Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3157-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3157-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A national landslide inventory for Denmark
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Anders A. Bjørk
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
Marie Keiding
Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
Aart Kroon
Department of Geosciences and Natural Resource Management, University
of Copenhagen, Copenhagen, Denmark
Related authors
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Rasmus Meyer, Mathias Preisler Schødt, Mikkel Lydholm Rasmussen, Jonas Kvist Andersen, Mads Dømgaard, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3850, https://doi.org/10.5194/egusphere-2024-3850, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Understanding snow accumulation is important for water resource management, but measurements of snow depth in mountainous regions are sparse. We introduce a novel satellite-based approach to estimate snow depth for deep snow in mountainous regions by combining two types of satellite data: radar images and laser surface height measurements. Results suggest that our method more accurately estimate the magnitude of snowfall compared to modelled data over the Southern Norwegian Mountains.
Jonas Kvist Andersen, Rasmus Probst Meyer, Flora Salome Huiban, Mads Lykke Dømgaard, Romain Millan, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3382, https://doi.org/10.5194/egusphere-2024-3382, 2024
Short summary
Short summary
Storstrømmen Glacier in northeast Greenland goes through cycles of sudden flow speed-ups (known as surges) followed by long quiet phases. Currently in its quiet phase, recent measurements suggest it may be nearing conditions for a new surge, possibly between 2027 and 2040. We also observed several lake drainages that caused brief increases in glacier flow but did not trigger a surge. Continued monitoring is essential to understand how these processes influence glacier behavior.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Romain Millan, Jeremie Mouginot, Anna Derkacheva, Eric Rignot, Pietro Milillo, Enrico Ciraci, Luigi Dini, and Anders Bjørk
The Cryosphere, 16, 3021–3031, https://doi.org/10.5194/tc-16-3021-2022, https://doi.org/10.5194/tc-16-3021-2022, 2022
Short summary
Short summary
We detect for the first time a dramatic retreat of the grounding line of Petermann Glacier, a major glacier of the Greenland Ice Sheet. Using satellite data, we also observe a speedup of the glacier and a fracturing of the ice shelf. This sequence of events is coherent with ocean warming in this region and suggests that Petermann Glacier has initiated a phase of destabilization, which is of prime importance for the stability and future contribution of the Greenland Ice Sheet to sea level rise.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Svend Funder, Anita H. L. Sørensen, Nicolaj K. Larsen, Anders A. Bjørk, Jason P. Briner, Jesper Olsen, Anders Schomacker, Laura B. Levy, and Kurt H. Kjær
Clim. Past, 17, 587–601, https://doi.org/10.5194/cp-17-587-2021, https://doi.org/10.5194/cp-17-587-2021, 2021
Short summary
Short summary
Cosmogenic 10Be exposure dates from outlying islets along 300 km of the SW Greenland coast indicate that, although affected by inherited 10Be, the ice margin here was retreating during the Younger Dryas. These results seem to be corroborated by recent studies elsewhere in Greenland. The apparent mismatch between temperatures and ice margin behaviour may be explained by the advection of warm water to the ice margin on the shelf and by increased seasonality, both caused by a weakened AMOC.
Kristian Svennevig, Trine Dahl-Jensen, Marie Keiding, John Peter Merryman Boncori, Tine B. Larsen, Sara Salehi, Anne Munck Solgaard, and Peter H. Voss
Earth Surf. Dynam., 8, 1021–1038, https://doi.org/10.5194/esurf-8-1021-2020, https://doi.org/10.5194/esurf-8-1021-2020, 2020
Short summary
Short summary
The 17 June 2017 Karrat landslide in Greenland caused a tsunami that killed four people. We apply a multidisciplinary workflow to reconstruct a timeline of events and find that three historic landslides occurred in 2009, 2016, and 2017. We also find evidence of much older periods of landslide activity. Three newly discovered active slopes might pose a future hazard. We speculate that the trigger for the recent events is melting permafrost due to a warming climate.
