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Abstract. The Valgarður database is a compilation of data describing the physical and geochemical properties of
Icelandic rocks. The dataset comprises 1166 samples obtained from fossil and active geothermal systems as well
as from relatively fresh volcanic rocks erupted in subaerial or subaqueous environments. The database includes
petrophysical properties (connected and total porosity, grain density, permeability, electrical resistivity, acoustic
velocities, rock strength, and thermal conductivity) as well as mineralogical and geochemical data obtained by
point counting, X-ray fluorescence (XRF), quantitative X-ray diffraction (XRD), and cation exchange capacity
(CEC) analyses. The database may be accessed at https://doi.org/10.5281/zenodo.6980231 (Scott et al., 2022a).
We present the database and use it to characterize the relationship between lithology, alteration, and petrophysical
properties. The motivation behind this database is to (i) aid in the interpretation of geophysical data, including
uncertainty estimations; (ii) facilitate the parameterization of numerical reservoir models; and (iii) improve the
understanding of the relationship between rock type, hydrothermal alteration, and petrophysical properties.

1 Introduction

The physical properties of igneous and volcanic rocks ex-
ert a first-order control on a wide range of geological pro-
cesses. Rock properties such as porosity and permeability
reflect magmatic degassing, eruptive conditions, and envi-
ronmental conditions related to tectonics, alteration, exhuma-
tion, and weathering (Petford, 2003; Ceryan et al., 2008; Pola
et al., 2012, 2014; Schön, 2015; Colombier et al., 2017; Vil-
leneuve et al., 2019). Variability in the distribution of pore
space, fractures, and minerals strongly influences the sus-
ceptibility of rock to hydrothermal alteration, which can pro-
duce strong changes in mechanical and physical properties

(Browne, 1978; Thompson, 1997; Saripalli et al., 2001; Dob-
son et al., 2003; Cox, 2005; Franzson et al., 2008; Frolova
et al., 2014; Siratovich et al., 2014; Wyering et al., 2014;
Sanchez-Alfaro et al., 2016; Heap et al., 2017a; Morden-
sky et al., 2018; Cant et al., 2018; Navelot et al., 2018;
Heap et al., 2020a, 2022a; Nicolas et al., 2020; Weydt et al.,
2022). Due to the natural heterogeneity in rock properties,
constraining the quantitative relationships between different
petrophysical properties and inferring the underlying causes
of variability may require extensive petrophysical and miner-
alogical databases amenable to statistical analysis (Aladejare
and Wang, 2017; Asem and Gardoni, 2021). In recent years,
a growing number of databases providing detailed petrophys-
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ical (Bär et al., 2020; Weinert et al., 2021; Weydt et al.,
2021; Heap and Violay, 2021) and geochemical (Gard et al.,
2019; Cole et al., 2022; Harðardóttir et al., 2022) data have
been published. Such data can be used to build an under-
standing of volcanic eruption risks (Heap et al., 2015, 2021,
2022b), geothermal resources (Siratovich et al., 2014; Heap
et al., 2017b, 2020a; Scott et al., 2022a), surface deforma-
tion (Heap et al., 2020b), silicate weathering (Cole et al.,
2022), and seismicity (Heap et al., 2015, 2022b; Meller and
Ledésert, 2017; Heap and Violay, 2021).

Basalt is the most common rock type exposed on the sur-
face of the Earth if the area of the ocean floor is included.
Owing to the high reactivity of basaltic rocks during surface
weathering and water–rock interaction (Gíslason and Eug-
ster, 1987; Stefánsson and Gíslason, 2001; Wolff-Boenisch et
al., 2006), basalt plays a major role in the global carbon cy-
cle (Dessert et al., 2003). Accordingly, basaltic rocks are the
main target rocks for carbon sequestration efforts involving
natural mineral carbonation (Snæbjörnsdóttir et al., 2020).
However, compared with sedimentary rocks, which consti-
tute the major source rocks for fossil fuels, and granitic rocks,
which comprise much of the continental crust, the petrophys-
ical properties of basaltic rocks are less well characterized
(Heap and Violay, 2021).

Iceland, which is dominantly composed of basalt be-
cause of its location astride the Mid-Atlantic Ridge, hosts a
large number (> 30) of active volcanic systems and associ-
ated geothermal systems (Arnórsson, 1995). With continued
spreading of the mid-ocean ridge, volcanic systems migrate
out of the zone of active volcanism and undergo exhumation
and erosion (Walker, 1963; Böðvarsson and Walker, 1964;
Pálmason, 1980), exposing altered rocks and intrusive heat
sources of so-called “fossil” geothermal systems at the sur-
face (Friðleifsson, 1983b, 1984; Burchardt and Gudmunds-
son, 2009; Liotta et al., 2020). As a result of hydrothermal
alteration at elevated temperatures, these rocks may show
complete replacement of primary minerals by secondary al-
teration minerals (e.g., Franzson et al., 2008).

Iceland’s geology has been intensively studied. However,
publicly accessible datasets that provide petrophysical, geo-
chemical, and petrographic data for a given sample set and
additionally describe field relations are rare. Studies per-
formed by Orkustofnun (the National Energy Authority)
and Iceland GeoSurvey (ÍSOR) between 1970 and 2010 re-
sulted in an extensive dataset consisting of approximately
500 samples analyzed for total and connected porosity, per-
meability, chemical composition, and petrographic charac-
teristics, which was first released in the Valgarður1 database

1The database is named after Valgarður Stefánsson (1939–
2006), a reservoir physicist who was at the forefront of geother-
mal exploration in Iceland throughout his career at Orkustofnun.
His main geothermal research objective was to define geothermal
systems in terms of reservoir characteristics. Recognizing that a rel-
ative lack of petrophysical data hampered reliable reservoir mod-

(Orkustofnun, 2018). This dataset has been useful in elu-
cidating the interrelationship between porosity and perme-
ability (Sigurdsson and Stefansson, 1994; Sigurdsson et al.,
2000; Stefansson et al., 1997) as well as the relationship of
these physical properties to the degree of hydrothermal al-
teration (Gudmundsson et al., 1995; Franzson et al., 2001,
2008). These data have also been used to constrain the prior
rock property distributions assumed in Bayesian geophysical
inversions (Scott et al., 2019) and numerical reservoir mod-
els (Scott et al., 2022b). Here, we introduce an updated and
expanded version of the database. The goal of this contribu-
tion is to ensure that these data remain accessible to future
generations of geoscientists and reservoir engineers. In addi-
tion to helping constrain numerical models and geophysical
inversions, these data can be used to better understand the
interrelationship between lithology, hydrothermal alteration,
and petrophysics.

2 The structure and content of the database

Valgarður is a publicly accessible database containing petro-
physical as well as chemical and mineralogical analyses of
Icelandic rocks. Although many studies have investigated the
effect of elevated temperature and pressure on the petrophys-
ical properties of Icelandic rocks (e.g., Vinciguerra et al.,
2005; Jaya et al., 2010; Kristínsdóttir et al., 2010; Milsch
et al., 2010; Adelinet et al., 2010, 2013; Grab et al., 2015;
Eggertsson et al., 2020a, b; Nono et al., 2020; Kummerow et
al., 2020; Weaver et al., 2020; Heap and Violay, 2021), we
currently restrict the database to measurements under near-
ambient conditions in order to facilitate comparison between
the different studies and ensure consistency among the re-
ported data.

Sample collection involves drilling a ∼ 2.5 cm diameter
plug of variable length into a surface outcrop or section of
core (Fig. 1). Variability in the sample collection process and
analytical methods is to be expected given the long period
over which the underlying data comprising the database were
collected. During the assembly of the database, we sought to
ensure that the results of the different studies were reported in
a consistent manner. As different studies used different meth-
ods to analyze given petrophysical properties, each data point
is accompanied by a description of the methodology or the
origin of the data.

Table 1 shows a description of the sources of the data
for the database. The original 529 samples collected by
Orkustofnun and Iceland GeoSurvey (ÍSOR) between 1990
and 2010 that made up the first release of the Valgarður

eling, he instigated and headed a comprehensive petrophysical re-
search project to further reservoir modeling by combining petro-
physics, geology, alteration, and geochemistry. The rock samples
used for this research were largely taken at various erosional levels
of the Icelandic crust. Just over half of this database is derived from
this work.
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Figure 1. Photographs of sample collection: (a) basaltic intrusion (dolerite) located on in a quarry on the coast of Hvalfjörður (samples H-90
and H-91); (b) hyaloclastite tuff located in Námagill (sample G-24); (c) basaltic lava flow located in Kúludalsá, to the south of Akrafjall
(sample H-72); (d) hyaloclastite tuff breccia, showing embedded pillow basalt fragments (sample 170803-09). Panel (e) presents a spot core
drilled into larger core obtained from 131 m depth in borehole KH-1 in Krafla (sample L22); the rock is a lava flow altered to smectite–zeolite
facies, with vesicles filled mainly with quartz, zeolites, and calcite.

database mainly originate from hand-drilled cores taken at
the surface within the neovolcanic zone or at erosional sur-
faces in the older strata at various paleo-depths and alter-
ation stages (Sigurðsson and Stefánsson, 1994; Guðmunds-
son et al., 1995; Franzson et al., 2008; Friðleifsson and Vil-
mundardóttir, 1998; Franzson et al., 2011). In this release of
the database, we added data from 302 samples collected by
Orkustofnun between 1970 and 1980 (Pálsson, 1972; Páls-
son et al., 1984), 161 samples from downhole cores obtained
from active geothermal systems (Flóvenz et al., 2005; Franz-
son and Tulinius, 1999; Bär et al., 2020; Lévy et al., 2018,
2019a, 2019b, 2020a, 2020b; Gibert et al., 2020; Nono et
al., 2020), 92 samples obtained from boreholes drilled dur-
ing evaluation of a hydropower project in the Búðarháls area
(Árngrímsson and Gunnarsson, 2009), 31 new analyses from
borehole samples from the Þeistareykir geothermal area, and
3 surface samples from the Austurhorn gabbro.

To facilitate simple and user-friendly handling, the
database is provided in “flat” format (one row per sample)
rather than “stacked” format (one row per measurement). The
main Excel file is divided into two worksheets:

– petrophysical properties;

– mineralogical and geochemical properties.

The first and primary table reports measurements of petro-
physical properties, including porosity, grain density, per-
meability, electrical resistivity, acoustic velocities, rock
strength, and thermal conductivity performed under near-
ambient conditions. This table provides lithologic character-
ization, including detailed sample descriptions in both Ice-
landic and English, and description of the alteration zone.
This table also reports detailed sample metadata, including
the sample type (surface or borehole) and the date and loca-
tion of sample collection. Following the example of Bär et
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al. (2020), we provide information about how each measure-
ment was acquired in a “Remarks” column adjacent to the
reported value and set the fill color of cells based on the type
of data contained in the cell (e.g., cells listing the primary
and secondary references are colored yellow, cells contain-
ing sample metadata are colored blue, and cells related to
lithological characterization are colored orange).

The second table reports geochemical and mineralogical
data. The data reported on this worksheet include petro-
graphic observations (point counting on thin sections), bulk
rock geochemical analyses derived from X-ray fluorescence
(XRF) analyses, or quantitative mineralogical assessments
using X-ray diffraction (XRD). Although many studies have
investigated the geochemistry and petrology of Icelandic
rocks (e.g., Sigmarsson and Steinthórsson, 2007; Sigmarsson
et al., 2008) and much of the available data have been com-
piled into a publicly accessible database (Harðardóttir et al.,
2022), we restrict the scope of the database and provide geo-
chemical and mineralogical data for samples that also have
petrophysical properties given in the first table.

