Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-5061-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5061-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ observations of the Swiss periglacial environment using GNSS instruments
Alessandro Cicoira
CORRESPONDING AUTHOR
Department of Geography, University of Zurich, Zurich, Switzerland
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
Department of Geography, University of Zurich, Zurich, Switzerland
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Chair of Landslide Research, Technical University of Munich, Munich, Germany
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland
Andreas Biri
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Ben Buchli
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Reynald Delaloye
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Reto Da Forno
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Isabelle Gärtner-Roer
Department of Geography, University of Zurich, Zurich, Switzerland
Stephan Gruber
Department of Geography and Environmental Studies, Carleton University, Ottawa, Canada
Tonio Gsell
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Andreas Hasler
SensAlpin GmbH, Davos, Switzerland
Roman Lim
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Philippe Limpach
Terradata AG, Zurich, Switzerland
Institute of Geodesy and Photogrammetry, ETH Zurich, Zurich, Switzerland
Raphael Mayoraz
Ct. Valais, Sion, Switzerland
Matthias Meyer
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Jeannette Noetzli
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland
Marcia Phillips
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland
Eric Pointner
Rovina und Partner AG, Visp, Switzerland
Hugo Raetzo
Federal Office for the Environment FOEN, Ittigen, Switzerland
Cristian Scapozza
Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
Tazio Strozzi
GAMMA Remote Sensing and Consulting AG, Gümlingen, Switzerland
Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland
Andreas Vieli
Department of Geography, University of Zurich, Zurich, Switzerland
Daniel Vonder Mühll
Personalized Health and Related Technologies, ETH Zurich, Zurich, Switzerland
Vanessa Wirz
Department of Geography, University of Zurich, Zurich, Switzerland
Pro Natura Schaffhausen, Schaffhausen, Switzerland
Jan Beutel
Department of Computer Science, University of Innsbruck, Innsbruck, Austria
Related authors
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652, https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
Short summary
The properties of the permafrost ground depend on its temperature and composition. We used temperature data from 29 boreholes in Switzerland to study how heat moves through different types of mountain permafrost landforms. We found that it depends on where you are, whether there is water in the ground and what time of year it is. Understanding these changes is important because they can affect how stable mountain slopes are and how easy it is to build things in mountain areas.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Giulio Saibene, Isabelle Gärtner-Roer, Jan Beutel, and Andreas Vieli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3029, https://doi.org/10.5194/egusphere-2025-3029, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock glaciers are bodies of frozen ground found in mountain regions. They move downslope and are mainly studied at the surface. Here, we analyze deformation data from a rock glacier borehole, providing continuous data for almost eight years. The data shows that the acceleration in the summer movement happens in the uppermost layer, while long-term movement is mostly occurring in a deeper layer. This is important for the interpretation of surface movements, which are used as climate indicators.
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Cécile Pellet, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data, 17, 4125–4157, https://doi.org/10.5194/essd-17-4125-2025, https://doi.org/10.5194/essd-17-4125-2025, 2025
Short summary
Short summary
Rock glaciers are landforms generated by the creep of frozen ground (permafrost) in cold-climate mountains. Mapping rock glaciers contributes to documenting the distribution and the dynamics of mountain permafrost. We compiled inventories documenting the location, the characteristics, and the extent of rock glaciers in 12 mountain regions around the world. In each region, a team of operators performed the work following common rules and agreed on final solutions when discrepancies were identified.
Niccolò Tubini and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-2649, https://doi.org/10.5194/egusphere-2025-2649, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This research introduces a new model for simulating how melting ground ice in permafrost reshapes the land surface over time. It shows that small differences in soil and the depth where ice is found can cause large differences in how the ground sinks or rises. This helps improves our ability to predict future impacts on terrain, ecosystems, and infrastructure as the climate warms.
Hanne Hendrickx, Melanie Elias, Xabier Blanch, Reynald Delaloye, and Anette Eltner
Earth Surf. Dynam., 13, 705–721, https://doi.org/10.5194/esurf-13-705-2025, https://doi.org/10.5194/esurf-13-705-2025, 2025
Short summary
Short summary
This study presents a novel AI-based method for tracking and analysing the movement of rock glaciers and landslides, key landforms in high mountain regions. By utilising time-lapse images, our approach generates detailed velocity data, uncovering movement patterns often missed by traditional methods. This cost-effective tool enhances geohazard monitoring, providing insights into environmental drivers, improving process understanding, and contributing to better safety in alpine areas.
Nicholas Brown and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-2658, https://doi.org/10.5194/egusphere-2025-2658, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study improves how we track changes in permafrost by testing new ways to use ground temperature data. A set of five simple but powerful metrics was found to give a clearer picture of thawing than current methods. The results also show that the depth where sensors are placed can strongly affect measured warming rates. These findings help make permafrost monitoring more accurate and support better planning for a changing climate.
