Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-405-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-405-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synchronized high-resolution bed-level change and biophysical data from 10 marsh–mudflat sites in northwestern Europe
Guangdong Provincial Key Laboratory of Marine Resources and Coastal
Engineering, School of Marine Sciences, Sun Yat-sen University,
Zhuhai, 519082, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519080, China
Pim W. J. M. Willemsen
Water Engineering and Management, Faculty of Engineering Technology, University of Twente, P.O.
Box 217, 7500 AE Enschede, the Netherlands
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands
Bas W. Borsje
Water Engineering and Management, Faculty of Engineering Technology, University of Twente, P.O.
Box 217, 7500 AE Enschede, the Netherlands
Chen Wang
Satellite Application Center for Ecology and Environment, Ministry of
Ecology and Environment, State Environmental Protection Key Laboratory
of Satellite Remote Sensing, Beijing, 100094, China
Heng Wang
CORRESPONDING AUTHOR
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519080, China
School of Marine Engineering and Technology, Sun Yat-Sen University,
Zhuhai, 519082, China
Daphne van der Wal
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
Zhenchang Zhu
Institute of Environmental and Ecological Engineering, Guangdong
University of Technology, Guangzhou, 510030, China
Bas Oteman
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands
Vincent Vuik
Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
HKV Consultants, P.O. Box 2120, 8203 AC Lelystad, the Netherlands
Ben Evans
Department of Geography, University of Cambridge, Cambridge, CB2 3EN,
UK
Iris Möller
Department of Geography, Trinity College Dublin, Dublin 2, D02 PN40,
Ireland
Jean-Philippe Belliard
Ecosystem Management Research Group, University of Antwerp, 2610 Antwerp,
Belgium
Alexander Van Braeckel
Research Institute for Nature and Forest (INBO), Havenlaan 88, 1000
Brussels, Belgium
Stijn Temmerman
Ecosystem Management Research Group, University of Antwerp, 2610 Antwerp,
Belgium
Tjeerd J. Bouma
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands
Department of Physical Geography, Utrecht University, P.O.
Box 80.115, 3508 TC Utrecht, the Netherlands
Related authors
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Short summary
Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Zhan Hu, Simei Lian, Huaiyu Wei, Yulong Li, Marcel Stive, and Tomohiro Suzuki
Earth Syst. Sci. Data, 13, 4987–4999, https://doi.org/10.5194/essd-13-4987-2021, https://doi.org/10.5194/essd-13-4987-2021, 2021
Short summary
Short summary
The process of wave attenuation in vegetation is important as it is related to the coastal protection service of these coastal ecosystems. In intertidal environments, waves often propagate into vegetation fields with underlying tidal currents, but the effect of these currents on the wave attenuation is often overlooked, and the relevant dataset is rarely available. Here, we present a dataset of wave propagation through vegetation with following and opposing currents to assist further studies.
Mona Huyzentruyt, Maarten Wens, Gregory Scott Fivash, David C. Walters, Steven Bouillon, Joell A. Carr, Glenn C. Guntenspergen, Matthew L. Kirwan, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3293, https://doi.org/10.5194/egusphere-2025-3293, 2025
Short summary
Short summary
Vegetated environments from forests to peatlands store carbon in the soil, which mitigates climate change. But which environment does this best? In this study, we show how the levees of tidal marshes are one of the most effective carbon sequestering environments in the world. This is because soil water-logging and high salinity inhibits carbon degradation while the levee fosters fast vegetation growth, complimented also by the preferential settlement of carbon-rich sediments on the marsh levee.
Ben Richard Evans, Alan Lowe, Anna Crawford, Andrew Fleming, and J. Scott Hosking
EGUsphere, https://doi.org/10.5194/egusphere-2025-2886, https://doi.org/10.5194/egusphere-2025-2886, 2025
Short summary
Short summary
Icebergs account for about half of the fresh water lost from Antarctica. Because they can drift for long periods of time and across great distances, it is hard to know where in the oceans that water ends up, yet this is crucially important to ocean circulations and global climate. We have developed a digital tool that can help us to understand the dynamics and effects of icebergs by recognising them through time and doing ‘jigsaw puzzles’ to reconstruct their family trees when they break apart.