In addition, we provide the following two additional files
in the repository:

1. A ZIP file that contains photographs of many of the
sampling sites. A file listing the names of files that cor-
respond to the sample IDs is also provided in the repos-
itory. These photographs have been included with the
database to facilitate future investigations in the study
areas.

2. An extended references worksheet listing all of the ref-
erences referred to as primary or secondary references
in the database.

2.1 Sample ID and references

The order in which samples are presented in the database is
approximately chronological, based on the date of the refer-
ence and the order of the sample numbers within the refer-
ence. The sample ID is equivalent to the reported sample ID
in the primary reference. Primary references indicate where
the data were first published and/or best documented; sec-
ondary references are also given if the data were reported or
used in further studies or, in the case of borehole samples,
describe core logs reported after the drilling of the well. Ref-
erences that are not cited in this text but are cited in one of
these columns are described in the references worksheet pro-
vided in the Excel database.

2.2 Location coordinates and description

A description of the sampling location is available for all
samples. The location description is provided in Icelandic
or English and is reported according to a geographic feature
(e.g., mountain, lake, or stream) or village/town. In the case
of core samples, the name of the geothermal field and well

from which the sample is obtained is given. Precise location
coordinates describing the location of the samples are gener-
ally only available for samples collected after ca. 1995. For
samples without location coordinates given in the primary
reference (Pálsson, 1972, 1984), an approximate sampling
location was estimated based on the sample location descrip-
tion. Therefore, there is significant uncertainty (up to 0.5 km
or more) with respect to the location of samples collected be-
fore 1995. For many of the samples, photographs were taken
that show the location and the geological features in some de-
tail (Fig. 1). These photographs are provided in a supplement
to the database.

The latitude and longitude of the sampling point at the sur-
face in decimal degrees is reported according to the WGS84
reference system as well as in projected coordinates in IS-
NET93, with the latter being widely used in Iceland. The el-
evation is given in meters above sea level (m a.s.l.) and was
obtained using the Google Maps Elevation Service when not
provided in the primary reference. Borehole samples show
the coordinates at the wellhead and an accompanying depth
(in m). The uncertainty in the elevation and depth coordinates
is estimated to be on the order of 1–10 m for most samples,
although the uncertainty is significantly greater (0.1–0.5 km)
for samples collected prior to 1990 (Pálsson, 1972, 1984).

Figure 2 shows the locations of all of the obtained surface
and borehole samples. There is a greater abundance of sam-
ples from the southwest of Iceland, including the area around
Reykjavik, Akranes, Borganes, and the Reykjanes Penin-
sula. Many of the samples were taken at deep erosional lev-
els within fossil geothermal systems, including the Geitafell
central volcano located in the Hornafjörður region in the
southeast (Friðleifsson, 1983a, b, 1984), the Hafnarfjall–
Skarðsheiði central volcano located in the west (Franzson,
1978), and the Esja volcanic region located close to Reyk-
javik (Friðleifsson, 1973). There are several surface sam-
ples of altered volcanic rocks collected from active geother-
mal areas, including the Reykjanes Peninsula (Svartsengi,
Krýsuvík, and Reykjanes), the Hengill region, and Land-
mannalaugar. Borehole samples are available from the ma-
jor active geothermal areas (Hengill, Reykjanes, Krafla, and
Þeistareykir) as well as from several wells drilled outside of
thermal areas during the evaluation of hydropower projects
in Fljótsdalshreppur and Hrauneyjar (Pálsson, 1972, 1984;
Arngrímsson and Gunnarsson, 2009).

2.3 Rock-type characterization

The sample description provides a summary of characteris-
tics on the scale of the hand sample, including but not lim-
ited to grain size; color; vesicle size; the presence of lay-
ering, fractures, joints, and fissures; and relevance to other
samples. Sample descriptions that were originally provided
only in Icelandic were translated into English and are listed
in separate columns. The level of sample description detail
varies among the different studies. Each sample is assigned
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Table 1. Description of sources of data comprising the Valgarður database.

References Description No. of
samples

Pálsson (1972); Pálsson et al. (1984); Friðleifs-
son (1973, 1975, 1978)

These sources comprise early studies of petrophysical properties
(grain density, connected and total porosity). They mainly comprise
samples obtained at the surface or from shallow boreholes. These
works offer scant description of geology or alteration; samples are
described as “Unaltered” or “Altered”, rather than an alteration zone
as listed in Table 3.

339

Sigurðsson and Stefánsson (1994, 2002); Guð-
mundsson et al. (1995); Sigurðsson (1998a, b);
Sigurðsson et al. (2000); Franzson et al. (1997,
2001, 2008)

These sources are systematic studies of rock properties in fossil
and active geothermal systems. Measurements include petrophysical
(grain density, total/connected porosity, permeability) as well as geo-
chemical and petrographic data.

351

Friðleifsson and Vilmundardóttir (1998);
Guðlaugsson (2000)

These sources entail detailed study of a single lava flow in the Reyk-
javik area. Samples were taken at different depth levels within the
lava flow to explore variation in the petrophysical properties. Mea-
surements include grain density, total/connected porosity, permeabil-
ity, whole-rock geochemistry, acoustic velocities, thermal properties,
and petrographic observations.

85

Franzson and Tulinius (1999) This source comprises borehole samples from ÖJ-1 (in Ölkelduháls
in the Hengill area). Samples were obtained from altered hyaloclastite
tuff at ∼ 800 m depth. Measurements include electrical properties as
well as grain density, total/connected porosity, permeability, whole-
rock geochemistry, and point counting.

14

Frolova et al. (2005); Franzson et al. (2010,
2011); Frolova (2010)

These sources detail hyaloclastite tuff samples that were mainly ob-
tained from surface outcrops in southwest Iceland. Most samples show
a low degree of alteration. Measurements include grain density, total/-
connected porosity, permeability, whole-rock geochemistry, acoustic
velocities, and mechanical properties.

101

Flóvenz et al. (2005) This source entails an investigation of the effect of alteration on the
electrical properties of geothermal reservoir rocks. Borehole samples
were obtained from Krafla, Hengill, and Reykjanes. Measurements
include electrical acoustic properties as well as grain density and con-
nected porosity.

12

Arngrímsson and Gunnarsson (2009); Foged and
Andreassen (2016)

These sources present borehole samples retrieved during an evaluation
of tunneling and hydropower activities in the Búðarháls area. Several
samples are relatively soft silicic, altered, and sedimentary rock for-
mations. Measurements include grain density and connected poros-
ity as well as mechanical data from unconfined compression, triaxial
compression, and Brazilian disk tests.

92

Nono et al. (2020); Bär et al. (2020) These sources present rock properties in fossil and active geothermal
systems conducted as part of the IMAGE project. Measurements in-
clude grain density, connected porosity and permeability, and electri-
cal and acoustic properties.

20

Lévy et al. (2018, 2019a, b, 2020a, b); Escobedo
(2017); Escobedo et al. (2021)

These sources discuss Krafla core samples from research wells KH-
1, KH-3, KH-5, and KH-6. Measurements include connected porosity
and grain density (triple weighting), permeability, electrical proper-
ties, and acoustic velocities. Quantitative mineral characterization is
carried out using XRD.

94
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Table 1. Continued.

References Description No. of
samples

Gibert et al. (2020) This source obtained samples from IDDP-2 at∼ 3.6–4.6 km depth.
Measurements include grain density and connected porosity (triple
weighting) as well as electrical conductivity and acoustic proper-
ties.

20

Present study This study outlines borehole samples from well ÞR-07 in
Þeistareykir. Measurements include connected porosity, grain den-
sity (triple weighting), electrical properties, and acoustic velocities.
Quantitative mineral characterization is carried out using XRD.

31

Present study This work details surface samples from the Austurhorn gabbro in
southeast Iceland. Measurements include connected porosity, grain
density (triple weighting), electrical properties, and acoustic veloc-
ities.

3

Figure 2. Map of Iceland showing the locations of the surface (black triangles) and borehole (red triangles) samples comprising the database.
Volcanic systems are outlined using thick red lines, the associated fissure swarms are highlighted in light red, and roads are shown as thin
black lines. The locations mentioned in the text are as follows: Ak – Akranes, Au – Austurhorn, Es – Eja, Flj – Fljótsdalshreppur, Gf –
Geitafell, He – Hengill, Hei – Heimaey, Hr – Hrauneyjar, Hv – Hvalfjörður, Kr – Krafla, Kv – Krýsuvík, La – Landmannalaugar, Re –
Reykjanes, Sk – Skarðsheiði, Sn – Snæfellsness, Su – Surtsey, Sv – Svartsengi, and Þr – Þeistareykir. The figure incorporates data from the
Icelandic Institute of Natural History (IINH, https://www.ni.is/en/research/geoinformation/metadata-and-downloads, last access: 14 March
2023).

to 1 of 8 broad lithological categories and to 24 more detailed
lithological identifiers, following the classification scheme
of Guðmundsson et al. (1995) (Table 2). Lithological identi-
fiers were determined based on the interpretation of the geo-
logical context and visual characteristics, rather than whole-

rock chemical analyses. For borehole samples, the sample
description is obtained from the description of the core log at
the logged depth.

Among extrusive basaltic volcanic rocks, one key dis-
tinction is between lava flows, which are erupted subaeri-
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Table 2. List of lithological identifiers, detailed description of rock types covered by that identifier, and the number of samples in the database
corresponding to each lithology.

Broad lithological category Lithological identifier No. of samples

Lava flow Flow-top breccia 34
Fine–medium-grained basaltic lava 247
Medium–coarse-grained basaltic lava 105
Porphyritic basaltic lava 109

Total 495

Hyaloclastite Hyaloclastite breccia 77
Hyaloclastite tuff 178
Hyaloclastite sediment 12

Total 267

Pillow basalt Pillow basalt 42
Silicic volcanic Rhyolite lava 22

Rhyolite hyaloclastite 35
Rhyolite tuff 10
Rhyolite breccia 22
Ignimbrite 7

Total 96

Intermediate volcanic Basaltic andesite 6
Icelandite (andesite) 13
Dacite 2
Total 21

Basaltic intrusion Fine–medium-grained basaltic intrusion 54
Medium–coarse-grained basaltic intrusion 53
Porphyritic basaltic intrusion 16
Gabbro 16

Total 139

Silicic intrusion Rhyolite dyke 17
Granophyre 7

Total 24

Intermediate intrusion Diorite 6

Sediment Sediment 66

ally, and hyaloclastites, which are often erupted subglacially
(e.g., Schopka et al., 2006) but may crystallize under a mix-
ture of subaqueous and partially subaerial conditions (Bergh
and Sigvaldason, 1991; Banik et al., 2013). While fresh
olivine basaltic lava flows are referred to as grágrýti in Ice-
landic, tholeiitic lava flows, which evolved from more mafic
olivine basalt, are often referred to as blágrýti. The latter
usually show flow-banding and are finer grained than the
olivine basalts. It has been customary in Iceland to clas-
sify lava flows based on crystal size (e.g., Guðmundsson
et al., 1995); in comparison to the classification scheme
of Walker (1958), the lithological identifier “fine–medium-
grained basaltic lava” generally corresponds to the “tholei-
itic basalt” type, whereas “medium–coarse-grained basaltic

lava” generally corresponds to the “olivine basalt” type. Por-
phyritic basalts show macroscopic (up to 2 cm in diameter)
plagioclase phenocrysts, with less abundant pyroxene and
olivine phenocrysts (Fig. 1c). Basaltic lava flows are often
vesicular, especially towards the tops of the individual lava
flow units, where they develop a thick surface rubble or a
ropy texture. Such units are referred to as flow-top breccias
(kargi) or entablature/cube-jointed basalt (kubbaberg), which
often shows irregular columnar jointing.