Kristian Kjellerup Kjeldsen, Reimer Wilhelm Weinrebe, Jørgen Bendtsen, Anders Anker Bjørk, and Kurt Henrik Kjær
Earth Syst. Sci. Data, 9, 589–600, https://doi.org/10.5194/essd-9-589-2017, https://doi.org/10.5194/essd-9-589-2017, 2017
Short summary
Short summary
Here we present bathymetric and hydrographic measurements from two fjords in southeastern Greenland surveyed in 2014, leading to improved knowledge of the fjord morphology and an assessment of the variability in water masses in the fjords systems. Data were collected as part of a larger field campaign in which we targeted marine and terrestrial observations to assess the long-term behavior of the Greenland ice sheet and provide linkages to modern observations.
A. A. Bjørk, L. M. Kruse, and P. B. Michaelsen
The Cryosphere, 9, 2215–2218, https://doi.org/10.5194/tc-9-2215-2015, https://doi.org/10.5194/tc-9-2215-2015, 2015
Short summary
Short summary
During the last centuries hundreds of glaciers in Greenland have been mapped and named. Here we present the official database of all Greenlandic glacier names - consisting of 733 glacier names that have been approved by the Greenlandic authorities. This data set will help researchers working with Greenlandic glaciers in naming the glaciers properly in order to avoid future misunderstandings and will help the researcher who is looking for older glacier names found in the historic literature.
S. A. Khan, K. K. Kjeldsen, K. H. Kjær, S. Bevan, A. Luckman, A. Aschwanden, A. A. Bjørk, N. J. Korsgaard, J. E. Box, M. van den Broeke, T. M. van Dam, and A. Fitzner
The Cryosphere, 8, 1497–1507, https://doi.org/10.5194/tc-8-1497-2014, https://doi.org/10.5194/tc-8-1497-2014, 2014
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
A strontium isoscape of southwestern Australia and progress toward a national strontium isoscape
Integration by design: driving mineral system knowledge using multi-modal, collocated, scale-consistent characterisation
MUDA: dynamic geophysical and geochemical MUltiparametric DAtabase
A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images
RER2023: the landslide inventory dataset of the May 2023 Emilia-Romagna event
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania (Italy): statistical combination of different predictions for spatial estimation of thickness
HOLSEA-NL: Holocene water level and sea-level indicator dataset for the Netherlands
The China Active Faults Database (CAFD) and its web system
A regolith lead isoscape of Australia
High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen
High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia
A global zircon U–Th–Pb geochronological database
Subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy)
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
IESDB – the Iberian Evaporite Structure Database
Spectral Library of European Pegmatites, Pegmatite Minerals and Pegmatite Host-Rocks – the GREENPEG project database
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Digital soil mapping of lithium in Australia
A multi-dimensional dataset of Ordovician to Silurian graptolite specimens for virtual examination, global correlation, and shale gas exploration
A strontium isoscape of northern Australia
Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks
A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy
Pan-Arctic soil element bioavailability estimations
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
OCTOPUS database (v.2)
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
James R. Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina D. Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data, 16, 5027–5067, https://doi.org/10.5194/essd-16-5027-2024, https://doi.org/10.5194/essd-16-5027-2024, 2024
Short summary
Short summary
Cloncurry METAL shifts the big-data paradigm in mineral exploration by developing a quantitative, fully integrated, multi-modal, scale-consistent methodology for mineral system characterisation. The data comprise collocated petrophysical–mineralogical–geochemical–structural–metasomatic characterisation of 23 deposits from a highly complex mineral system. This approach enables translation of the mineral system processes into physics, providing a framework for smarter geophysics-based exploration.