Lennert Schepers, Mona Huyzentruyt, Matthew L. Kirwan, Glenn R. Guntenspergen, and Stijn Temmerman
EGUsphere, https://doi.org/10.5194/egusphere-2025-2362, https://doi.org/10.5194/egusphere-2025-2362, 2025
Short summary
Short summary
In some tidal marshes, vegetation can convert to ponds as a result of sea level rise. We investigated to what extent this is related to decreasing strength of the marsh soil in relation to sea level rise. We found a reduction of marsh soil strength in areas with more inundation by sea water and more ponding, which results in easier erosion of the marsh and thus further expansion of ponds. This decrease in marsh soil strength is highly related to lower content of roots in the soil.
Sarah Hautekiet, Jan-Eike Rossius, Olivier Gourgue, Maarten Kleinhans, and Stijn Temmerman
Earth Surf. Dynam., 12, 601–619, https://doi.org/10.5194/esurf-12-601-2024, https://doi.org/10.5194/esurf-12-601-2024, 2024
Short summary
Short summary
This study examined how vegetation growing in marshes affects the formation of tidal channel networks. Experiments were conducted to imitate marsh development, both with and without vegetation. The results show interdependency between biotic and abiotic factors in channel development. They mainly play a role when the landscape changes from bare to vegetated. Overall, the study suggests that abiotic factors are more important near the sea, while vegetation plays a larger role closer to the land.
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024, https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Short summary
The combination of extreme sea levels with increased river flow typically can lead to so-called compound floods. Often these are caused by storms (< 1 d), but climatic events such as El Niño could trigger compound floods over a period of months. We show that the combination of increased sea level and river discharge causes extreme water levels to amplify upstream. Mangrove forests, however, can act as a nature-based flood protection by lowering the extreme water levels coming from the sea.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Short summary
Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Xue Chen, Zeng Zhou, Qiang He, Heyue Zhang, Tjeerd Bouma, Zheng Gong, Ian Townend, and Changkuan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-280, https://doi.org/10.5194/egusphere-2022-280, 2022
Preprint withdrawn
Short summary
Short summary
We carry out a two-year continuous observation in the northern Jiangsu Coast. Our results show that: The distribution of crab burrows was unimodal across the shore in cold seasons, and bimodal in warm seasons. The density of crab burrows was lower in sites with stronger hydrodynamics and lower suspended sediment concentration. The governing factors of crab burrow distribution in cold seasons were organic matter content and soil salinity, while in warm seasons water content also played a role.
Olivier Gourgue, Jim van Belzen, Christian Schwarz, Wouter Vandenbruwaene, Joris Vanlede, Jean-Philippe Belliard, Sergio Fagherazzi, Tjeerd J. Bouma, Johan van de Koppel, and Stijn Temmerman
Earth Surf. Dynam., 10, 531–553, https://doi.org/10.5194/esurf-10-531-2022, https://doi.org/10.5194/esurf-10-531-2022, 2022
Short summary
Short summary
There is an increasing demand for tidal-marsh restoration around the world. We have developed a new modeling approach to reduce the uncertainty associated with this development. Its application to a real tidal-marsh restoration project in northwestern Europe illustrates how the rate of landscape development can be steered by restoration design, with important consequences for restored tidal-marsh resilience to increasing sea level rise and decreasing sediment supply.