Hyaloclastite formations often contain denser pillows or
pillow fragments embedded in a tuff matrix (Fig. 1d). Hyalo-
clastite (móberg) contains a higher proportion of glassy ma-
terial compared with lava flows. Hyaloclastite breccias and
pillow basalts show significant heterogeneity on the scale of
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centimeters to meters. To maximize the homogeneity among
the cores drilled for a given rock sample, hyaloclastite sam-
ples were obtained from the dominantly glass-rich tuff ma-
trix (e.g., Fig. 1d). Due to the strong contrast in the physical
properties of the pillow basalt fragments compared with the
tuffaceous matrix, pillow basalts comprise a separate litho-
logical category.

Silicic volcanic rocks are often found as 50–100 m thick
flows in the vicinity of volcanic vents. Silicic volcanic prod-
ucts include vesicular glassy pyroclastics such as pumice,
obsidian (which forms from rapid cooling at the margins
of rhyolitic lava flows), perlite (a glassy variety of rhyolite
with high water content), and ignimbrite (which forms during
explosive eruptions when volcanic material cascades down
slope as pyroclastic density currents). Intermediate volcanic
rocks include basaltic andesite, icelandite (which is consid-
ered to be interchangeable with andesite), and dacite.

Among intrusive rock types, basaltic intrusions are dis-
tinguished from silicic or intermediate intrusions. Basaltic
intrusions include both gabbro, which crystallizes in larger
subsurface magma bodies, and dolerite (sometimes referred
to as diabase), which is found in basaltic dykes, including
cone sheets. Silicic intrusions include rhyolite dykes and
granophyre, with the latter usually showing fine-scale inter-
growth of quartz and feldspar, as well as microgranite, which
lacks granophyric intergrowths. Intermediate intrusive rocks
including diorite are relatively rare. Note that intrusions may
be of very variable age in relation to the geothermal system
they intrude.

While many volcaniclastic rocks (e.g., hyaloclastite) show
sedimentary textures related to deposition in a subaqueous
or subaerial environment (Bergh and Sigvaldason, 1991;
Schopka et al., 2006; Banik et al., 2013; Greenfield et al.,
2020), they are not referred to as sedimentary rocks in the
database. Examples of sedimentary rocks found in Iceland
include clay-rich lacustrine sediments, glacial tillite and con-
glomerates, sandstone, and interbasaltic beds (e.g., Bennet et
al., 2000; Arnalds et al., 2001; Thorpe et al., 2019; Eiriksson
and Simonarson, 2021). However, distinction between these
rock types is not made in the database (Table 2) due to the
emphasis on volcanic and igneous rocks. It should be noted,
however, that sedimentary grains are almost exclusively of
igneous origin.

In addition to the lithological classification, each sam-
ple is assigned to one of the main alteration zones identi-
fied in Icelandic rocks (Table 3). Most of alteration min-
erals in Iceland fall into the Ca2+ (stilbite–heulandite–
laumontite–wairakite) and Ca2+

+Mg2+
+Fe2+ (smectite–

chlorite–epidote–actinolite) series of minerals (Walker,
1960, 1974; Kristmannsdóttir and Tómasson, 1978; Krist-
mannsdóttir, 1979; Lonker et al., 1993; Franzson and
Gunnlaugsson, 2020; Escobedo et al., 2021). With increasing
depth and temperature, the alteration zones are the smectite–
zeolite zone, the mixed-layer clay zone, the chlorite–epidote
zone, the epidote–actinolite zone, and the amphibole zone

(Kristmannsdóttir, 1979; Sveinbjörnsdóttir, 1992). In some
studies (e.g., Franzson et al., 2008), further distinction is
made between a chlorite zone and the chlorite–epidote zone;
for this study, we combine these two zones for simplic-
ity and to facilitate comparison among the different stud-
ies. In addition, we combine the amphibole zone with the
epidote–actinolite zone. Although rocks without obvious al-
teration mineralogy are described as unaltered, basaltic glass
has undergone some extent of palagonitization. Palagoniti-
zation occurs as a posteruptive process entailing the hydra-
tion of basaltic glass and replacement by secondary miner-
als, including zeolites and smectites (Stroncik and Schminke,
2002). Although this is a type of alteration process, it does
not correspond to a specific alteration zone as observed in
active and fossil geothermal systems. Variable porosity and
permeability have a pronounced effect on the alteration in-
tensity of the rock.

3 Data sources

Measurements under ambient conditions (room temperature
and atmospheric pressure) include grain density, porosity,
electrical conductivity, and acoustic velocities. Permeability
measurements were made under a variable but low confining
pressure (< 5 MPa). Table 4 shows the number of samples
with data corresponding to the different petrophysical and
mineralogical properties. Only a few samples were analyzed
for mechanical properties. Depending on the source of the
data, different analytical techniques were used to measure a
given petrophysical property. This can make it challenging to
report the measured quantities in a consistent manner.

3.1 Porosity and grain density

With respect to porosity, one can differentiate between con-
nected porosity (the fraction of bulk volume occupied by
pore space connected to the outside surface of the sample;
this is also referred to as “effective porosity”) and total poros-
ity (the fraction of bulk volume occupied by pore space). In
igneous and volcanic rocks, gas bubbles may form uncon-
nected pores, particularly when the volatile content is low,
and porosity may be largely unconnected when porosity is
less than ∼ 0.1 (Colombier et al., 2017). Different analyt-
ical methods are available to quantify porosity; among the
most widely used methods are gas expansion (He pycnom-
etry) and saturation/imbibition methods (Anovitz and Cole,
2015). While the measurement of connected porosity using
methods such as triple weighting is nondestructive, determi-
nation of total porosity requires crushing the sample to mea-
sure the density of the solid material via conventional meth-
ods such as Hg displacement.

Gas expansion methods are based on Boyle’s law and the
ideal gas law. A gas, usually He due to its ability to penetrate
narrow pore throats (> 1 nm; Anovitz and Cole, 2015), ex-
pands isothermally from a reference cell at a known pressure
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Table 3. Description of the alteration zones and the number of samples in the database corresponding to each alteration zone.

Alteration zone Description Number of samples

Unaltered This zone contains rocks without obvious alter-
ation mineralogy; most glass-rich hyaloclastite
rocks have undergone palagonitization but are still
classified as unaltered.

510

Smectite–zeolite In this zone, basaltic glass and olivine have been
replaced by smectite clay (mostly saponite). Ze-
olite minerals precipitate in open vesicles but are
also found dispersed in replaced glass. These min-
erals occur at temperatures below 200 ◦C and of-
ten coexists with chalcedony.

262

Mixed-layer clay This zone displays an interlaying of smectite, and
chlorite occurs to an increasing extent at 200–
230 ◦C. It also shows the onset of plagioclase al-
teration. In a more acidic environment, mixed-
layer smectite–illite is observed but is rare.

88

Chlorite–epidote Chlorite is the dominant sheet silicate at rock tem-
peratures > 230 ◦C. Epidote occurs sporadically
> 240 ◦C but may precipitate in larger quantities
at high permeability. This zone often coexists with
prehnite and wairakite.

159

Epidote–actinolite This zone presents a high-grade greenschist facies
assemblage. Actinolite forms in fine-grained ag-
gregates along with chlorite and epidote at temper-
atures> 280 ◦C. This zone may include secondary
pyroxenes or feldspars (albite) at higher tempera-
tures; it also includes wollastonite.

113

Table 4. Number of samples with both petrophysical and mineralogical data for different properties in the database. Bold text indicates the
number of samples analyzed for a single property. XRF denotes X-ray fluorescence for bulk whole-rock geochemistry, and XRD denotes
X-ray diffraction for quantitative mineralogical composition.

Connected Total Point Grain Gas Liquid Intrin. Elec. XRF XRD Acoustic Strength Thermal
porosity porosity counting density perm. perm. perm. resist. veloc. conduct.

Connected porosity 1160 512 356 1143 501 102 498 176 349 124 293 91 54
Total porosity 512 514 158 514 130 36 128 9 191 0 0 0 2
Point counting 356 158 361 355 289 41 287 10 288 0 135 54 53
Grain density 1143 514 355 1144 496 97 492 177 342 120 287 91 54
Gas permeability 501 130 289 499 501 87 497 55 263 40 186 53 54
Liquid permeability 102 36 41 97 87 102 87 51 45 45 47 0 2
Intrinsic permeability 498 128 287 492 497 87 498 55 260 41 186 53 53
Electrical resistivity 176 9 10 177 55 51 55 177 10 119 146 0 2
XRF 349 191 288 342 263 45 260 10 354 0 75 47 15
XRD 124 0 0 120 40 45 41 119 0 124 124 0 0
Acoustic velocities 293 0 135 287 186 47 186 146 75 124 295 54 52
Strength 91 0 54 91 53 0 53 0 47 0 54 92 2
Thermal conductivity 54 2 53 54 54 2 53 2 15 0 52 2 54

into the sample container. The resulting equilibrium pressure
reflects the volume of the pores into which the He gas has
penetrated (calculated using Boyle’s law). As the bulk vol-
ume of the sample Vbulk is known based on the geometry of
the sample, connected porosity can be calculated following

Eq. (1):

φconnected =
Vpore

Vbulk
, (1)

where Vpore is the fraction of interconnected pore space.

https://doi.org/10.5194/essd-15-1165-2023 Earth Syst. Sci. Data, 15, 1165–1195, 2023



1174 S. W. Scott et al.: Valgarður: a database of the properties of Icelandic rocks

Saturation/imbibition methods are based on weighing a
dry sample prior to full saturation with a wetting fluid (Wdry),
after immersing the fluid in a saturating fluid for an extended
period (Wimmersed), and again after removing excess liquid
from the surface of the sample (Wsat). The porosity is then
given by Eq. (2):

φconnected =
Vbulk−Vmatrix

Vbulk

=
Vbulk− (Wdry− (Wimmersed−Wcrad)+Wcrad)/ρfluid

Vbulk
, (2)

where ρfluid is the density of the saturating fluid and Wcrad is
the weight of the cradle used to immerse the sample.

Connected porosities measured using gas expansion and
triple-weighing methods yield similar results, at least within
a margin of uncertainty of < 2 %–5 %. This is demonstrated
in Fig. 3a, which reports connected porosity data collected
by both methods on core samples from Krafla (Lévy et al.,
2018, 2020b). For gas expansion measurements, an addi-
tional source of uncertainty is related to the choice of the
saturating gas. Figure 3b compares connected porosity mea-
surements performed on a set of hyaloclastite samples using
either He (Franzson et al., 2011) or air (Frolova et al., 2005)
as the saturating gas and shows that the connected porosity
of samples measured using air is lower at low porosities and
higher at high porosities. While the former may be due to the
lesser ability of air to penetrate the microporosity, the latter
may result from the adsorption of water contained in the air
in the clay-rich, altered rock. An additional source of error is
that helium (or air) pycnometry requires the sample dimen-
sions, whereas the triple-weighting method only uses mea-
surements of weight. As laboratory measurements of weight
are often more accurate than measurements of length, this is
one advantage of the triple-weighting method over helium
pycnometry. However, repeat measurements of connected
porosity on different core plugs obtained from a given rock
outcrop (e.g., Fig. 1d) reveal that natural uncertainty in the
sampled rock can exceed 5 %–10 % (i.e., connected poros-
ity can range from 5 %–15 %). Therefore, for volcanic rocks
such as hyaloclastites or lava flows, which can show strong
gradients in petrophysical properties over distances < 1 m,
the uncertainty resulting from different measurement devices
and methods is likely less than (or comparable to) the natural
variability present in the rock.