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and MUDA working group
Earth Syst. Sci. Data, 16, 4843–4867, https://doi.org/10.5194/essd-16-4843-2024, https://doi.org/10.5194/essd-16-4843-2024, 2024
Short summary
Short summary
MUDA (geophysical and geochemical MUltiparametric DAtabase) is a new infrastructure of the National Institute of Geophysics and Volcanology serving geophysical and geochemical multiparametric data. MUDA collects information from different sensors, such as seismometers, accelerometers, hydrogeochemical sensors, meteorological stations and sensors for the flux of carbon dioxide and radon gas, with the aim of making correlations between seismic phenomena and variations in environmental parameters.
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024, https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
Short summary
In this study, we present the largest publicly available landslide dataset, Globally Distributed Coseismic Landslide Dataset (GDCLD), which includes multi-sensor high-resolution images from various locations around the world. We test GDCLD with seven advanced algorithms and show that it is effective in achieving reliable landslide mapping across different triggers and environments, with great potential in enhancing emergency response and disaster management.
Matteo Berti, Marco Pizziolo, Michele Scaroni, Mauro Generali, Vincenzo Critelli, Marco Mulas, Melissa Tondo, Francesco Lelli, Cecilia Fabbiani, Francesco Ronchetti, Giuseppe Ciccarese, Nicola Dal Seno, Elena Ioriatti, Rodolfo Rani, Alessandro Zuccarini, Tommaso Simonelli, and Alessandro Corsini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-407, https://doi.org/10.5194/essd-2024-407, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In May 2023, Emilia-Romagna, Italy, experienced heavy rainfall that led to severe flooding and initiated thousands of landslides on slopes thought to be stable. Collaborating with the Civil Protection Agency, our team created a detailed map documenting 80,997 affected areas. This comprehensive dataset is crucial for research on climate change and assists in planning and risk management by demonstrating how climate change can alter our understanding of landslide susceptibility.
Pooria Ebrahimi, Fabio Matano, Vincenzo Amato, Raffaele Mattera, and Germana Scepi
Earth Syst. Sci. Data, 16, 4161–4188, https://doi.org/10.5194/essd-16-4161-2024, https://doi.org/10.5194/essd-16-4161-2024, 2024
Short summary
Short summary
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly influence landscape evolution, hydrology, erosion, and slope stability processes. Accurate mapping of the spatial-thickness variations of these fallout pyroclastic deposits over large hillslope areas remains a knowledge gap. We attempt to bridge this gap by applying statistical techniques to a field-based thickness measurement dataset of fallout pyroclastic deposits.
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024, https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Short summary
This study presents a national-scale database (1:4000 000) of active faults in China and its adjacent regions in tandem with an associated web-based query system. This database integrates regional-scale studies and surveys conducted over the past 2 decades (at reference scales from 1:250 000 to 1:50 000). Our system hosts this nation-scale database accessible through a Web Geographic Information System (GIS) application.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Yujing Wu, Xianjun Fang, and Jianqing Ji
Earth Syst. Sci. Data, 15, 5171–5181, https://doi.org/10.5194/essd-15-5171-2023, https://doi.org/10.5194/essd-15-5171-2023, 2023
Short summary
Short summary
We introduce a zircon U‒Th‒Pb chronological database of the global continental crust. This database provides comprehensive research materials for Earth system science in deep time and space due to its large amount of data (~2 million records), long time span (4.4 billion years), global sampling range, comprehensive zircon samples, and various dating instruments.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Kristen Chiama, Morgan Gabor, Isabella Lupini, Randolph Rutledge, Julia Ann Nord, Shuang Zhang, Asmaa Boujibar, Emma S. Bullock, Michael J. Walter, Kerstin Lehnert, Frank Spear, Shaunna M. Morrison, and Robert M. Hazen