Andreas Henz, Johannes Reinthaler, Samuel U. Nussbaumer, Tancrède P. M. Leger, Sarah Kamleitner, Guillaume Jouvet, and Andreas Vieli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2353, https://doi.org/10.5194/egusphere-2025-2353, 2025
Short summary
Short summary
Glaciers are key to understanding climate change, reflecting historical variability. Using glacier models on the computer, we reconstructed European Alps glaciers during the Little Ice Age, with a total ice volume of 283 ± 42 cubic kilometres. Also, the study determines equilibrium line altitudes (ELAs) for over 4000 glaciers, showing patterns influenced by temperature, precipitation, and solar radiation. After all, we introduce a new ELA correction approach based on solar incidence.
Hosein Fereydooni, Stephan Gruber, David Stillman, and Derek Cronmiller
EGUsphere, https://doi.org/10.5194/egusphere-2025-1801, https://doi.org/10.5194/egusphere-2025-1801, 2025
Short summary
Short summary
Detecting ground ice in permafrost is crucial for climate research and infrastructure, but traditional methods often struggle to distinguish it. This study examines the dielectric properties of ground ice as a unique fingerprint. Field measurements were taken at two Yukon permafrost sites: a retrogressive thaw slump and a pingo. Comparing these with electrical resistivity and impedance results, we found relaxation time is a more reliable indicator for ground ice detection.
Andrea Manconi, Gwendolyn Dasser, Mylène Jacquemart, Nicolas Oestreicher, Livia Piermattei, and Tazio Strozzi
Abstr. Int. Cartogr. Assoc., 9, 41, https://doi.org/10.5194/ica-abs-9-41-2025, https://doi.org/10.5194/ica-abs-9-41-2025, 2025
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025, https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Short summary
Despite the critical role of water in alpine regions, its presence in bedrock is frequently neglected. This research examines the dynamics of water in fractures using 1 decade of measurements from a tunnel 50 m underground. We provide new insights into alpine groundwater dynamics, revealing that up to 800 L d-1 can flow in one fracture during extreme events. These quantities can saturate the fractures, enhance hydraulic conductivity, and generate pressures that destabilize slopes.
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151, https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Short summary
On 13 June 2023, a freestanding rock pillar on the Matterhorn Hörnligrat ridge collapsed after years of weakening. Our study explores how seasonal temperature changes and water infiltration into frozen rock contributed to its failure. By combining field data, lab tests, and modeling, we reveal how warming permafrost increases rockfall risks. Our findings highlight the need for multi-method monitoring and modeling to understand rock slope failure and its links to climate change.
Barbara Widhalm, Annett Bartsch, Tazio Strozzi, Nina Jones, Artem Khomutov, Elena Babkina, Marina Leibman, Rustam Khairullin, Mathias Göckede, Helena Bergstedt, Clemens von Baeckmann, and Xaver Muri
The Cryosphere, 19, 1103–1133, https://doi.org/10.5194/tc-19-1103-2025, https://doi.org/10.5194/tc-19-1103-2025, 2025
Short summary
Short summary
Mapping soil moisture in Arctic permafrost regions is crucial for various activities, but it is challenging with typical satellite methods due to the landscape's diversity. Seasonal freezing and thawing cause the ground to periodically rise and subside. Our research demonstrates that this seasonal ground settlement, measured with Sentinel-1 satellite data, is larger in areas with wetter soils. This method helps to monitor permafrost degradation.
Bin Cao and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-575, https://doi.org/10.5194/egusphere-2025-575, 2025
Short summary
Short summary
The climate-driven changes in cold regions have an outsized importance for local resilient communities and for global climate through teleconnections. We shows that reanalyses are less accurate in cold regions compared to other more populated regions, coincident with the low density of observations. Our findings likely point to similar gaps in our knowledge and capabilities for climate research and services in cold regions.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.
Elizaveta Sharaborova, Michael Lehning, Nander Wever, Marcia Phillips, and Hendrik Huwald
EGUsphere, https://doi.org/10.5194/egusphere-2024-4174, https://doi.org/10.5194/egusphere-2024-4174, 2025
Short summary
Short summary
Global warming provokes permafrost to thaw, damaging landscapes and infrastructure. This study explores methods to slow this thawing at an alpine site. We investigate different methods based on passive and active cooling system. The best approach mixes both methods and manages heat flow, potentially allowing excess energy to be used locally.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025, https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Short summary
Our study explores permafrost–glacier interactions with a focus on their implications for preparing or triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold–warm dividing line in polythermal alpine glaciers, a widespread and currently under-explored phenomenon in alpine environments worldwide.