All of the total porosity and most of the grain density data
reported in this database were determined by pulverizing the
sample and measuring the density of crushed materials us-
ing conventional techniques (e.g., Hg displacement). Total
porosity can be calculated following Eq. (3):

φtotal =
Vbulk−Vgrain

Vbulk
=
ρgrain− ρbulk

ρgrain
. (3)

As noted in Colombier et al. (2017), although accurate mea-
surement of the density of the solid, pore-free phase(s) in

the volcanic rock is required to calculate total porosity, het-
erogeneity in the phenocryst assemblage between clasts or
variations in bulk composition may be common. Grain den-
sity can also be approximated based on connected porosity
measurements from triple weighting following Eq. (4):

ρgrain,TW =
Wdry

Vmatrix
=

Wdry

Vbulk−
(Wsat−Wdry)

ρfluid

. (4)

However, if there is a significant fraction of unconnected
porosity, Eq. (4) will systematically overestimate grain den-
sity. Figure 4a shows that the distribution of the grain density
of smectite–zeolite altered lava flows is similar regardless of
whether it is measured using the Hg displacement (blue lines)
or triple-weighting (red lines) techniques. On the other hand,
for altered hyaloclastites (Fig. 4b), samples analyzed using
triple weighting (∼ 2.75 g cm−3) show significantly larger
average grain density than those analyzed using Hg displace-
ment (∼ 2.6 g cm−3). However, other factors might also ex-
plain this discrepancy, most notably that many of the sam-
ples shown in Fig. 4b analyzed using Hg displacement were
derived from surface outcrops, whereas those analyzed by
triple weighting were obtained from borehole samples in ac-
tive geothermal systems. Although these samples are in sim-
ilar alteration zones, rocks at depth are more compacted and
may contain a denser alteration mineral assemblage.

Porosity was also assessed in 352 samples by point count-
ing. In point counting, a thin section (around 30 µm thick)
of the sample was prepared, and a regular grid with a given
number of points (usually 200 or 1000 points) was arrayed
onto the thin section image. Identification of mineralogy or
pore space at each point was performed, with the different
studies applying different levels of classification between pri-
mary minerals, glass, pore space, and alteration minerals.
The primary porosity formed during magma emplacement
and cooling was estimated as the sum of remaining open-
space porosity in the rock as well as that of secondary alter-
ation minerals that have precipitated into vesicles (Petford,
2003). This technique does not measure the cross-sectional
area of microcracks but rather only identifies macroscopic
pores on the order of 1 mm or larger (Neuhoff et al., 1999;
Manning and Bird, 1995; Chayes, 1956). Although the con-
tribution of the latter to the porosity is often large, note that
distinction between open-space porosity created by posterup-
tive processes (fracturing/veining) was not made by all stud-
ies. Therefore, we estimate that the uncertainty of poros-
ity measurements by point counting is considerable (> 5 %–
10 %). Figure 5 shows that the remaining open-space poros-
ity measured by point counting is generally lower than that
obtained by gas expansion, particularly for altered, high-
porosity hyaloclastites, indicating the dominance of micro-
porosity on the total porosity. However, a significant number
of samples (∼ 50) had higher porosity recorded using pet-
rographic analysis than by gas expansion. As porosity and
permeability are scale dependent (Manning and Bird, 1995),
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Figure 3. Comparison of connected porosity measurements using different measurement techniques. Panel (a) displays the connected poros-
ity obtained by helium expansion versus the connected porosity measured using triple weighting; the data were derived from a subset of core
samples originating from Krafla (Lévy et al., 2018, 2020b). Panel (b) presents a comparison of the connected porosity measurements on
hyaloclastite tuffs using He or air as the saturating gas; the data are from Franzson et al. (2011).

Figure 4. Grain density obtained by mercury displacement (dashed blue lines) and triple weighting (dashed red lines) for (a) lava flows
and (b) hyaloclastites. All data are shown in gray, and a normal distribution fit to the data for each respective measurement technique is
shown using solid blue or solid red lines. Note that all of the samples for which grain density was measured by triple weighting were core
samples, whereas most of the samples for which grain density was measured using Hg displacement were surface samples. This could affect
the difference seen in panel (b).

such variability could also indicate natural heterogeneity in
the rock and the preparation of the thin section from a partic-
ularly compact or porous part of the material.

3.2 Permeability

Permeability is measured using a gas, usually helium or ar-
gon, or, more rarely, using water (Heap et al., 2018). Many
of the samples in Guðmundsson et al. (1995) were measured
at Core Laboratories (formerly Western Atlas Core Labora-
tories) using the CMS-300 device, which consists of a gas
cylinder with a known volume, a pressure sensor, and a core
holder that can be opened into a gas cylinder charged with
helium gas, generally up to 1.5 MPa, and the atmosphere.

While the permeability of the samples from Guðmundsson
et al. (1995) was measured using a low (< 4 MPa) confining
pressure, measurements performed on a few samples under
varying confining pressure levels showed little dependence
of the permeability on confining pressure (Johnson and Boit-
nott, 1998). Samples from Lévy et al. (2020b) were measured
at the University of Montpellier using a steady-state method
on cylindrical samples confined at a pressure of 4 MPa. A
constant argon pressure was imposed at the sample inlet, the
pressure at the sample outlet was maintained at 0.1 MPa, and
the argon flow rate was measured by a gas flowmeter. For
each sample, the argon pressure at the inlet was systemati-
cally varied from about 0.5 to 4 MPa to evaluate the intrinsic
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Figure 5. Remaining porosity estimated by point counting com-
pared with connected porosity measured using He pycnometry.

permeability as described below. For the water permeability
measurements, a servo-controlled pump maintained a con-
stant pore pressure, and the flow rate was determined using
the measured piston displacement. For samples with a per-
meability lower than 10−19 m2, a pulse decay method was
used (e.g., Brace et al., 1968).

As pressure at the sample inlet and outlet of the core is
known and the flow through the core is proportional to the
pressure drop, Darcy’s law is then used to calculate perme-
ability from the above quantities:

k =−
qµ

A
(

dp
dx

) , (5)

where k is the rock permeability, q is the volumetric flow
rate of the gas or liquid, µ is the viscosity of the fluid, A is
the cross-sectional area, and dp

dx quantifies the pressure drop
along the core.

When using gas or liquid to measure permeability in rock
samples, it is necessary to correct the measured permeabil-
ity for systematic measurement error resulting from the sam-
ple geometry and the properties of the fluid (Heap et al.,
2018). In low-permeability rocks, interactions between the
fluid molecules/atoms and the pore walls reduce resistance to
flow. Intrinsic permeability is calculated from measured gas
permeability at a range of gas pressures using the Klinken-
berg correction (Klinkenberg, 1941), which is based on the
following equation:

ki =
kg

(1+ b
pm

)
, (6)

where kg is the measured gas permeability calculated from
Eq. (5), pm is the average gas pressure at which kg is mea-
sured, and b is the Klinkenberg coefficient, taken as a con-
stant for a certain gas and a certain rock. The Klinken-
berg coefficient and intrinsic permeability ki are obtained
by plotting measured gas permeability at a range of pres-
sures against 1

pm
, with the slope corresponding to ki and

the y intercept b (when pm goes to infinity). The Klinken-
berg coefficient depends on various properties of the rock,
particularly the geometry of the pore space, and it is gener-
ally most significant in low-porosity, low-permeability rocks
(Filomena et al., 2014). As a result, the relative measure-
ment accuracy is greater (±5%) for high-permeability rocks
(≥ 10−14 m2) and reaches up to ±400% in low-permeability
rocks (≤ 10−16 m2). However, in high-permeability rocks,
turbulent flow regimes may develop, and Darcy’s law needs
to be modified to consider additional flow resistance result-
ing from inertial forces, as given by the second term in the
Forchheimer equation (Forchheimer, 1901; Zeng and Grigg,
2006):

dp
dx
=
µ

k

q

A
+β

( q
A

)2
. (7)

For the samples analyzed by Guðmundsson et al. (1995), the
inertial coefficient β was calculated for high-permeability (>
10−14 m2) samples using repeat measurements at different
flow rates. For the samples analyzed by Levy et al. (2018),
the Forchheimer correction was not applied; therefore, the
reported permeability may not be the actual rock permeabil-
ity. However, as many of these samples are low permeability
(< 10−15 m2), turbulent conditions are unlikely to develop,
and the Forchheimer correction is likely not significant (Heap
et al., 2018).

Measured permeabilities listed in the database range over
9 orders of magnitude, from∼ 10−20 to∼ 2×10−11 m2. Fig-
ure 6a shows that apparent permeability measured using air
generally exceeds that measured using water, often by sev-
eral orders of magnitude. While this difference is often at-
tributed to water adsorption on clays (see, e.g., Tanikawa and
Shimamoto, 2009), even in clay-free volcanic rocks, liquid
permeabilities can also be lower than gas permeabilities due
to water adsorption on narrow, tortuous microstructural ele-
ments (Heap et al., 2018). Measurements of air permeability
that are less than brine permeability are generally considered
unreliable. Figure 6b compares the air apparent permeabil-
ity and the intrinsic permeability, showing that the magni-
tude of the Klinkenberg correction increases with decreasing
permeability, consistent with increased gas slippage during
flow through microstructural elements in low-porosity, low-
permeability rock (Heap et al., 2018).

3.3 Electrical conductivity

Electrical conductivity and its inverse, electrical resistivity,
are intrinsic rock properties that measure the strength of the
material’s resistance to electrical current, as given by Ohm’s
law: R = U

I
, where R is resistance, U is voltage, and I is

current. When an alternating current flows through a ma-
terial, the electrical resistivity is characterized not only by
the ratio of the magnitude of current and voltage but also by
the difference in their phases, as expressed by the electrical
impedance, a complex number written as a function of angu-
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lar frequency ω and phase angle θ for sinusoidal current and
voltage as follows:

Z (ω)=
Uoe

i(ωt+θU )

Ioei(ωt+θu) = |Z (ω)|eiθ (ω)
= Z′ (ω)+ iZ′′ (ω) , (8)

where (Uo, θU ) and (Io, θI ) are the amplitudes and phases
of the sinusoidal voltage and current, respectively; t is time;
and θ (ω)= θI − θU is the frequency-dependent phase angle
(generally negative, corresponding to a phase delay of volt-
age relative to current). For sample plugs with a given length
L and cross-sectional area A, the electrical conductivity σ is
related to Z as follows:

σ (ω)= |σ (ω)|eiθ (ω)
= σ ′+ iσ ′′

=
Z′ (ω)
|Z (ω)|2

L

A
+
Z′′ (ω)
|Z (ω)|2

L

A
, (9)

where |σ | and θ are the frequency-dependent modulus and
phase angle of the complex conductivity, respectively, and
σ ′ and σ ′′ are the in-phase (real) and quadrature (imaginary)
parts of the complex conductivity, respectively.

