra, S., Trovato, C., Meredith, P. G., and Benson, P. M.: Relating
seismic velocities, thermal cracking and permeability in Mt. Etna and
Iceland basalts, Int. J. Rock Mech. Min. Sci., 42, 900–910,
https://doi.org/10.1016/j.ijrmms.2005.05.022, 2005.
Vinegar, H. J. and Waxman, M. H.: Induced polarization of shaly sands, Geophysics, 49, 1267–1287, https://doi.org/10.1190/1.1441755, 1984.
Wadsworth, F. B., Vasseur, J., Scheu, B., Kendrick, J. E., Lavallée, Y.,
and Dingwell, D. B.: Universal scaling of fluid permeability during volcanic
welding and sediment diagenesis, Geology, 44, 219–222,
https://doi.org/10.1130/G37559.1, 2016.
Walker, G. P. L.: Geology of the Reydarfjördur area, Eastern Iceland,
Quarterly Journal of the Geological Society of London, 114, 367–391,
https://doi.org/10.1144/gsjgs.114.1.0367, 1958.
Walker, G. P. L.: Zeolite zones and dike distribution in relation to the
structure of the basalts of eastern Iceland, J. Geol., 68, 515–528, 1960.
Walker, G. P. L.: The Breiddalur central volcano, eastern Iceland, Q. J.
Geol. Soc., 119, 29–63, https://doi.org/10.1144/gsjgs.119.1.0029, 1963.
Walker, G. P. L.: Eruptive Mechanisms in Iceland. Geodynamics of Iceland and
the North Atlantic Area, edited by: Kristjansson, L., Springer Netherlands,
Dordrecht, 189–201, https://doi.org/10.1007/978-94-010-2271-2_13, 1974.
Waxman, M. H. and Smits, L. J. M: Electrical conductivities in oil-bearing
shaly sands, Soc. Petrol. Eng. J., 8, 107–122, 1968.
Weaver, J., Eggertsson, G. H., Utley, J. E. P., Wallace, P. A., Lamur, A.,
Kendrick, J. E., Tuffen, H., Markússon, S. H., and Lavallée, Y.:
Thermal liability of hyaloclastite in the Krafla geothermal reservoir,
Iceland: The impact of phyllosilicates on permeability and rock strength,
Geofluids, 2020, 9057193, https://doi.org/10.1155/2020/9057193, 2020.
Weinert, S., Bär, K., and Sass, I.: Database of petrophysical properties of the Mid-German Crystalline Rise, Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, 2021.
Weydt, L. M., Ramírez-Guzmán, Á. A., Pola, A., Lepillier, B., Kummerow, J., Mandrone, G., Comina, C., Deb, P., Norini, G., Gonzalez-Partida, E., Avellán, D. R., Macías, J. L., Bär, K., and Sass, I.: Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico), Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, 2021.
Weydt, L. M., Bär, K., and Sass, I.: Petrophysical characterization of
the Los Humeros geothermal field (Mexico): from outcrop to parametrization
of a 3D geological model, Geotherm. Energy, 10, 5,
https://doi.org/10.1186/s40517-022-00212-8, 2022.
Wolff-Boenisch, D., Gislason, S. R., and Oelkers, E. H.: The effect of
crystallinity on dissolution rates and CO2 consumption capacity of
silicates, Geochim. Cosmochim. Ac. 70, 858–870,
https://doi.org/10.1016/j.gca.2005.10.016, 2006.
Wright, H. M. N., Cashman, K. V, Gottesfeld, E. H., and Roberts, J. J.: Pore
structure of volcanic clasts: Measurements of permeability and electrical
conductivity, Earth Planet. Sc. Lett., 280, 93–104,
https://doi.org/10.1016/j.epsl.2009.01.023, 2009.
Wyering, L. D., Villeneuve, M. C., Wallis, I. C., Siratovich, P. A.,
Kennedy, B. M., Gravley, D. M., and Cant, J. L.: Mechanical and physical
properties of hydrothermally altered rocks, Taupo Volcanic Zone, New
Zealand, J. Volcanol. Geoth. Res., 288, 76–93,
https://doi.org/10.1016/j.jvolgeores.2014.10.008, 2014.
Yokoyama, T. and Takeuchi, S.: Porosimetry of vesicular volcanic products by
a water-expulsion method and the relationship of pore characteristics to
permeability, J. Geophys. Res.-Sol. Ea., 114, B02201,
https://doi.org/10.1029/2008JB005758, 2009.
Zeng, Z. and Grigg, R.: A Criterion for Non-Darcy Flow in Porous Media,
Transp. Porous Media, 63, 57–69, https://doi.org/10.1007/s11242-005-2720-3,
2006.
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical, and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, these data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Rock properties such as porosity and permeability play an important role in many geological...
Altmetrics
Final-revised paper
Preprint