Earth Syst. Sci. Data, 15, 4235–4259, https://doi.org/10.5194/essd-15-4235-2023, https://doi.org/10.5194/essd-15-4235-2023, 2023
Short summary
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Joana Cardoso-Fernandes, Douglas Santos, Cátia Rodrigues de Almeida, Alexandre Lima, Ana C. Teodoro, and GREENPEG project team
Earth Syst. Sci. Data, 15, 3111–3129, https://doi.org/10.5194/essd-15-3111-2023, https://doi.org/10.5194/essd-15-3111-2023, 2023
Short summary
Short summary
GREENPEG aims to develop tools for pegmatite exploration and to enhance European databases, adding new data on pegmatite properties, such as the spectral signature. Samples comprise pegmatites and wall rocks from Austria, Ireland, Norway, Portugal, and Spain. A detailed description of the spectral database is presented as well as reflectance spectra, photographs, and absorption features. Its European scale comprises pegmatites with distinct characteristics, providing a reference for exploration.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Hong-He Xu, Zhi-Bin Niu, Yan-Sen Chen, Xuan Ma, Xiao-Jing Tong, Yi-Tong Sun, Xiao-Yan Dong, Dan-Ni Fan, Shuang-Shuang Song, Yan-Yan Zhu, Ning Yang, and Qing Xia
Earth Syst. Sci. Data, 15, 2213–2221, https://doi.org/10.5194/essd-15-2213-2023, https://doi.org/10.5194/essd-15-2213-2023, 2023
Short summary
Short summary
A multi-dimensional and integrated dataset of fossil specimens is described. The dataset potentially contributes to a range of scientific activities and provides easy access to and virtual examination of fossil specimens in a convenient and low-cost way. It will greatly benefit paleontology in research, teaching, and science communication.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Samuel W. Scott, Léa Lévy, Cari Covell, Hjalti Franzson, Benoit Gibert, Ágúst Valfells, Juliet Newson, Julia Frolova, Egill Júlíusson, and María Sigríður Guðjónsdóttir
Earth Syst. Sci. Data, 15, 1165–1195, https://doi.org/10.5194/essd-15-1165-2023, https://doi.org/10.5194/essd-15-1165-2023, 2023
Short summary
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical, and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, these data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Cited articles
Alberti, S., Senogles, A., Kingen, K., Booth, A., Castro, P., DeKoekkoek,
J., Glover-Cutter, K., Mohney, C., Olsen, M., and Leshchinsky, B.: The
Hooskanaden Landslide: historic and recent surge behavior of an active
earthflow on the Oregon Coast, Landslides, 17, 2589–2602,
https://doi.org/10.1007/s10346-020-01466-8, 2020.
Brardinoni, F., Slaymakerl, O., and Hassan, M. A.: Landslide inventory in a
rugged forested watershed: a comparison between air-photo and field survey
data, Geomorphology, 54, 179–196,
https://doi.org/10.1016/S0169-555X(02)00355-0, 2003.
Burns, W. J. and Madin, I. P.: Protocol for Inventroy Mapping of Landslide
Deposits from Light Detection and Ranging (LiDAR) Imagery, Oregon Department
of Geology and Mineral Industries, 2009.
Cavalli, M. and Marchi, L.: Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR, Nat. Hazards Earth Syst. Sci., 8, 323–333, https://doi.org/10.5194/nhess-8-323-2008, 2008.
Coe, J. A.: Bellwether sites for evaluating changes in landslide frequency
and magnitude in cryospheric mountainous terrain: a call for systematic,
long-term observations to decipher the impact of climate change, Landslides,
17, 2483–2501, https://doi.org/10.1007/s10346-020-01462-y, 2020.
Colombo, A., Lanteri, L., Ramasco, M., and Troisi, C.: Systematic GIS-based
landslide inventory as the first step for effective landslide-hazard
management, Landslides, 2, 291–301,
https://doi.org/10.1007/s10346-005-0025-9, 2005.
Crosby, C. J., Whitmeyer, S. J., Bailey, J. E., De Paor, D. G., and Ornduff, T.: Lidar and Google Earth: Simplifying access to high-resolution topography data, in: Google Earth and Virtual Visualizations in Geoscience Education and Research, Geological Society of America, 0, https://doi.org/10.1130/2012.2492(03), 2012.
Cruden, D. M. and Varnes, D. J.: Landslide Types and Processes,
Transportation Research Board, 36–75, 1996.