Rey Harvey Suello, Simon Lucas Hernandez, Steven Bouillon, Jean-Philippe Belliard, Luis Dominguez-Granda, Marijn Van de Broek, Andrea Mishell Rosado Moncayo, John Ramos Veliz, Karem Pollette Ramirez, Gerard Govers, and Stijn Temmerman
Biogeosciences, 19, 1571–1585, https://doi.org/10.5194/bg-19-1571-2022, https://doi.org/10.5194/bg-19-1571-2022, 2022
Short summary
Short summary
This research shows indications that the age of the mangrove forest and its position along a deltaic gradient (upstream–downstream) play a vital role in the amount and sources of carbon stored in the mangrove sediments. Our findings also imply that carbon capture by the mangrove ecosystem itself contributes partly but relatively little to long-term sediment organic carbon storage. This finding is particularly relevant for budgeting the potential of mangrove ecosystems to mitigate climate change.
Florian Lauryssen, Philippe Crombé, Tom Maris, Elliot Van Maldegem, Marijn Van de Broek, Stijn Temmerman, and Erik Smolders
Biogeosciences, 19, 763–776, https://doi.org/10.5194/bg-19-763-2022, https://doi.org/10.5194/bg-19-763-2022, 2022
Short summary
Short summary
Surface waters in lowland regions have a poor surface water quality, mainly due to excess nutrients like phosphate. Therefore, we wanted to know the phosphate levels without humans, also called the pre-industrial background. Phosphate binds strongly to sediment particles, suspended in the river water. In this research we used sediments deposited by a river as an archive for surface water phosphate back to 1800 CE. Pre-industrial phosphate levels were estimated at one-third of the modern levels.
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022, https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Zhan Hu, Simei Lian, Huaiyu Wei, Yulong Li, Marcel Stive, and Tomohiro Suzuki
Earth Syst. Sci. Data, 13, 4987–4999, https://doi.org/10.5194/essd-13-4987-2021, https://doi.org/10.5194/essd-13-4987-2021, 2021
Short summary
Short summary
The process of wave attenuation in vegetation is important as it is related to the coastal protection service of these coastal ecosystems. In intertidal environments, waves often propagate into vegetation fields with underlying tidal currents, but the effect of these currents on the wave attenuation is often overlooked, and the relevant dataset is rarely available. Here, we present a dataset of wave propagation through vegetation with following and opposing currents to assist further studies.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
Ringo Ossewaarde, Tatiana Filatova, Yola Georgiadou, Andreas Hartmann, Gül Özerol, Karin Pfeffer, Peter Stegmaier, Rene Torenvlied, Mascha van der Voort, Jord Warmink, and Bas Borsje
Nat. Hazards Earth Syst. Sci., 21, 1119–1133, https://doi.org/10.5194/nhess-21-1119-2021, https://doi.org/10.5194/nhess-21-1119-2021, 2021
Short summary
Short summary
The aim of this paper is to review and structure current developments in resilience research in the field of climate change studies, in terms of the approaches, definitions, models, and commitments that are typical for naturalist and constructivist research and propose a research agenda of topics distilled from current developments in resilience research.
Chen Wang, Lennert Schepers, Matthew L. Kirwan, Enrica Belluco, Andrea D'Alpaos, Qiao Wang, Shoujing Yin, and Stijn Temmerman
Earth Surf. Dynam., 9, 71–88, https://doi.org/10.5194/esurf-9-71-2021, https://doi.org/10.5194/esurf-9-71-2021, 2021
Short summary
Short summary
Coastal marshes are valuable natural habitats with normally dense vegetation. The presence of bare patches is a symptom of habitat degradation. We found that the occurrence of bare patches and regrowth of vegetation is related to spatial variations in soil surface elevation and to the distance and connectivity to tidal creeks. These relations are similar in three marshes at very different geographical locations. Our results may help nature managers to conserve and restore coastal marshes.
Cited articles
Andersen, T. J., Lund-Hansen, L. C., Pejrup, M., Jensen, K. T., and Mouritsen, K. N.: Biologically induced differences in erodibility and aggregation of subtidal and intertidal sediments: a possible cause for seasonal changes in sediment deposition, J. Marine Syst., 55, 123–138, https://doi.org/10.1016/j.jmarsys.2004.09.004, 2005.