The complex conductivity is obtained by measuring the
impedance spectrum of the sample over a frequency range
(generally 0.1 to 106 Hz). Flovenz et al. (2005) used a Zahner
IM6 electrochemical workstation, whereas Lévy et al. (2018,
2019a, b, 2020b) used a Solartron 1260 impedance me-
ter. Results show that there is a slight dependence of resis-
tivity on measurement frequency, particularly above 10 Hz
(Flovenz et al., 2005). Two types of sample-holders and con-
figurations were used: (1) the two-electrode setup, where the
sample is sandwiched between two metallic electrodes acting
as current and voltage electrodes, and (2) a four-electrode
setup (Vinegar and Waxman, 1984), where the voltage and
current electrodes are separated. In the latter, metallic (Ni, Pt,
Ag) electrodes are used to inject the current and nonpolariz-
able Ag/AgCl electrodes are used for voltage measurement.
Although the four-electrode setup improves the quality of the
conductivity spectra, especially below 10 kHz, the values ob-
tained by both setups are comparable at 1 kHz, where effects
of electrode polarization are negligible (Lévy et al., 2019b).

In rocks where free ions in pore water are the only charge
carriers, the in-phase conductivity of a volume of rock σbulk
is governed by Archie’s law:

σbulk =
σw

F
, (10)

where σw is the conductivity of the pore fluid and F is the
formation factor, representing the tortuosity of the current
path. While F is related to the porosity, the relationship is
more indeterminate in igneous rocks than in sedimentary
rocks (see, e.g., Lévy et al., 2018). In rocks containing clay
minerals, an additional term influences the rock conductivity,
and the simplest way of writing this additional term is given
by Rink and Schopper (1974):

σbulk =
σw

F
+ σs, (11)

where σs is the “surface” or “interface” conductivity, result-
ing from ion exchange with the solid matrix. More complex
equations also describe the contribution from clay minerals
(see, e.g., Waxman and Smits, 1968, and Lévy et al., 2018),
but this linear equation is often preferred. The formation fac-
tor and surface conductivity are typically determined by a
series of conductivity measurements on the same sample sat-
urated at different pore fluid salinities (conductivities). Un-
certainty estimations for the formation factor can be found in
Lévy et al. (2019b), including corresponding equations for
this uncertainty calculation.

Figure 7 shows an example of how measurements of elec-
trical conductivity vary as a function of the salinity of the
saturating fluid and the initial smectite content of the rock.
In Fig. 7, sample L22 corresponds to a lava flow altered to
smectite–zeolite facies alteration, whereas sample L48 corre-
sponds to a lava flow altered to chlorite–epidote facies alter-
ation. The higher smectite content in L22 results in a higher
cation exchange capacity (CEC; see below) compared with
L48. A higher CEC corresponds to an increasing role of sur-
face conduction, resulting from ion exchange reactions with
clays. The larger formation factor in L22 is explained by the
presence of smectite alteration minerals, which partially clog
the original pore network and prevent the diffusion of free
ions in the pore space by the fluid but also allow the efficient
conduction of electrical charge along the smectite clays.

For the samples analyzed by Franzson and Tulin-
ius (1999), resistivity was measured at only a single fluid
salinity, and an apparent formation factor Fapp was estimated
by 1

Fapp
=

σbulk
σfluid

. The apparent formation factor is equal or
close to the true formation factor if (i) there are no clay
minerals or (ii) the pore space is saturated with high-salinity
fluid (the contribution from free ions in the pore space largely
dominates that of clay minerals). However, when resistivity
measurements are carried out on samples that may contain
clay minerals and have been saturated with only one fluid
salinity, care should be taken when interpreting Fapp because
the contribution of surface conduction to the bulk conduc-
tivity will be significant for altered rocks, and these data
points are outliers compared with the samples analyzed by
Flovenz et al. (2005) and Lévy et al. (2018, 2019a, b, 2020b)
(Fig. 12b).

3.4 Petrographic and geochemical characterization

Four different methods are used to characterize the mineral-
ogy and geochemistry of the samples: (1) point counting by
petrographic observation, (2) XRF, (3) XRD, and (4) CEC.
The former two methods were used exclusively on the sam-
ples analyzed by Orkustofnun and Iceland GeoSurvey (Sig-
urðsson and Stefánsson, 1994; Guðmundsson et al., 1995;
Franzson et al., 2008, 20aa; Friðleifsson and Vilmundardót-
tir, 1998; Franzson and Tulinius, 1999); the latter two meth-
ods were used to assess the mineralogy in core samples from
Lévy et al. (2018, 2019a, b and 2020b).
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Figure 6. Permeability data: (a) a comparison of the liquid apparent permeability and the gas apparent permeability and (b) a comparison
of the gas apparent permeability and the intrinsic permeability; the difference between these two quantities mainly reflects the Klinkenberg
correction (see text).

Figure 7. Results from electrical measurements at 1 kHz versus
fluid conductivity for two samples from Lévy et al. (2018) with
different electrical properties. The formation factor (F ) and cation
exchange capacity (CEC) for the two samples are noted.

Point counting was used to quantify primary porosity,
i.e., the original open space in rock prior to alteration (domi-
nantly vesicles and minor fractures), and to assess how much
of that porosity had been filled by the deposition of alter-
ation minerals. Generally, 200 points were counted on each
rock thin section and grouped into the following categories:
primary mineral, altered primary mineral, precipitate in vesi-
cles, precipitate in fractures, intercrystalline pores, and un-
filled fractures. A more detailed classification scheme was
used in Friðleifsson and Vilmundardóttir (1998), with pri-
mary minerals separated by plagioclase, pyroxene, olivine,
and opaque minerals. For the hyaloclastite samples investi-
gated in Franzson et al. (2011), 1000 points were counted and
grouped as one of the following: porosity, unaltered glass, al-

tered glass, unaltered primary mineral, altered primary min-
eral, zeolite, clay, calcite, or other.

Bulk rock chemical analyses were performed by two com-
mercial chemical laboratories, the Caleb Brett Laboratory in
England and McGill University in Canada, using standard
XRF techniques (e.g., Potts and Webb, 1992; Rousseau et
al., 1996). Both labs used the fused-bead technique for ma-
jor elements and pressed-powder pellets for the determina-
tion of trace elements. Values for samples analyzed by both
laboratories are generally within analytical error (Rousseau
et al., 1996). The samples were analyzed for major, minor,
and several trace elements (Zr, Y, Zn, Cu, Rb, Sr, Nb, Ga,
Ce, V, Pb, U, Th, and As). Major element analyses in the
database are presented both in unnormalized form and after
removing LOI (loss on ignition; see below) and renormaliz-
ing the composition to 100 %. Figure 8a shows the samples
categorized by lithology plotted on a total alkali–silica dia-
gram (Le Maitre et al., 2002). Note that this diagram shows
both altered and unaltered rocks. Most of the samples plot
in the basalt field, as expected. Although it has been sug-
gested that hydrothermal alteration in Icelandic rocks is close
to an isochemical process (Franzson et al., 2008), many lava
flows, hyaloclastites, and basaltic intrusions plot outside of
the basalt field due to the effects of intensive quartz precipi-
tation and silicification. In addition, many of the silicic vol-
canic rocks or silicic intrusions appear to be depleted in silica
compared with what would be expected given the lithologi-
cal identifier, which is based on geologic context and visual
characteristics. One chemical metric quantifying the extent
alteration is LOI, which was measured in many of the sam-
ples; while LOI is the sum of H2O and CO2, H2O+, CO2,
and Stotal were additionally separately analyzed in a subset of
samples. Figure 8b shows the clear relationship between LOI
and the extent of alteration quantified by point counting in a
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Figure 8. Whole-rock geochemical data and petrographic observations of alteration. Panel (a) presents a total alkali–silica (TAS) diagram
(Le Maitre et al., 2002), with samples colored by lithology; note that many of the rocks are very altered and that lithologic identifiers are
assigned based on the interpretation of the geological context and visual characteristics, rather than the geochemical field into which the rock
plots. Panel (b) shows the loss on ignition (LOI) versus the total extent of alteration quantified by point counting; only lava flows are shown,
and symbols are colored by alteration zone.

subset of lava flows, with the LOI increasing up to a max-
imum of ∼ 12 wt % as the degree of alteration approaches
100 %.

The mineralogy of core samples from Lévy et al. (2018,
2019a, b and 2020b) were analyzed using XRD. Quanti-
tative (crystalline) phase analysis was performed using Ri-
etveld refinements of XRD patterns on randomly oriented
mounts of whole-rock powder samples. The powders were
front-loaded onto the sample holder, and a razor blade was
used to smoothen the surface and avoid preferred orientations
(Bish et al., 1989). When several clay minerals with overlap-
ping peaks (e.g., smectite and mixed-layer smectite–chlorite)
are present, Rietveld refinements pose a problem of ambigu-
ity for the quantitative analyses. Therefore, smectite quantifi-
cation was performed using CEC measurements, following
Lévy et al. (2020a) who found a linear correlation between
CEC and smectite content quantified using X-ray diffraction
in samples where smectite is the only clay mineral.

The CEC represents the total capacity of a rock medium
to hold exchangeable cations and is the sum of variable
(pH-dependent) CEC and permanent CEC. While CEC in
soil science is typically expressed in milliequivalents (meq)
or in millimoles (mmol) of electrons per 100 g of rock,
this is numerically equivalent to a given amount of charge
per kilogram (1 meq 100 g−1

= 965.8 C kg−1, where “C” de-
notes coulomb). To measure CEC on core samples from
Krafla, Lévy et al. (2020a) modified a protocol originally de-
signed to measure CEC on pure clay samples (Meier and
Kahr, 1999) that uses copper-triethylenetetramine(II) “Cu-
trien”. The smectite content was then determined using the
following formula:

CEC
CEC0

=
ρdry

ρsmec
, (12)

where ρdry and ρsmec are the dry density of the sample and the
density of smectite (in g cm−3), respectively. The ratio CEC

CEC0
is used as a measure of the smectite weight fraction, with
CEC0 = 91 meq g−1 being the average CEC of pure smectite
in these types of samples (Lévy et al., 2020a).

3.5 Acoustic velocities and mechanical properties

Acoustic velocities are available for 295 samples in the
database (Franzson and Tulinius, 1999; Frolova et al., 2005;
Reinsch et al., 2016; Lévy et al., 2020b). Acoustic velocities
express the propagation rate of mechanical waves – compres-
sional P waves and shear S waves – in a bulk environment,
composed of solid minerals and fluid in pores and fractures,
which can be either gas or liquid. For the samples analyzed
by Frolova et al. (2005) and Franzson et al. (2011), sonic
wave velocities were measured using the ultrasonic pulse
transmission technique according to the Russian state stan-
dard (State Standard 21153.7-75, 1985). The travel times for
P waves were calculated using the time cursor on the oscil-
logram. Velocities were then calculated from the core length
and the travel time measurement. The frequency of the pulser
was 1 MHz for dense samples and 250 kHz for more porous
samples. The measurements were done in dry as well as in
water-saturated states. The samples analyzed by Franzson
and Tulinius (1999) were only measured in the saturated state
by the Danish Geotechnical Institute, using a standard Hoek
cell with lead foil between the specimen and end piston to en-
sure contact. The samples were loaded in a hydrostatic stress
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state to 1, 2.5, and 10 MPa, and P-wave velocities were mea-
sured at each stress level; as the measured values show little
dependence on confining stress between 1 and 2.5 MPa, the
values presented in the database are the averages of these
two measurements. The samples of Flovenz et al. (2005)
were analyzed in the saturated state by Jaya et al. (2010) at
the German Research Center for Geosciences (GFZ). Briefly,
ultrasonic measurements were performed with piezoelectric
ceramics Stelco-type P850 and PPK62, for compressional
waves and shear waves, respectively. The ultrasonic excita-
tion signal was a rectangular voltage single burst at 1.0 V
and 400 kHz. The signal was magnified by an Amplifier Re-
search 50A220 before being used for excitation. Although an
S-wave measurement was also performed, only the recorded
P-wave data are provided because the S-wave arrivals were
strongly attenuated. For the samples analyzed by Reinsch et
al. (2016) and Lévy et al. (2020b), seismic wave velocities
were measured under both dry and saturated conditions at the
University of Montpellier using coupled piezoelectric trans-
ducers with a 500 kHz resonance frequency. A transmission
wave technique with a transmitter and receiver was applied,
wherein an electrical spike impulsion (amplitude of −400 V,
width of 10 ns) is sent on the transmitter, and the acoustic
wave transmitted through the rock is analyzed on an oscillo-
scope with 200 MHz of bandwidth and a sampling frequency
of 2 GHz. A coupling gel was used for Vp, and honey was
used for Vs . The relatively accuracy of the measurements is
estimated to be ∼ 3%. While the arrival time of P waves
is relatively easy to observe, that of S waves is often more
ambiguous, yielding higher uncertainties. Thus, there is a
greater abundance of data for P-wave velocities compared
with S-wave velocities as well as for dry compared with sat-
urated conditions.