Alexandru Onaca, Flavius Sirbu, Valentin Poncos, Christin Hilbich, Tazio Strozzi, Petru Urdea, Răzvan Popescu, Oana Berzescu, Bernd Etzelmüller, Alfred Vespremeanu-Stroe, Mirela Vasile, Delia Teleagă, Dan Birtaș, Iosif Lopătiță, Simon Filhol, Alexandru Hegyi, and Florina Ardelean
EGUsphere, https://doi.org/10.5194/egusphere-2024-3262, https://doi.org/10.5194/egusphere-2024-3262, 2025
Short summary
Short summary
This study establishes a methodology for the study of slow-moving rock glaciers in marginal permafrost and provides the basic knowledge for understanding rock glaciers in south east Europe. By using a combination of different methods (remote sensing, geophysical survey, thermal measurements), we found out that, on the transitional rock glaciers, low ground ice content (i.e. below 20 %) produces horizontal displacements of up to 3 cm per year.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
The Cryosphere, 18, 5939–5963, https://doi.org/10.5194/tc-18-5939-2024, https://doi.org/10.5194/tc-18-5939-2024, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Samuel Weber and Alessandro Cicoira
EGUsphere, https://doi.org/10.5194/egusphere-2024-2652, https://doi.org/10.5194/egusphere-2024-2652, 2024
Short summary
Short summary
The properties of the permafrost ground depend on its temperature and composition. We used temperature data from 29 boreholes in Switzerland to study how heat moves through different types of mountain permafrost landforms. We found that it depends on where you are, whether there is water in the ground and what time of year it is. Understanding these changes is important because they can affect how stable mountain slopes are and how easy it is to build things in mountain areas.
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024, https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Short summary
Reversal polarity is observed in rock glacier seismic refraction tomography. We collected several datasets observing this phenomenon in Switzerland and Italy. This phase change may be linked to interferences due to the presence of a thin low-velocity layer. Our results are confirmed by the modelling and analysis of synthetic seismograms to demonstrate that the presence of a low-velocity layer produces a polarity reversal on the seismic gather.
Alexander Bast, Robert Kenner, and Marcia Phillips
The Cryosphere, 18, 3141–3158, https://doi.org/10.5194/tc-18-3141-2024, https://doi.org/10.5194/tc-18-3141-2024, 2024
Short summary
Short summary
We monitor ground temperature, water pressure, and relative ice/water contents in a creeping ice-rich rock glacier in mountain permafrost to study its characteristics during a deceleration period with dry conditions and a summer heat wave. The snowpack has an important role as a provider of water and as a thermal insulator. Snow-poor winters, followed by dry summers, induce cooling and drying of the permafrost, leading to rock glacier deceleration.
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Lars Widmer, Marcia Phillips, and Chasper Buchli
The Cryosphere, 17, 4289–4295, https://doi.org/10.5194/tc-17-4289-2023, https://doi.org/10.5194/tc-17-4289-2023, 2023
Short summary
Short summary
Long-term temperature measurements are challenging to carry out in mountain-permafrost boreholes. The widely used resistance thermistors are highly accurate but prone to drift when they are exposed to moisture, or the cable connecting them is stretched. We explore the possibility of supplementing them with digital sensors and analyse the performance of both systems at 15 depths in the same mountain-permafrost borehole.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Marcia Phillips, Chasper Buchli, Samuel Weber, Jacopo Boaga, Mirko Pavoni, and Alexander Bast
The Cryosphere, 17, 753–760, https://doi.org/10.5194/tc-17-753-2023, https://doi.org/10.5194/tc-17-753-2023, 2023
Short summary
Short summary
A new combination of temperature, water pressure and cross-borehole electrical resistivity data is used to investigate ice/water contents in an ice-rich rock glacier. The landform is close to 0°C and has locally heterogeneous characteristics, ice/water contents and temperatures. The techniques presented continuously monitor temporal and spatial phase changes to a depth of 12 m and provide the basis for a better understanding of accelerating rock glacier movements and future water availability.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Francisco José Cuesta-Valero, Hugo Beltrami, Stephan Gruber, Almudena García-García, and J. Fidel González-Rouco
Geosci. Model Dev., 15, 7913–7932, https://doi.org/10.5194/gmd-15-7913-2022, https://doi.org/10.5194/gmd-15-7913-2022, 2022
Short summary
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Short summary
We intensely investigated the Gruben site in the Swiss Alps, where glaciers and permafrost landforms closely interact, to better understand cold-climate environments. By the interpretation of air photos from 5 decades, we describe long-term developments of the existing landforms. In combination with high-resolution positioning measurements and ground surface temperatures, we were also able to link these to short-term changes and describe different landform responses to climate forcing.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Tazio Strozzi, Andreas Wiesmann, Andreas Kääb, Thomas Schellenberger, and Frank Paul
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-44, https://doi.org/10.5194/essd-2022-44, 2022
Revised manuscript not accepted
Short summary
Short summary
Knowledge on surface velocity of glaciers and ice caps contributes to a better understanding of a wide range of processes related to glacier dynamics, mass change and response to climate. Based on the release of historical satellite radar data from various space agencies we compiled nearly complete mosaics of winter ice surface velocities for the 1990's over the Eastern Arctic. Compared to the present state, we observe a general increase of ice velocities along with a retreat of glacier fronts.