Damm, B. and Klose, M.: The landslide database for Germany: Closing the gap
at national level, Geomorphology, 249, 82–93,
https://doi.org/10.1016/j.geomorph.2015.03.021, 2015.
Denmark, S.: Denmark in Figures, Statistics Denmark, 2019.
EEA: European Digital Elevation Model (EU-DEM), version 1.1, European Environment Agency , 2016.
Fiorucci, F., Cardinali, M., Carla, R., Rossi, M., Mondini, A. C., Santurri,
L., Ardizzone, F., and Guzzetti, F.: Seasonal landslide mapping and
estimation of landslide mobilization rates using aerial and satellite
images, Geomorphology, 129, 59–70,
https://doi.org/10.1016/j.geomorph.2011.01.013, 2011.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.:
Comparing landslide inventory maps, Geomorphology, 94, 268–289,
https://doi.org/10.1016/j.geomorph.2006.09.023, 2008.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate,
Earth-Sci. Rev., 162, 227–252,
https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
Geodatastyrelsen: Geodanmark 2015 12.5 cm Styrelsen for Dataforsyning og
Effektivisering, WMS Service, 2015a.
Geodatastyrelsen: Denmark's Elevation Model, Styrelsen for Dataforsyning og
Effektivisering, WMS Service, https://datafordeler.dk/dataoversigt/?emne=landkort%20og%20geografi (last access: 6 June 2022), 2015b.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M.,
and Chang, K.-T.: Landslide inventory maps: New tools for an old problem,
Earth-Sci. Rev., 112, 42–66,
https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Hao, L., Rajaneesh A., van Westen, C., Sajinkumar K. S., Martha, T. R., Jaiswal, P., and McAdoo, B. G.: Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis, Earth Syst. Sci. Data, 12, 2899–2918, https://doi.org/10.5194/essd-12-2899-2020, 2020.
Herrera, G., Mateos, R. M., García-Davalillo, J. C., Grandjean, G.,
Poyiadji, E., Maftei, R., Filipciuc, T.-C., Jemec Auflič, M., Jež,
J., Podolszki, L., Trigila, A., Iadanza, C., Raetzo, H., Kociu, A., Przyłucka, M., Kułak, M., Sheehy, M., Pellicer, X. M., McKeown, C., Ryan, G.,
Kopačková, V., Frei, M., Kuhn, D., Hermanns, R. L., Koulermou, N.,
Smith, C. A., Engdahl, M., Buxó, P., Gonzalez, M., Dashwood, C., Reeves,
H., Cigna, F., Liščák, P., Pauditš, P., Mikulėnas, V.,
Demir, V., Raha, M., Quental, L., Sandić, C., Fusi, B., and Jensen, O.
A.: Landslide databases in the Geological Surveys of Europe, Landslides, 15,
359–379, https://doi.org/10.1007/s10346-017-0902-z, 2017.
Highland, L. M. and Bobrowsky, P.: The Landslide Handbook – A Guide to
Understanding Landslides, USGS, https://pubs.usgs.gov/circ/1325/ (last access: 26 July 2022), 2008.
Houmark-Nielsen, M.: A lithostratigraphy of Weichselian glacial and
interstadial deposits in Denmark, B. Geol. Soc. Denmark, 46, 101–114,
https://doi.org/10.37570/bgsd-1999-46-09, 1999.
Houmark-Nielsen, M.: Pleistocene Glaciations in Denmark: A Closer Look at
Chronology, Ice Dynamics and Landforms, in: Quaternary Glaciations – Extent
and Chronology – A Closer Look, Developments in Quaternary Sciences, 15, 47–58,
https://doi.org/10.1016/B978-0-444-53447-7.00005-2, 2011.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
Hutchinson, J. N.: Chalk flows from the coastal cliffs of northwest Europe,
in: Catastrophic landslides: Effects, occurrence, and mechanisms, edited by:
Evans, S. G. and DeGraff, J. V., Geological Society of America Reviews in
Engineering Geology, Boulder, Colorado, 257–302, 2002.