Mechanical parameters refer to the strength characteristics
of rocks and their potential for deformation, and they include
the Young’s modulus (E), Poisson’s ratio (ν), and the uniax-
ial compressive (σc) and tensile (σt) strength. The unconfined
compressive strength is measured by loading the samples and
recording the pressure at failure (Pfail):

σc =
Pfail

A
, (13)

where A is the sample cross-sectional area. The Young’s
modulus is obtained by the slope of the stress–strain curve,
usually at a point of 50 % of σc, according to

E =
∂σ

∂ε
. (14)

Poisson’s ratio is the ratio between the radial- and axial-
strain, defined as

ν =
∂εradial

∂εaxial
. (15)

This was only measured for a few samples subject to triaxial
tests. The tensile strength was only measured by Árngrims-
son and Gunnarsson (2009) using the so-called Brazilian disk

method, where a circular cylindrical sample is compressed
along its diameter and strain is measured. The tensile strength
(in MPa) was calculated using the following equation:

σt = 0.636
Pfail

Dt
, (16)

where D is the sample diameter (mm) and t is the thickness
of the sample (mm).

For the hyaloclastite samples analyzed by Frolova et
al. (2005) and Franzson et al. (2011), the uniaxial com-
pressive strength test was performed using standard test-
ing procedures in accordance with Russian state standard
21153.2–84 (1984) and ASTM International standard ASTM
D7012 (2013). Uniaxial compressive strength was measured
using a German hydraulic press CDM-10/91 and was de-
termined for samples in dry and water-saturated states. The
samples analyzed by Árngrimsson and Gunnarsson (1999)
were analyzed at the Technical University of Denmark
(DTU), which performed triaxial tests on five samples, and
the Danish Geotechnical Institute (GEO), which performed
Brazilian disk tests on 55 samples and unconfined compres-
sive strength tests on 36 samples, using methods accord-
ing to the International Society for Rock Mechanics (ISRM)
standard (Ulusay and Hudson, 2007). The elastic constants
given for the samples from Frolova et al. (2005), Franzson
and Tulinius (1999), and Jaya et al. (2010) were calculated
from the measured wave velocities and the bulk density (e.g.,
Mavko et al., 2009).

3.6 Thermal properties

Thermal conductivity measurements for two samples de-
scribed in Franzson and Tulinius (1999) were carried out by
the Department for Geophysics at the University of Aarhus.
The thermal conductivity was measured under saturated con-
ditions using the divided-bar technique, and the vertical
stress level was 1 MPa. In addition, thermal conductivity
measurements for the samples analyzed by Friðleifsson and
Vilmundardóttir (1998) and Guðlaugsson (2000) were per-
formed by New England Research (Johnson and Boitnott,
1998). For the latter study, 57 measurements of thermal con-
ductivity under unsaturated conditions were performed on
samples obtained from a single, unaltered lava flow in the
Reykjavik area.

4 Results and discussion

Although most of the roughly∼ 21000 data points contained
in Valgarður have been presented in previous studies (Ta-
ble 1), combining the data from different types of studies
(e.g., petrophysical, geochemical, and petrographical) can
elucidate the relationship between lithology, alteration, phys-
ical properties, and rock chemical and mineralogical compo-
sition. A full description of this relationship is beyond the
scope of this article. Here, we provide summary statistics
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for porosity, grain density, and permeability; describe how
lithology and interconnected porosity control the alteration
process; and show how alteration controls physical proper-
ties such as porosity, permeability, grain density, resistivity,
elastic wave velocities, and strength.

4.1 Summary statistics

The roughly ∼ 21 000 data points comprising the database
reveal complex relationships between lithology, alteration,
physical parameters, and chemical and mineralogical com-
position. Table 5 provides summary statistics by rock type
and alteration zone for some of the best-characterized pa-
rameters (connected porosity, grain density, and intrinsic per-
meability). These statistics highlight some expected trends –
such as the higher porosity of hyaloclastites (0.2–0.5) com-
pared with lava flows (0.01–0.35) and basaltic intrusions
(0.01–0.15), the decrease in porosity that generally accom-
panies alteration, and the lower grain density of silicic rocks
(∼ 2.5 g cm−3) compared with basaltic rocks (2.8–3 g cm−3

for basaltic lava flows and intrusions). Notably, Table 5 in-
dicates that smectite–zeolite altered hyaloclastites tend to
have high porosity (0.2–0.3), low grain density (∼ 2.7–
2.8 g cm−3), and relatively high permeability (∼ 10−14 m2).
Hyaloclastites altered to mixed-layer clay, chlorite–epidote,
or chlorite–epidote conditions, which tend to develop under
hotter-temperature conditions (250 ◦C) in active geothermal
systems, show lower permeability (∼ 10−16 m2) but main-
tain relatively high porosity (0.2). Basaltic intrusions tend
to show alteration under high-temperature conditions along
with lower porosity (0.02–0.1), higher grain density (2.9–
3 g cm−3), and lower permeability (∼ 10−17 m2).

Note that the permeability values presented in Table 4
are representative of matrix permeability, and permeability
measured in the field (e.g., using well testing) commonly
exceeds the matrix permeability by an order of magnitude
or more due to the control of fracture permeability on bulk
permeability (e.g., Björnsson and Bödvarsson, 1990). There-
fore, upscaling these data for reservoir modeling will re-
quire the consideration of the impact of fractures on the per-
meability. This can be treated in an idealized sense using
dual-porosity/permeability models (Pruess and Narasimhan,
1985) or by explicitly representing the fractures in models
using discrete fracture networks (Cacas et al., 1990). More-
over, geostatistical approaches to upscaling laboratory per-
meability to field-scale numerical grids require knowledge of
the uncertainty of matrix permeability; Table 4 indicates that
the standard deviation of permeability for a given lithology–
alteration zone combination often exceeds 1 order of mag-
nitude, and the range of measured permeability for a given
rock type (e.g., unaltered lava flows and hyaloclastites) can
exceed 6 orders of magnitude (10−17–10−11 m2). Table 4 ad-
ditionally indicates that there is a paucity of data for certain
rock types, such as unaltered basaltic intrusions and silicic
intrusions.

Figure 9. The relationship between pore connectivity and total
porosity. Samples categorized by lithology. The gray fields corre-
sponds to unphysical values of connectivity (C > 1), which could
result from variability in grain density (see text).

4.2 The lithologic control on pore connectivity and
alteration

Whether alteration leads to porosity creation or destruction
depends on both the type and extent of alteration as well
as the primary connected porosity of the rock (e.g., Mor-
densky et al., 2018; Villeneuve et al., 2019). Different vol-
canic rocks’ lithologies show variability in pore connec-
tivity linked to the geometry of the pore network formed
during magma crystallization, vesiculation, fragmentation,
and densification (e.g., Blower, 2001; Bernard et al., 2007;
Yokoyama and Takeuchi, 2009; Wright et al., 2009; Kennedy
et al., 2010; Heap et al., 2014; Colombier et al., 2017).
Figure 9 shows calculated pore connectivity (C = φconnected

φtotal
;

Colombier et al., 2017) as a function of total porosity for the
samples in the database. While hyaloclastites with a porosity
greater than 0.1 generally show high connectivity (> 0.9),
many lava flows, pillow basalts, basaltic intrusions, and sili-
cic volcanic rocks with porosity values of < 0.1–0.3 have
intermediate connectivity (0.3–0.8). Lava flows and basaltic
intrusions with total porosity < 0.05 show the lowest con-
nectivity (< 0.25). Note that a few samples have nonphysical
values of pore connectivity> 1, which are likely the result of
employing an overly low measured grain density (Colombier
et al., 2017) in the calculation of total porosity according to
Eq. (3).

Mineralogical observations derived from petrography and
XRD suggest that rocks with greater connected porosity un-
dergo a greater extent of hydrothermal alteration. Figure 10
shows this by plotting total alteration on the x axis against
connected porosity. Lava flows (Fig. 10a), which may have
very high connected porosity within the vesicular margins
but more often have low connected porosity (< 0.2), only
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Table 5. Summary statistics for connected porosity, grain density, and intrinsic permeability for samples categorized by broad lithological
identifier and alteration zone. The number of samples used to calculate the mean and standard deviation is presented in parentheses. Data are
only presented for lithology–alteration zone combinations with sufficient data to calculate summary statistics. Note that the values given for
intrinsic permeability were calculated using the decadic logarithm of the data.

Lithological Alteration zone Connected porosity Grain density Intrinsic permeability
category (–) (g cm−3) (decadic logarithm, m2)

Lava flow Unaltered 0.13± 0.10 (267) 3.03± 0.07 (267) −15.2± 1.06 (97)
Smectite–zeolite 0.09± 0.10 (50) 2.87± 0.09 (50) −16.8± 1.10 (25)
Mixed-layer clay 0.10± 0.08 (40) 2.86± 0.09 (37) −17.1± 0.91 (27)
Chlorite–epidote 0.06± 0.07 (57) 2.86± 0.10 (57) −16.5± 1.15 (19)
Epidote–actinolite 0.06± 0.06 (38) 2.84± 0.10 (38) −16.8± 0.87 (30)

Hyaloclastite Unaltered 0.34± 0.10 (114) 2.73± 0.17 (113) −12.9± 1.7 (82)
Smectite–zeolite 0.28± 0.10 (68) 2.62± 0.16 (68) −13.8± 1.85 (50)
Mixed-layer clay 0.24± 0.06 (30) 2.71± 0.13 −16.3± 0.60 (14)
Chlorite–epidote 0.22± 0.09 (40) 2.78± 0.17 (41) −16.1± 1.15 (11)
Epidote–actinolite 0.10± 0.07 (4) 2.88± 0.15 (4) −15.7± 0.64 (4)

Basaltic intrusion Unaltered 0.08± 0.06 (12) 2.97± 0.10 (12) –
Smectite–zeolite 0.04± 0.03 (13) 2.89± 0.11 (13) −17.4± 0.70 (10)
Mixed-layer clay 0.08± 0.05 (13) 2.87± 0.08 (13) −17.6± 0.97 (11)
Chlorite–epidote 0.02± 0.03 (35) 2.88± 0.11 (35) −16.7± 0.90 (18)
Epidote–actinolite 0.03± 0.03 (57) 2.94± 0.09 (57) −17.0± 0.81 (23)