Alessandro De Pedrini, Christian Ambrosi, and Cristian Scapozza
Geogr. Helv., 77, 21–37, https://doi.org/10.5194/gh-77-21-2022, https://doi.org/10.5194/gh-77-21-2022, 2022
Short summary
Short summary
The Monte Crenone rock avalanche of 1513 is well known on the southern side of the Alps because in 1515 it generated the largest inundation that has occurred in Switzerland in the Common Era, the Buzza di Biasca. New geological and historical observations allowed the setup of a numerical model of this major event, permitting a better definition of the chain of consequences that affected the alluvial plain of the river Ticino from Biasca to Lake Maggiore between the 16th and the 19th century.
Dorota Czerski, Daphné Giacomazzi, and Cristian Scapozza
Geogr. Helv., 77, 1–20, https://doi.org/10.5194/gh-77-1-2022, https://doi.org/10.5194/gh-77-1-2022, 2022
Short summary
Short summary
The paper presents the results of recent geoarchaeological studies on the Ticino river alluvial plain. The sedimentological descriptions are combined with archaeological observations and constrained with radiocarbon dating. This approach, together with data from previous research and historical sources, provides an interesting overview of the eveolution of Ticino river morphosedimentary dynamics in relation to human settlements since the Neolithic.
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
Cristian Scapozza, Chantal Del Siro, Christophe Lambiel, and Christian Ambrosi
Geogr. Helv., 76, 401–423, https://doi.org/10.5194/gh-76-401-2021, https://doi.org/10.5194/gh-76-401-2021, 2021
Short summary
Short summary
Exposure ages make it possible to determine the time of weathering of a rock surface. They can be determined from rebound values measured with the Schmidt hammer and calibrated on surfaces of known age, defined in this study thanks to historical cartography and two mule tracks built in 300 and 1250 CE, which allowed us to reconstruct glacier fluctuations over the last 3 centuries in Val Scaradra and to define the time of deglaciation and rock glacier development in the Splügenpass region.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021, https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Short summary
We present a new method to compute temperature changes with melting and freezing – a fundamental challenge in cryosphere research – extremely efficiently and with guaranteed correctness of the energy balance for any time step size. This is a key feature since the integration time step can then be chosen according to the timescale of the processes to be studied, from seconds to days.
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary
Short summary
We study the surface energy balance from a cold-arid permafrost environment in the Indian Himalayan region. The GEOtop model was used for the modelling of surface energy balance. Our results show that the variability in the turbulent heat fluxes is similar to that reported from the seasonally frozen ground and permafrost regions of the Tibetan Plateau. Further, the low relative humidity could be playing a critical role in the surface energy balance and the permafrost processes.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Sebastián Vivero, Reynald Delaloye, and Christophe Lambiel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-8, https://doi.org/10.5194/esurf-2021-8, 2021
Preprint withdrawn
Short summary
Short summary
We use repeated drone flights to measure the velocities of a rock glacier located in the western Swiss Alps. The results are validated by comparing with simultaneous GPS measurements. Between 2016 and 2019, the rock glacier doubled its overall frontal velocity, from 5 m to more than 10 m per year. These high velocities and the development of a scarp feature indicate a rock glacier destabilisation phase. Finally, this work highlights the use of drones for rock glacier monitoring.
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Agnès Helmstetter, Raphaël Mayoraz, and Eric Larose
The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021, https://doi.org/10.5194/tc-15-501-2021, 2021
Short summary
Short summary
Among mountainous permafrost landforms, rock glaciers are composed of boulders, fine frozen materials, water and ice in various proportions. Displacement rates of active rock glaciers can reach several m/yr, contributing to emerging risks linked to gravitational hazards. Thanks to passive seismic monitoring, resonance effects related to seasonal freeze–thawing processes of the shallower layers have been monitored and modeled. This method is an accurate tool for studying rock glaciers at depth.
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Cited articles
Aberer, K., Hauswirth, M., and Salehi, A.: A Middleware for Fast and Flexible
Sensor Network Deployment, in: Proceedings of the 32nd International
Conference on Very Large Data Bases, VLDB '06, VLDB
Endowment, Seoul Korea, 12–15 September 2006, 1199–1202,
https://dl.acm.org/doi/10.5555/1182635.1164243 (last access: 21 October 2022), 2006.