Andersen, T. J., Pejrup, M., and Nielsen, A. A.: Long-term and
high-resolution measurements of bed level changes in a temperate, microtidal
coastal lagoon, Mar. Geol., 226, 115–125, https://doi.org/10.1016/j.margeo.2005.09.016, 2006.
Austen, I., Andersen, T. J., and Edelvang, K.: The Influence of Benthic Diatoms and Invertebrates on the Erodibility of an Intertidal Mudflat, the Danish Wadden Sea, Estuar. Coast. Shelf S., 49, 99–111, https://doi.org/10.1006/ecss.1998.0491, 1999.
Balke, T., Herman, P. M. J., and Bouma, T. J.: Critical transitions in disturbance-driven ecosystems: Identifying windows of opportunity for recovery, J. Ecol., 102, 700–708, https://doi.org/10.1111/1365-2745.12241, 2014.
Baptist, M. J., Gerkema, T., van Prooijen, B. C., van Maren, D. S., van Regteren, M., Schulz, K., Colosimo, I., Vroom, J., van Kessel, T., Grasmeijer, B., Willemsen, P., Elschot, K., de Groot, A. V., Cleveringa, J., van Eekelen, E. M. M., Schuurman, F., de Lange, H. J., and van Puijenbroek, M. E. B.: Beneficial use of dredged sediment to enhance salt marsh development by applying a “Mud Motor,” Ecol. Eng., 127, 312–323, https://doi.org/10.1016/j.ecoleng.2018.11.019, 2019.
Belliard, J.-P., Silinski, A., Meire, D., Kolokythas, G., Levy, Y., Van Braeckel, A., Bouma, T. J., and Temmerman, S.: High-resolution bed level changes in relation to tidal and wave forcing on a narrow fringing macrotidal flat: Bridging intra-tidal, daily and seasonal sediment dynamics, Mar. Geol., 412, 123–138, https://doi.org/10.1016/j.margeo.2019.03.001, 2019.
Bouma, H., Duiker, J. M. C., De Vries, P. P., Herman, P. M. J., and Wolff, W. J.: Spatial pattern of early recruitment of Macoma balthica (L.) and Cerastoderma edule (L.) in relation to sediment dynamics on a highly dynamic intertidal sandflat, J. Sea Res., 45, 79–93,
https://doi.org/10.1016/S1385-1101(01)00054-5, 2001.
Bouma, T. J., van Belzen, J., Balke, T., van Dalen, J., Klaassen, P., Hartog, A. M., Callaghan, D. P., Hu, Z., Stive, M. J. F., Temmerman, S., and Herman, P. M. J.: Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics, Limnol. Oceanogr., 61, 2261–2275, https://doi.org/10.1002/lno.10374, 2016.
Callaghan, D. P., Bouma, T. J., Klaassen, P., van der Wal, D., Stive, M. J. F., and Herman, P. M. J.: Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows, Estuar. Coast. Shelf Sci., 89, 73–88, 2010.
Cao, H., Zhu, Z., Balke, T., Zhang, L., and Bouma, T. J.: Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration, Limnol. Oceanogr., 63, 647–659, https://doi.org/10.1002/lno.10657, 2018.
Dai, Z., Fagherazzi, S., Mei, X., and Gao, J.: Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013, Geomorphology, 268, 123–132, https://doi.org/10.1016/j.geomorph.2016.06.009, 2016.
Dai, Z., Mei, X., Darby, S. E., Lou, Y., and Li, W.: Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system, J. Hydrol., 566, 719–734, https://doi.org/10.1016/j.jhydrol.2018.09.019, 2018.
D'Alpaos, A. and Marani, M.: Reading the signatures of biologic–geomorphic feedbacks in salt-marsh landscapes, Adv. Water Resour., 93, 265–275, https://doi.org/10.1016/j.advwatres.2015.09.004, 2016.
D'Alpaos, A., Toffolon, M., and Camporeale, C.: Ecogeomorphological feedbacks of water fluxes, sediment transport and vegetation dynamics in rivers and estuaries, Adv. Water Resour., 93, 151–155,
https://doi.org/10.1016/j.advwatres.2016.05.019, 2016.