Silicic intrusion Unaltered 0.12± 0.04 (5) 2.54± 0.07 (5) −13.0 (1)
Smectite–zeolite 0.18± 0.02 (3) 2.34± 0.23 (3) −17.1± 0.32 (3)
Mixed-layer clay – – –
Chlorite–epidote 0.08± 0.09 (6) 2.57± 0.13 (6) −16.1± 0.87 (5)
Epidote–actinolite 0.09± 0.04 (10) 2.71± 0.10 (10) −16.8± 0.84

Silicic volcanic Unaltered 0.11± 0.11 (36) 2.50± 0.06 (36) −13.0 (1)
Smectite–zeolite 0.13± 0.08 (24) 2.51± 0.20 (24) −16.4± 1.11 (21)
Mixed-layer clay – – –
Chlorite–epidote 0.14± 0.07 (7) 2.7± 0.1 (7) −16.3± 0.44 (5)
Epidote–actinolite 0.07 (1) 2.67 (1) −17.16 (1)

Figure 10. The relationship between alteration extent, as determined by petrographic observations and XRD, and the connected porosity for
(a) lava flows and (b) hyaloclastites. High-porosity rocks such as hyaloclastites undergo near-complete mineral replacement in the smectite–
zeolite facies, whereas rocks with low porosity, such as lava flows, undergo porosity closure after a limited extent of alteration. Rocks altered
to chlorite–epidote or epidote–actinolite facies show higher alteration extents because of replacement of primary minerals and secondary
minerals.
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undergo a relatively small extent of smectite–zeolite alter-
ation before porosity closure limits further alteration. In con-
trast, hyaloclastites (Fig. 10b), which tend to have higher
connected porosity (> 0.2), undergo near-complete replace-
ment of glass and primary minerals with respect to smectite–
zeolite alteration. While alteration of hyaloclastites under
smectite-zeolite conditions proceeds via palagonitization, re-
placement of basaltic glass by smectite clay, and infilling
of clay and zeolites in vesicles, under higher-temperature
chlorite–epidote (> 240 ◦C) or epidote–actinolite (> 280 ◦C)
conditions, alteration proceeds to an increasing extent by re-
placement of smectite clays formed under lower-temperature
conditions by chlorite as well as replacement of primary min-
erals to form secondary minerals such as epidote, wairakite,
and actinolite (e.g., Franzson and Gunnlaugsson, 2021). As
the result of enhanced replacement of primary minerals
during higher-temperature alteration, lava flows with rela-
tively low connected porosity altered to chlorite–epidote or
epidote–actinolite conditions tend to show a higher extent
of alteration (> 0.5). These data are consistent with geo-
chemical modeling which suggests that rocks with a rela-
tively low interconnected primary porosity (< 0.2), such as
lava flows, will tend to undergo rapid porosity closure during
the volumetric changes associated with hydrothermal alter-
ation, whereas rocks with a significant fraction of intercon-
nected primary porosity (> 0.2), such as hyaloclastites, will
undergo near-complete replacement of basaltic glass and pri-
mary minerals by secondary minerals (Thien et al., 2015).

4.3 Permeability–porosity relationships in altered
basalts

While many previous studies have found that the permeabil-
ity of volcanic rocks tends to increase with increasing poros-
ity (e.g., Saar and Manga, 1999; Blower, 2001; Farquharson
et al., 2015, 2017; Wadsworth et al., 2016; Colombier et al.,
2017), studies have also shown that the permeability of un-
altered and altered volcanic rocks can be quite variable (e.g.,
Heap et al., 2017a; Mordensky et al., 2018; Villeneuve et al.,
2019). Figure 11 shows connected porosity and permeabil-
ity in lava flows (Fig. 11a), hyaloclastites and pillow basalts
(Fig. 11b), and other lithologies (Fig. 11c). While permeabil-
ity generally increases with porosity, this relationship is not
very strong, with variability ranging over more than 5 orders
of magnitude at a given porosity. For example, unaltered lava
flows show a large range of permeability (10−17–10−11 m2).
The two dense clusters of data points in Fig. 11a originate
from detailed investigations of a single, unaltered olivine
tholeiite lava flow of Pleistocene age located on Öskuhlíð, in
the Reykjavik area (Friðleifsson and Vilmundardóttir, 1998;
Guðlaugsson, 2000; Franzson et al., 2001). One of these clus-
ters consists of samples obtained from the coarser, inner part
of the flow and shows high permeability at relatively low con-
nected porosity; a second cluster consists of samples origi-
nating from the more glass-rich vesicular outer margin and

shows lower permeability at higher connected porosity (0.2–
0.4). This enigmatic permeability–porosity relationship has
been interpreted to be the result of high pore interconnectiv-
ity in the compact flow interior due to grain boundary mi-
crocracks (the presence of which is inferred from the low
P-wave velocities of these samples), whereas larger vesicles
on the outer margin are largely isolated (Guðlaugsson, 2000;
Franzson et al., 2001). The Öskuhlíð lava flow is relatively
young (< 2.5 Ma) and has not yet undergone burial. Unal-
tered lava flows collected from the brecciated margins of lava
flows in other settings show high connected porosity as well
permeabilities as high as 10−11 m2.

Alteration generally causes permeability to decrease.
However, many hyaloclastite tuffs and some lava flows
with high initial connected porosity (< 0.3) maintain rel-
atively high permeability (10−16 m2), even if altered un-
der high-temperature chlorite–epidote or epidote–actinolite
conditions. While the permeability of unaltered hyalo-
clastites and hyaloclastites altered under smectite–zeolite
conditions can be as high as 10−11 m2, hyaloclastites al-
tered under higher-temperature conditions show highly vari-
able but lower permeability (10−17–10−14 m2) (Fig. 11b).
In lava flows (Fig. 11a), progressive alteration tends to
reduce the connected porosity and permeability to < 0.2
and 10−18–10−16 m2, respectively, and some lava flows al-
tered to chlorite–epidote or epidote–actinolite conditions
have moderate permeability (∼ 10−15 m2), even though con-
nected porosity is < 0.1. Due to the relatively low connected
porosity of basaltic intrusions, most of which are altered to
chlorite–epidote or epidote–actinolite conditions, permeabil-
ity tends to be low (10−18–10−16 m2) (Fig. 11c). Although
the data are limited, they suggest that the permeability of sili-
cic intrusions is slightly higher (10−17–10−15 m2) compared
with basaltic intrusions and that the permeability of silicic
volcanics can be variable (10−18–10−15 m2).

Putting these data in the context of the petrographic obser-
vations described above (Fig. 10), high-porosity, glass-rich
hyaloclastites maintain high permeability during the alter-
ation process because of their high primary porosity, thereby
allowing greater fluid through-flux and facilitating progres-
sive alteration (basaltic glass dissolution and secondary min-
eral precipitation). More rapid porosity closure in response
to low-grade alteration in lava flows results in a more rapid
permeability decrease, which limits the alteration extent. Al-
though the time–temperature–fluid flux conditions experi-
enced by different rocks are highly variable, the data suggest
that the matrix permeability of high-temperature chlorite–
epidote or epidote–actinolite conditions can be as high as
∼ 10−15 m2. The ability of rocks to maintain high perme-
ability throughout the alteration process is of crucial impor-
tance for successful carbon mineralization in basaltic rocks.
These data suggest that the precipitation of volumetrically
significant quantities of carbonates and other alteration min-
erals (e.g., amorphous silica, clays, and zeolites; Gysi, 2017)
in the subsurface during the interaction of carbonated water
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Figure 11. The relationship between connected porosity and intrinsic permeability in (a) lava flows, (b) hyaloclastites and pillow basalts,
and (c) other lithologies, including basaltic intrusions, silicic intrusions, silicic volcanics, intermediate rocks, and sediments. Samples are
colored by alteration zone, with symbols corresponding to different lithologies.

with basaltic rock need not result in porosity closure, as long
as the porosity of the target reservoir is 0.25.

4.4 Relationships between grain density and electrical
properties in altered volcanic rocks

The database highlights physical relationships between pa-
rameters such as grain density and electrical properties and
the overall control exercised by lithology and alteration.
Electromagnetic methods are commonly used for geophys-
ical exploration, as smectite-rich rocks constituting the low-
permeability cap rock in geothermal systems (Cumming,
2016) are known to have a lower resistivity (< 10�m) than
rocks hosting the underlying high-temperature geothermal
reservoir, which often shows resistivities > 100�m (e.g.,
Árnason et al., 2010; Muñoz, 2014). Figure 12a compares
grain density and bulk resistivity and shows that there is gen-
erally a positive correlation between the two parameters, al-
beit with significant scatter. The measured data reproduce
these expected trends, with the samples altered to smectite–
zeolite conditions showing lower resistivity than samples al-
tered to chlorite–epidote or epidote–actinolite conditions. Al-
though the measurements shown in Fig. 12a were performed
at room temperature and using a saturating fluid of low salin-
ity/conductivity, the effect of higher saturating fluid salini-
ty/conductivity could be factored in through consideration of
the formation factor according to Eq. (11). Figure 12b shows
that the calculated formation resistivity factor presents a clear
log-linear relationship to connected porosity, with smectite-
rich rocks having a higher formation factor at a given poros-
ity. Note that the outlier data points with a low formation re-
sistivity factor (< 10) in Fig. 12b all originate from Franzson
and Tulinius (1999), who calculated the apparent formation
resistivity factor (i.e., conductivity measurements were not
performed with saturating fluid of variable salinity/conduc-
tivity).

The lower resistivity of smectite-rich rocks has long been
known based on both the field measurements described above
and experimental studies (e.g., Flovenz et al., 1985). How-
ever, Fig. 12a points to a physical relationship between grain
density and resistivity in geothermal reservoir rocks. Al-
though the grain density of smectite can range from 2 to
2.6 g cm−3 depending on its hydration status, this is appre-
ciably lower than that of chlorite (2.6–3.3 g cm−3; Deer et
al., 2013). While the relationship between low grain den-
sity and high conductivity has been seen in other experimen-
tal studies (e.g., Nelson and Anderson, 1992), this is per-
haps underappreciated in the context of geophysical imag-
ing in geothermal systems. These data suggest that joint in-
versions of gravimetric and electromagnetic measurements,
particularly when combined with porosity constraints based
on core measurements and geologic modeling (e.g., Soyer et
al., 2018), may facilitate better delineation of the geometry
of the cap rock, precise knowledge of which is essential to
target the underlying higher-temperature resistive core.

4.5 Elastic wave velocities and mechanical properties

Figure 13a shows that compressional (P-wave) velocities are
inversely correlated with porosity: basaltic intrusions show
the highest velocities and the lowest porosities, whereas
hyaloclastites have the lowest velocities and higher porosi-
ties. This relationship has been seen in several previous stud-
ies of volcanic rocks (e.g., Pola et al., 2014; Frolova et al.,
2014, 2021; Wyering et al., 2014; Heap et al., 2015; Durán et
al., 2019). However, the data show considerable scatter, and
the relationship between acoustics velocities measured under
dry conditions (shown using transparent markers) and satu-
rated conditions (shown using opaque markers) is complex
(e.g., Nur and Simmons, 1969; Kahraman, 2007; Kahraman
et al., 2017). Most of the samples show P waves that tend to
travel faster in a water-saturated than dry environment, but
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Figure 12. (a) The relationship between the grain density and bulk resistivity; measurements were performed using saturating fluid with a
low salinity and conductivity (see text). (b) The relationship between the formation resistivity factor and connected porosity; note that the
outliers used the apparent formation resistivity factor (see text).