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements
and internal structure of some rock glaciers in Switzerland, Permafrost and
Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414,
2002. a
Beutel, J.: Scripts to automatically process GNSS data from http://data.permasense.ch using RTKLIB: An Open Source Program Package for GNSS Positioning (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7251288, 2022. a, b
Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I.,
Thiele, L., Tschudin, C., Woehrle, M., and Yuecel, M.: PermaDAQ: A
scientific instrument for precision sensing and data recovery in
environmental extremes, in: The 8th ACM/IEEE International Conference on
Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009, 265–276, https://dl.acm.org/doi/10.5555/1602165.1602190 (last access: 21 October 2022), 2009. a
Beutel, J., Buchli, B., Ferrari, F., Keller, M., Thiele, L., and Zimmerling,
M.: X-Sense: Sensing in Extreme Environments, in: Proceedings of Design,
Automation and Test in Europe, Grenoble, France, 14–18 March 2011,
1460–1465,
https://doi.org/10.1109/DATE.2011.5763236, 2011. a, b
Beutel, J., Biri, A., Buchli, B., Cicoira, A., Delaloye, R., Da Forno, R., Gaertner-Roer, I., Gruber, S., Gsell, T., Hasler, A., Lim, R., Limpach, P., Mayoraz, R., Meyer, M., Noetzli, J., Phillips, M., Pointner, E., Raetzo, H., Scapozza, C., Strozzi, T., Thiele, L., Vieli, A., Vonder Mühll, D., Weber, S., and Wirz, V.: Kinematic observations of the mountain cryosphere using in-situ GNSS instruments 2011–2021, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.948334, 2022. a, b, c
Bu, J., Yu, K., Qian, N., Zuo, X., and Chang, J.: Performance Assessment of
Positioning Based on Multi-Frequency Multi-GNSS Observations: Signal Quality,
PPP and Baseline Solution, IEEE Access, 9, 5845–5861,
https://doi.org/10.1109/ACCESS.2020.3048352, 2021. a
Buchli, B., Sutton, F., and Beutel, J.: GPS-equipped Wireless Sensor Network
Node for High-accuracy Positioning Applications, Lecture Notes on Computer
Science 7158. Proc. of 9th European Conference on Wireless Sensor Networks
(EWSN 2012), Trento, Italy, 15–17 February 2012,
https://link.springer.com/chapter/10.1007/978-3-642-28169-3_12 (last access: 31 October 2022), 2012. a, b, c, d, e
Burjánek, J., Gassner-Stamm, G., Poggi, V., Moore, J. R., and Fäh, D.:
Ambient vibration analysis of an unstable mountain slope, Geophys. J.
Int., 180, 820–828, https://doi.org/10.1111/j.1365-246X.2009.04451.x, 2010. a
Cicoira, A., Beutel, J., Faillettaz, J., Gärtner-Roer, I., and Vieli, A.: Resolving the influence of temperature forcing through heat conduction on rock glacier dynamics: a numerical modelling approach, The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, 2019a. a, b, c, d
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett.,
528, 115844, https://doi.org/10.1016/j.epsl.2019.115844,
2019b. a, b
Dach, R., Lutz, S., Walser, P., and Fridez, P.: Bernese GNSS Software Version
5.2. User manual, Astronomical Institute, University of Bern,
https://doi.org/10.7892/boris.72297, 2015. a
Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps, Geogr. Helv., 65, 135–145, https://doi.org/10.5194/gh-65-135-2010, 2010. a
Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., and
Gachet, S.: Rapidly moving rock glaciers in Mattertal, in: Mattertal – ein
Tal in Bewegung, Publikation zur Jahrestagung der Schweizerischen
Geomorphologischen Gesellschaft, Eidg. Forschungsanstalt WSL,
Birmensdorf, CH, St. Niklaus, CH, 21–30, https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:11268 (last access: 21 October 2022), 2013. a, b
Eberhardt, E., Stead, D., and Coggan, J.: Numerical analysis of initiation and
progressive failure in natural rock slopes – The 1991 Randa rockslide,
Int. J. Rock Mech. Min., 41, 69–87, https://doi.org/10.1016/S1365-1609(03)00076-5,
2004. a
Fäh, D., Moore, J., Burjanek, J., Iosifescu Enescu, I., Dalguer, L., Dupray,
F., Michel, C., Woessner, J., Villiger, A., Laue, J., Marschall, I., Gischig,
V., Loew, S., Alvarez, S., Balderer, W., Kästli, P., Giardini, D.,
Iosifescu Enescu, C. M., Hurni, L., Lestuzzi, P., Karbassi, A., Baumann, C.,
Geiger, A., Ferrari, A., Lalou, L., Clinton, J., and Deichmann, N.: Coupled
seismogenic geohazards in alpine regions, B. Geofis. Teor.
Appl., 53, 485–508, https://doi.org/10.4430/bgta0048, 2012. a
Ghirlanda, A., Braillard, L., Delaloye, R., Kummert, M., and Staub, B.: The
complex pluri-decennial and multiphasic destabilization of the Jegi rock
glacier (western Swiss Alps): historical development and ongoing crisis, in:
XI. International Conference On Permafrost, Potsdam, Germany, 20–24 June 2016, 36–38, https://media.gfz-potsdam.de/bib/ICOP/ICOP_2016_Book_of_Abstracts.pdf (last access: 21 October 2022), 2016.