Kabuth, A. K. and Kroon, A.: Wave energy fluxes and multidecadal shoreline
changes in two coastal embayments in Denmark, Ocean Dynam., 64, 741–754,
https://doi.org/10.1007/s10236-014-0709-6, 2014.
Kabuth, A. K., Kroon, A., and Pedersen, J. B. T.: Multidecadal Shoreline
Changes in Denmark, J. Coastal Res., 30, 714–728,
https://doi.org/10.2112/JCOASTRES-D-13-00139.1, 2013.
Kakavas, M. P. and Nikolakopoulos, K. G.: Digital Elevation Models of
Rockfalls and Landslides: A Review and Meta-Analysis, Geosciences, 11, 6,
https://doi.org/10.3390/geosciences11060256, 2021.
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A
global landslide catalog for hazard applications: method, results, and
limitations, Nat. Hazards, 52, 561–575,
https://doi.org/10.1007/s11069-009-9401-4, 2009.
Lissak, C., Bartsch, A., De Michele, M., Gomez, C., Maquaire, O., Raucoules,
D., and Roulland, T.: Remote Sensing for Assessing Landslides and Associated
Hazards, Surv. Geophys., 41, 1391–1435,
https://doi.org/10.1007/s10712-020-09609-1, 2020.
Ludwig, K. A., Ramsey, D. W., Wood, N. J., Pennaz, A. B., Godt, J. W.,
Plant, N. G., Luco, N., Koenig, T. A., Hudnut, K. W., Davis, D. K., and
Bright, P. R.: Science for a risky world – A U.S. Geological Survey plan for
risk research and applications, Reston, VA, Report 1444,
https://doi.org/10.3133/cir1444, 2018.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf.
Process. Landf., 29, 687–711, https://doi.org/10.1002/esp.1064,
2004.
Mateos, R. M., Lopez-Vinielles, J., Poyiadji, E., Tsagkas, D., Sheehy, M.,
Hadjicharalambous, K., Liscak, P., Podolski, L., Laskowicz, I., Iadanza, C.,
Gauert, C., Todorovic, S., Auflic, M. J., Maftei, R., Hermanns, R. L.,
Kociu, A., Sandic, C., Mauter, R., Sarro, R., Bejar, M., and Herrera, G.:
Integration of landslide hazard into urban planning across Europe, Landscape
Urban Plan., 196, 103740, https://doi.org/10.1016/j.landurbplan.2019.103740,
2020.
Morgan, A. J., Chao, D., Froese, C. R., Martin, C. D., and Kim, T. H.: LiDAR
based landslide inventory and spatial analysis, Peace River, Alberta, Energy Resources Conservation Board, 22 pp., 2013.
Nadim, F., Pedersen, S. A. S., Schmidt-Thome, P., Sigmundsson, F., and
Engdahls, M.: Natural hazards in Nordic countries, Episodes, 31, 176–184,
https://doi.org/10.18814/epiiugs/2008/v31i1/024, 2008.
Palma, A., Garrill, R., Brook, M. S., Richards, N., and Tunnicliffe, J.:
Reactivation of coastal landsliding at Sunkist Bay, Auckland, following
ex-Tropical Cyclone Debbie, 5 April 2017, Landslides, 17, 2659–2669,
https://doi.org/10.1007/s10346-020-01474-8, 2020.
Pedersen, S. A. S., Foged, N., and Frederiksen, J.: Extent and economic
significance of landslides in Denmark, Faroe Islands and Greenland, in:
Landslides: Extent and Economic Significance, Brabb & Harrod, Rotterdam,
1989.
Pellicani, R. and Spilotro, G.: Evaluating the quality of landslide
inventory maps: comparison between archive and surveyed inventories for the
Daunia region (Apulia, Southern Italy), B. Eng. Geol.