Figure 13. (a) Compressional (P-wave) velocities under dry (transparent symbols) and saturated (opaque symbols) conditions versus con-
nected porosity. (b) S-wave velocities versus P-wave velocities under saturated conditions.

several hyaloclastites and lava flows show dry velocities that
are systematically ∼ 1–2 km s−1 greater than the saturated
velocities. Figure 13b compares the P-wave velocity with the
S-wave velocity under saturated conditions. Most of the sam-
ples with saturated P-wave velocities greater than∼ 2 km s−1

show a Vp/Vs close to ∼ 2. However, many of the samples
with low P-wave velocities (< 3 km s−1) have a Vp/Vs close
to ∼ 1. The latter samples have variable connected porosity
but tend to be brecciated hyaloclastites or flow-top breccias.
As P-wave and S-wave velocities are strongly dependent on
crack density and geometry, highly cracked rocks may dis-
play very low velocities at room conditions in some cases
(e.g., Nur and Simmons, 1969; Vinciguerra et al., 2005; Nara

et al., 2011). This could explain the low P-wave velocities
seen in lava flows and hyaloclastites in Fig. 13.

Alteration impacts rock strength and thus exerts an influ-
ence on rock mechanical behavior and failure mode (e.g.,
Pola et al., 2014; Heap and Violay, 2021). Depending on
the porosity changes during hydrothermal alteration and the
abundance and type of clay minerals, alteration can increase
or decrease rock strength (e.g., Wyering et al., 2014; Frol-
ova et al., 2014, 2021; Pola et al., 2014; Mordensky et al.,
2018; Farquharson et al., 2019; Heap et al., 2020a). Fig-
ure 14 shows that the uniaxial compressive strength (UCS)
(Fig. 14a) and Young’s modulus (Fig. 14b) decrease with in-
creasing porosity, as has been observed in several previous
studies of volcanic rocks (e.g., Al-Harthi et al., 1999; Pola et
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al., 2014; Wyering et al., 2014; Heap et al., 2014; Schaefer et
al., 2015; Mordensky et al., 2018; Coats et al., 2018; Harnett
et al., 2019). However, also consistent with these studies, the
data reveal significant scatter; for example, at a porosity of
0.2, UCS can range from∼ 10 to∼ 100 MPa. Heap and Vio-
lay (2021) describe how such variability in rock strength can
result from variable hydrothermal alteration, the partitioning
of porosity between pores and microcracks, and the rock’s
geometrical properties.

Although altered rocks can show wide variability with re-
spect to strength and permeability, the inverse relationship
between rock strength and permeability, as shown in Fig. 15,
results from the greater presence of interconnected poros-
ity and microcracks in relatively weak rocks. At the field
scale, the low permeability of the smectite-rich cap rock is
a result of reduced fracture cohesion and decreased strength,
which limit shear and inhibit dilatation of fractures (Dob-
son et al., 2003; Neuzil, 1994; Davatzes and Hickman, 2010;
Wyering et al., 2014; Meller and Kohl, 2014; Sanchez-Alfaro
et al., 2016) as well as promoting ductility (Mordensky et
al., 2019). In contrast, rocks that have been altered to propy-
litic conditions and contain a greater abundance of secondary
minerals such as chlorite, quartz, and epidote retain rock
strength in response to alteration and, consequently, show
brittle dilatant behavior during slip (Davatzes and Hickman,
2010; Meller and Kohl, 2014; Sanchez-Alfaro et al., 2016).
As field-scale permeability in geothermal systems is com-
monly fracture controlled (e.g., Lamur et al., 2017; Heap and
Kennedy, 2015; Farquharson and Wadsworth, 2018; Jolie et
al., 2021), increased rock strength may facilitate the develop-
ment of the fracture permeability needed to result in produc-
tive geothermal wells (e.g., Villeneuve et al., 2019). How-
ever, Figs. 14 and 15 show that limited data are currently
available for Icelandic rocks altered to chlorite–epidote and
epidote–actinolite conditions.

4.6 Thermal conductivity

Previous studies of Hawaiian basalts have shown that ther-
mal conductivity decreases with increasing porosity and in-
creases if the samples are saturated with water (Robertson
and Peck, 1974). Although the thermal conductivity data in
this study are mainly limited to samples derived from a sin-
gle, unaltered lava flow in the Reykjavik area (Guðlaugsson,
2000), they suggest a similar relationship (Fig. 16). Thermal
conductivity measured under unsaturated conditions ranges
from ∼ 1 to 2 W m−1 K−1, with a general trend suggesting
increasing thermal conductivity at lower connected porosity.
In contrast, thermal conductivity measured under saturated
conditions on two hyaloclastite samples obtained from the
ÖJ-1 borehole is significantly higher, ranging from 2.5 to
2.75 W m−1 K−1. Although insufficient data currently exist
to characterize the effect of lithology and alteration zone on
thermal conductivity, Fig. 16 indicates that significant vari-

ability in thermal conductivity within a single lithological
unit results from the heterogenous distribution of pore space.

5 Data availability

The database is archived on Zenodo at
https://doi.org/10.5281/zenodo.6980231 (Scott et al.,
2022a) and is available under the Creative Commons At-
tribution 4.0 International license. This repository includes
the main Excel file containing the two main worksheets:
one listing sample metadata and petrophysical properties
and the other listing geochemical and petrographic data. In
addition, we provide a ZIP file containing photographs of
the sample sites and an Excel file listing the file names of
photographs corresponding to the sample IDs All worksheets
are additionally included in the repository as CSV files with
the separator “|”. The photographs are also included in the
Zenodo repository as a separate directory.

6 Concluding remarks, limitations, and future status
of the database

The efforts of geologists in Iceland over the past 50 or more
years have resulted in a tremendous amount of data span-
ning petrophysical, geochemical, and petrographic analyses
of a wide range of basaltic rocks and associated silicic and
intermediate rocks. However, it has historically been com-
mon that, following the publication of a paper or report, the
only remaining manifestations of the data are the figures con-
tained in the publication, and much (or all) of the raw under-
lying data become inaccessible. This practice is only starting
to change in response to increasing emphasis on data avail-
ability. The motivation of the Valgarður database is to ensure
that the data resulting from decades of intensive study of Ice-
landic geothermal reservoir rocks remain accessible to future
generations of geoscientists.

In this paper, we have described the methods used to ac-
quire the data in some detail and have also briefly character-
ized some aspects of the relationship between lithology, al-
teration, and petrophysical properties. The different litholo-
gies show systematic differences in interconnected poros-
ity, with lava flows and basaltic intrusions showing lower
interconnected porosity (< 0.2) than hyaloclastites (> 0.3).
We propose that, as a result of their higher interconnected
porosity, hyaloclastites can undergo near-complete replace-
ment of glass and primary minerals during smectite–zeolite
alteration and maintain relatively high interconnected poros-
ity (> 0.2), whereas smectite–zeolite alteration in lava flows
and intrusions is limited by porosity closure. By reducing
interconnected porosity, alteration exerts a first-order con-
trol on petrophysical properties such as porosity, permeabil-
ity, grain density, resistivity, acoustic velocities, and strength.
Generally, altered rocks are characterized by lower porosity,
lower permeability, lower grain density, lower resistivity, and
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Figure 14. (a) Uniaxial compressive strength (UCS) and (b) Young’s modulus as a function of connected porosity. Data for Icelandic rocks
are from Heap and Violay (2021) and are shown using black stars.

Figure 15. Permeability as a function of uniaxial compressive
strength. Note that data are only available for unaltered rocks or
samples that have been altered to smectite–zeolite conditions.

increased strength. However, there is significant variability
depending on lithology and the type/extent of hydrothermal
alteration. Although a full description of the relationship be-
tween lithology, hydrothermal alteration, and rock chemical
composition is beyond the scope of this article, we believe
that the database would be well suited for such a study, as
many of the samples are highly altered and the database con-
tains whole-rock geochemical data for ∼ 350 samples.

In the database, basaltic rocks are better characterized
than silicic rocks, and there is a relative paucity of mechan-
ical and thermal data, particularly for rocks altered under
high-temperature (> 240 ◦C) chlorite–epidote or epidote–
actinolite conditions. Although we currently restrict the
database to measurements under near-ambient conditions,
the electrical, mechanical, and transport properties of Ice-
landic rocks have also been measured under experimental
conditions aimed at reproducing in situ conditions in the
subsurface (e.g., Vinciguerra et al., 2005; Jaya et al., 2010;
Kristínsdóttir et al., 2010; Milsch et al., 2010; Adelinet et

Figure 16. Thermal conductivity as a function of connected poros-
ity. Note that most of the available data are derived from a sin-
gle, unaltered lava flow (Guðlaugsson, 2000). Measurements on the
lava flows were performed under unsaturated conditions, whereas
measurements on the hyaloclastite samples were performed under
water-saturated conditions.

al., 2010, 2013; Grab et al., 2015; Eggertsson et al., 2020a,
b; Nono et al., 2020; Kummerow et al., 2020; Weaver et al.,
2020). In the future, it would be sensible to include measure-
ments performed at variable pressure, temperature, and satu-
rating fluid salinity in the database. However, as most of the
measurements included in this database (Table 1) were only
performed under near-ambient conditions, we felt that the in-
clusion of this additional data measured under variable con-
ditions would overly complicate the structure of the database
and thereby ultimately limit its usability.

Although the database is restricted to Iceland, we be-
lieve that the data contained in this database provide useful
constraints on the petrophysical properties of basaltic rocks
outside of Iceland. Similar relationships between alteration
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type/extent and petrophysical properties have been observed
in previous studies performed using altered volcanic rocks
obtained from geothermal systems in New Zealand (Heap et
al., 2017a; Mordensky et al., 2018; Villeneuve et al., 2019)
and Mexico (Weydt et al., 2022). However, the limitations
of the database should also be acknowledged. For exam-
ple, thermal conductivity measurements are only available
for a relatively small number of samples, most of which
were derived from a single lava flow in the Reykjavik area
(Guðlaugsson, 2000). Other studies have measured the ther-
mal properties of Icelandic rocks (Ruether, 2011), and ther-
mal conductivity and thermal diffusivity were measured on
a large number of samples obtained from a nearly 2 km long
core in the Reyðarfjörður region (Oxburgh and Agrell, 1982;
Drury, 1985; Flóvenz and Saemundsson, 1993). To the au-
thors best knowledge, the data obtained in these studies do
not exist in a tabulated form that is accessible via the inter-
net. This highlights the challenges of ensuring the accessibil-
ity of such “legacy” data. As future studies address these gaps
in the database, we anticipate future releases of the database
using the versioning system available on Zenodo, and these
updates will be made available at the same repository ad-
dress given in this publication (Scott et al., 2022a). Despite
the gaps in the data, we believe that the present release of
the Valgarður database will enhance the accessibility of the
existing data and constitutes a valuable resource for future
studies investigating the interplay between the physical and
chemical evolution of rocks.

Sample availability. The detailed sample descriptions combined
with the photographs of many of the sample sites included as a
supplement to the dataset should facilitate future research visits
to the investigated areas. Moreover, the remaining cores from the
Orkustofnun samples are now kept at Náttúrufræðistofnun (the Ice-
landic Institute of Natural History) in order for interested parties to
continue research.
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