Girard, L., Beutel, J., Gruber, S., Hunziker, J., Lim, R., and Weber, S.: A
custom acoustic emission monitoring system for harsh environments:
Application to freezing-induced damage in alpine rock walls, Geosci. Instrum.
Method. Data Syst., 1, 155–167, https://doi.org/10.5194/gi-1-155-2012, 2012. a
Gischig, S., Moore, J. R., Evans, K. F., Amann, F., and Loew, S.:
Thermomechanical forcing of deep rock slope deformation: 2. The Randa rock
slope instability, J. Geophys. Res.-Earth, 116, F04011,
https://doi.org/10.1029/2011JF002007, 2011. a
Gischig, V., Amann, F., Moore, J., Loew, S., Eisenbeiss, H., and Stempfhuber,
W.: Composite rock slope kinematics at the current Randa instability,
Switzerland, based on remote sensing and numerical modeling, Eng.
Geol., 118, 37–53, https://doi.org/10.1016/j.enggeo.2010.11.006,
2011. a
Guillemot, A., Baillet, L., Garambois, S., Bodin, X., Helmstetter, A., Mayoraz, R., and Larose, E.: Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling, The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021, 2021. a
Haeberli, W.: Creep of mountain permafrost: Internal Structure and Flow of
Alpine Rock Glaciers, PhD thesis, ETH Zurich, 1985. a
Haeberli, W.: On the morphodynamics of ice/debris-transport systems in cold
mountain areas, Norsk Geogr. Tidsskr., 50, 3–9,
https://doi.org/10.1080/00291959608552346, 1996. a
Haeberli, W. and Schmid, W.: Aerophotogrammetrical monitoring of rock glaciers,
in: Proc. Fifth International Conference on Permafrost, International Permafrost Association, Trondheim, Norway, 2-5 August 1988, 764–769,
https://www.worldcat.org/title/permafrost-fifth-international-conference-proceedings-august-2-5-1988/oclc/19795903 (last access: 21 October 2022),
1988. a
Haeberli, W. and Vonder Mühll, D.: On the characteristics and possible
origins of ice in rock glacier permafrost, Z. Geomorphol., 104,
43–57, 1996. a
Haeberli, W., King, L., and Flotron, A.: Surface movement and lichen‐cover
studies at the active rock glacier near the Grubengletscher, Wallis, Swiss
Alps, Arctic Alpine Res., 11, 421–441, 1979. a
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011. a, b
Hasler, A., Gruber, S., and Beutel, J.: Kinematics of steep bedrock permafrost,
J. Geophys. Res., 117, F01016, https://doi.org/10.1029/2011JF001981, 2012. a, b
Henkel, P., Koch, F., Appel, F., Bach, H., Prasch, M., Schmid, L., Schweizer,
J., and Mauser, W.: Snow Water Equivalent of Dry Snow Derived From GNSS
Carrier Phases, IEEE T. Geosci. Remote, 56,
3561–3572, https://doi.org/10.1109/TGRS.2018.2802494, 2018. a
Hoelzle, M., Vonder Mühll, D., and Haeberli, W.: Thirty years of
permafrost research in the Corvatsch‐Furtschellas area, Eastern Swiss Alps:
A review, Norsk Geogr. Tidsskr., 56,
137–145, https://doi.org/10.1080/002919502760056468, 2002. a
Hurter, F., Geiger, A., Perler, D., and Rothacher, M.: GNSS water vapor
monitoring in the Swiss Alps, in: 2012 IEEE International Geoscience and
Remote Sensing Symposium, Munich, Germany, 22–27 July 2012, 1972–1975, https://doi.org/10.1109/IGARSS.2012.6351115,
2012. a
Kääb, A., Haeberli, W., and Gudmundsson, G. H.: Analysing the creep of
mountain permafrost using high precision aerial photogrammetry: 25 years of
monitoring Gruben rock glacier, Swiss Alps, Permafrost Periglac., 8, 409–426,
https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C,
1997. a
Kääb, A., Gudmundsson, G. H., and Hoelzle, M.: Surface deformation of
creeping mountain permafrost. Photogrammetric investigations on Murtel Rock
Glacier, Swiss Alps, in: Proc. Seventh International Conference on
Permafrost, International Permafrost Association, Yellowknife, Northwest Territories, Canada, 23–27 June 1998, 531–537,
https://www.uspermafrost.org/assets/docs/Publications/Proceedings/07th International Conference on Permafrost - Program, Abstracts, Reports of Perm Assoc June 23-27 1998.pdf (last access: 21 October 2022),
1998. a
Kenner, R., Phillips, M., Beutel, J., Hiller, M., Limpach, P., Pointner, E.,
and Volken, M.: Factors Controlling Velocity Variations at Short-Term,
Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss
Alps, Permafrost Periglac., 28, 675–684,
https://doi.org/10.1002/ppp.1953, 2017. a, b
Kenner, R., Phillips, M., Limpach, P., Beutel, J., and Hiller, M.: Monitoring
mass movements using georeferenced time-lapse photography: Ritigraben rock
glacier, western Swiss Alps, Cold Reg. Sci. Technol., 145, 127–134, https://doi.org/10.1016/j.coldregions.2017.10.018, 2018. a, b, c