Env., 74, 357–367, https://doi.org/10.1007/s10064-014-0639-z,
2014.
Prior, D. B.: Coastal Mudslide Morphology and Processes on Eocene Clays in
Denmark, Geografisk Tidsskrift-Danish Journal of Geography, 76, 14–33,
https://doi.org/10.1080/00167223.1977.10649071, 1977.
Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A.,
Catani, F., and Casagli, N.: The new landslide inventory of Tuscany (Italy)
updated with PS-InSAR: geomorphological features and landslide distribution,
Landslides, 15, 5–19, https://doi.org/10.1007/s10346-017-0861-4, 2017.
Schou, A.: Danish Coastal Cliffs in Glacial Deposits, Geografiska Annaler,
31, 357–364, 1949.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar,
A., Schwanghart, W., McBride, S., de Vries, M. V. W., Mergili, M., Emmer,
A., Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier,
E., Carrivick, J. L., Clague, J. J., Dokukin, M., Dunning, S. A., Frey, H.,
Gascoin, S., Haritashya, U. K., Huggel, C., Kaab, A., Kargel, J. S.,
Kavanaugh, J. L., Lacroix, P., Petley, D., Rupper, S., Azam, M. F., Cook, S.
J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes, J., Gnyawali, K. R.,
Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal,
S., Muhuri, A., Noetzli, J., Paul, F., Rashid, I., Sain, K., Steiner, J.,
Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice
avalanche caused the 2021 disaster at Chamoli, Indian Himalaya, Science,
373, 300–306, https://doi.org/10.1126/science.abh4455, 2021.
Slaughter, S. L., Burns, W. J., Mickelson, K. A., Jacobacci, K. E., Biel,
A., and Contreras, T. A.: Protocol for Landslide Inventory Mapping from
LiDAR Data in Washington State, Washington Geological Survey Bulletin, 82,
2017.
Svennevig, K.: Preliminary landslide mapping in Greenland, Geol. Surv. Den. Greenl., 43,
https://doi.org/10.34194/GEUSB-201943-02-07, 2019.
Svennevig, K. and Luetzenburg, G.: Danish landslide inventory 211104, Figshare
[data set], https://doi.org/10.6084/m9.figshare.16965439.v1, 2021.
Svennevig, K., Dahl-Jensen, T., Keiding, M., Merryman Boncori, J. P., Larsen, T. B., Salehi, S., Munck Solgaard, A., and Voss, P. H.: Evolution of events before and after the 17 June 2017 rock avalanche at Karrat Fjord, West Greenland – a multidisciplinary approach to detecting and locating unstable rock slopes in a remote Arctic area, Earth Surf. Dynam., 8, 1021–1038, https://doi.org/10.5194/esurf-8-1021-2020, 2020a.
Svennevig, K., Luetzenburg, G., Keiding, M. K., and Pedersen, S. A. S.:
Preliminary landslide mapping in Denmark indicates an underestimated
geohazard, Geus Bulletin, 44, https://doi.org/10.34194/geusb.v44.5302,
2020b.
Trigila, A., Iadanza, C., and Spizzichino, D.: Quality assessment of the
Italian Landslide Inventory using GIS processing, Landslides, 7, 455–470,
https://doi.org/10.1007/s10346-010-0213-0, 2010.
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons,
J., Nyssen, J., and van Beek, L. P. H.: The effectiveness of hillshade maps
and expert knowledge in mapping old deep-seated landslides, Geomorphology,
67, 351–363, https://doi.org/10.1016/j.geomorph.2004.11.001, 2005.
Zieher, T., Perzl, F., Rossel, M., Rutzinger, M., Meissl, G., Markart, G.,
and Geitner, C.: A multi-annual landslide inventory for the assessment of
shallow landslide susceptibility – Two test cases in Vorarlberg, Austria,
Geomorphology, 259, 40–54, https://doi.org/10.1016/j.geomorph.2016.02.008,
2016.
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a...
Altmetrics
Final-revised paper
Preprint