Kenner, R., Pruessner, L., Beutel, J., Limpach, P., and Phillips, M.: How rock
glacier hydrology, deformation velocities and ground temperatures interact:
Examples from the Swiss Alps, Permafrost Periglac., 31,
3–14, https://doi.org/10.1002/ppp.2023, 2020. a, b
Kummert, M. and Delaloye, R.: Mapping and quantifying sediment transfer between
the front of rapidly moving rock glaciers and torrential gullies,
Geomorphology, 309, 60–76,
https://doi.org/10.1016/j.geomorph.2018.02.021, 2018. a
Kummert, M., Delaloye, R., and Braillard, L.: Erosion and sediment transfer
processes at the front of rapidly moving rock glaciers: Systematic
observations with automatic cameras in the western Swiss Alps, Permafrost
Periglac., 29, 21–33, https://doi.org/10.1002/ppp.1960,
2018a. a
Kummert, M., Delaloye, R., and Braillard, L.: Erosion and sediment transfer
processes at the front of rapidly moving rock glaciers: Systematic
observations with automatic cameras in the western Swiss Alps, Permafrost
Periglac., 29, 21–33, https://doi.org/10.1002/ppp.1960,
2018b. a
Leinauer, J., Weber, S., Cicoira, A., Beutel, J., and Krautblatter, M.:
Prospective forecasting of rock slope failure time, Commun. Earth. Environ., in review, 2022. a
Moore, J., Gischig, V., Burjánek, J., Loew, S., and Fäh, D.: Site
effects in unstable rock slopes: Dynamic behavior of the Randa instability
(Switzerland), Bull. Seism. Soc. Am., 101, 3110–3116,
https://doi.org/10.1785/0120110127, 2011. a
Noetzli, J., Pellet, C., and Staub, B. (Eds.): PERMOS 2019. Permafrost in
Switzerland 2014/2015 to 2017/2018, Glaciological Report (Permafrost) No.
16-19 of the Cryospheric Commission of the Swiss Academy of Sciences (SCNAT),
https://doi.org/10.13093/permos-rep-2019-16-19, 2019. a, b, c
Oggier, N., Graf, C., Delaloye, R., and Burkard, A.: Integral protection
concept “Bielzug” – Integrales Schutzkonzept Bielzug, in: Proc. INTERPRAEVENT, Lucerne, Switzerland, 30 May–2 June 2016, 525–534,
https://interpraevent2016.ch/wp-content/uploads/2019/03/IP16_CP_digital.pdf (last access: 31 October 2022),
2016. a
Paziewski, J., Fortunato, M., Mazzoni, A., and Odolinski, R.: An analysis of
multi-GNSS observations tracked by recent Android smartphones and
smartphone-only relative positioning results, Measurement, 175, 109162,
https://doi.org/10.1016/j.measurement.2021.109162, 2021. a
Ravanel, L. and Deline, P.: Rockfall hazard in the Mont Blanc massif increased
by the current atmospheric warming, in: IAEG 12th Congress, edited by:
Lollino, G., Manconi, A., Clague, J., Shan, W., and Chiarle, M., Climate
Change and Engineering Geology, Torino, Italy, 425–428,
https://hal-sde.archives-ouvertes.fr/hal-01896005 (last access: 21 October 2022), 2014. a
Scapozza, C., Lambiel, C., Bozzini, C., Mari, S., and Conedera, M.: Assessing
the rock glacier kinematics on three different timescales: a case study from
the southern Swiss Alps, Earth Surf. Proc. Land., 39,
2056–2069, https://doi.org/10.1002/esp.3599, 2014. a
Strozzi, T., Caduff, R., Jones, N., Barboux, C., Delaloye, R., Bodin, X.,
Kääb, A., Mätzler, E., and Schrott, L.: Monitoring Rock Glacier Kinematics
with Satellite Synthetic Aperture Radar, Remote Sens., 12, 559,
https://doi.org/10.3390/rs12030559, 2020. a
Talzi, I., Hasler, A., Gruber, S., and Tschudin, C.: PermaSense: Investigating
Permafrost with a WSN in the Swiss Alps, in: Proceedings of the 4th Workshop
on Embedded Networked Sensors, EmNets '07, ACM, New York, NY, USA, June 2007, 8–12,
https://doi.org/10.1145/1278972.1278974, 2007. a
Teunissen, P. J. and Montenbruck, O. (Eds.): Handbook of Global Navigation
Satellite Systems, 1st edn., Springer International Publishing, Hardcover ISBN 978-3-030-73172-4,
eBook ISBN 978-3-319-42928-1,
https://doi.org/10.1007/978-3-319-42928-1, 2017. a, b
Vonder Mühll, D. and Haeberli, W.: Thermal Characteristics of the
Permafrost within an Active Rock Glacier (Murtèl/Corvatsch, Grisons, Swiss
Alps), J. Glaciol., 36, 151–158, https://doi.org/10.3189/S0022143000009382,
1990. a
Weber, S., Beutel, J., Faillettaz, J., Hasler, A., Krautblatter, M., and Vieli, A.: Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH), The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, 2017. a
Weber, S., Beutel, J., Gruber, S., Gsell, T., Hasler, A., and Vieli, A.:
Rock-temperature, fracture displacement and acoustic/micro-seismic data
measured at Matterhorn Hörnligrat, Switzerland, Zenodo [data set],
https://doi.org/10.5281/zenodo.1163037, 2018a.
Weber, S., Fäh, D., Beutel, J., Faillettaz, J., Gruber, S., and Vieli, A.:
Ambient seismic vibrations in steep bedrock permafrost used to infer
variations of ice-fill in fractures, Earth Planet. Sc. Lett.,
501, 119–127, https://doi.org/10.1016/j.epsl.2018.08.042, 2018b. a
Weber, S., Faillettaz, J., Meyer, M., Beutel, J., and Vieli, A.: Acoustic and
micro-seismic characterization in steep bedrock permafrost on Matterhorn
(CH), J. Geophys. Res.-Earth, 123, 1363–1385,
https://doi.org/10.1029/2018JF004615, 2018c. a
Weber, S., Beutel, J., Da Forno, R., Geiger, A., Gruber, S., Gsell, T., Hasler, A., Keller, M., Lim, R., Limpach, P., Meyer, M., Talzi, I., Thiele, L., Tschudin, C., Vieli, A., Vonder Mühll, D., and Yücel, M.: A decade of detailed observations (2008–2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH), Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, 2019a (data available at: https://doi.org/10.1594/PANGAEA.897640).
a, b, c, d, e, f
Weber, S., Beutel, J., and Meyer, M.: Code for PermaSense GSN data management, Zenodo [code],
https://doi.org/10.5281/zenodo.2542715, 2019b. a, b
Weber, S., Beutel, J., and Meyer, M.: Code for management and processing of PermaSense data (3.1), Zenodo [code], https://doi.org/10.5281/zenodo.7251255, 2022. a, b, c, d
Willenberg, H., Evans, K. F., Eberhardt, E., Spillmann, T., and Loew, S.:
Internal structure and deformation of an unstable crystalline rock mass above
Randa (Switzerland): Part II – Three-dimensional deformation patterns,
Eng. Geol., 101, 15–32,
https://doi.org/10.1016/j.enggeo.2008.01.016, 2008a. a
Willenberg, H., Loew, S., Eberhardt, E., Evans, K. F., Spillmann, T., Heincke,
B., Maurer, H., and Green, A. G.: Internal structure and deformation of an
unstable crystalline rock mass above Randa (Switzerland): Part I – Internal
structure from integrated geological and geophysical investigations,
Eng. Geol., 101, 1–14,
https://doi.org/10.1016/j.enggeo.2008.01.015, 2008b. a
Wirz, V., Beutel, J., Buchli, B., Gruber, S., and Limpach, P.: Temporal
Characteristics of Different Cryosphere-Related Slope Movements in High
Mountains, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, Heidelberg, 383–390,
ISBN 978-3-642-31336-3,
eBook ISBN 978-3-642-31337-0,
https://doi.org/10.1007/978-3-642-31337-0_49, 2013. a, b, c, d, e, f, g, h, i
Wirz, V., Beutel, J., Gruber, S., Gubler, S., and Purves, R. S.: Estimating velocity from noisy GPS data for investigating the temporal variability of slope movements, Nat. Hazards Earth Syst. Sci., 14, 2503–2520, https://doi.org/10.5194/nhess-14-2503-2014, 2014a. a, b
Wirz, V., Geertsema, M., Gruber, S., and Purves, R. S.: Temporal variability of
diverse mountain permafrost slope movements derived from multi-year daily GPS
data, Mattertal, Switzerland, Landslides, 13, 67–83,
https://doi.org/10.1007/s10346-014-0544-3, 2014b. a, b, c, d
World Meteorological Organization (WMO): The 2022 GCOS ECVs Requirements,
https://library.wmo.int/doc_num.php?explnum_id=11318, last access: 1 November 2022.
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
This paper documents a monitoring network of 54 positions, located on different periglacial...
Altmetrics
Final-revised paper
Preprint