Duarte, C., Losada, I. J., Hendriks, I., Mazarrasa, I., and Marba, N.: The role of coastal plant communities for climate change mitigation and adaptation, Nat. Clim. Change, 3, 961–968, https://doi.org/10.1038/nclimate1970, 2013.
Evans, B. R., Möller, I., Spencer, T., and Smith, G.: Dynamics of salt marsh margins are related to their three-dimensional functional form, Earth Surf. Process. Landf., 44, 1816–1827, https://doi.org/10.1002/esp.4614, 2019.
Fagherazzi, S., Kirwan, M. L., Mudd, S. M., Guntenspergen, G. R., Temmerman, S., D'Alpaos, A., Van De Koppel, J., Rybczyk, J. M., Reyes, E., Craft, C., and Clough, J.: Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors, Rev. Geophys., 50, 2011RG000359,
https://doi.org/10.1029/2011RG000359, 2012.
Folmer, E., Dekinga, A., Holthuijsen, S., Van der Meer, J., Mosk, D., Piersma, T., and van der Veer, H.: Species Distribution Models of Intertidal Benthos: Tools for Assessing the Impact of Physical and Morphological Drivers on Benthos and Birds in the Wadden Sea, NIOZ, Texel, The Netherlands, available at: http://www.vliz.be/imisdocs/publications/77/307577.pdf (last access: 29 January 2021),
2017.
Friedrichs, C. T.: Tidal Flat Morphodynamics: A Synthesis, in Treatise on Estuarine and Coastal Science, edited by Wolanski, E. and McLusky, D., Academic Press, Waltham,
https://doi.org/10.1016/B978-0-12-374711-2.00307-7, 137–170, 2011.
Goldstein, E. B., Coco, G., and Plant, N. G.: A review of machine learning applications to coastal sediment transport and morphodynamics, Earth-Sci. Rev., 194, 97–108, https://doi.org/10.1016/j.earscirev.2019.04.022, 2019.
Green, M. O. and Coco, G.: Review of wave-driven sediment resuspension and transport in estuaries, Rev. Geophys., 52, 77–117,
https://doi.org/10.1002/2013RG000437, 2014.
Hu, Z., Lenting, W., van der Wal, D., and Bouma, T. J.: Continuous monitoring bed-level dynamics on an intertidal flat: Introducing novel, stand-alone high-resolution SED-sensors, Geomorphology, 245, 223–230,
https://doi.org/10.1016/j.geomorph.2015.05.027, 2015.
Hu, Z., van der Wal, D., Cai, H., van Belzen, J., and Bouma, T. J.: Dynamic equilibrium behaviour observed on two contrasting tidal flats from daily monitoring of bed-level changes, Geomorphology, 311, 114–126,
https://doi.org/10.1016/j.geomorph.2018.03.025, 2018.
Hu, Z., Willemsen, P. W. J. M., Borsje, B. W., Wang, C., Wang, H., van der Wal, D., Zhu, Z., Oteman, B., Vuik, V., Evans, B., Möller, I., Belliard, J., Van Braeckel, A., Temmerman, S., and Bouma, T. J.: Synchronized high-resolution bed-level change and biophysical data from 10 tidal flats in northwestern Europe, [Data set], 4TU.Centre for Research Data
https://doi.org/10.4121/12693254.v4, 2020.
Hu, Z., Yao, P., van der Wal, D., and Bouma, T. J.: Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure, Sci. Rep.-UK, 7, 7088, https://doi.org/10.1038/s41598-017-07515-y, 2017.
Hunt, S., Bryan, K. R., Mullarney, J. C., and Pritchard, M.: Observations of asymmetry in contrasting wave- and tidally-dominated environments within a mesotidal basin: implications for estuarine morphological evolution, Earth Surf. Process. Landf., 41, 2207–2222, https://doi.org/10.1002/esp.3985, 2016.
Knox, J. C.: Valley Alluviation in Southwestern Wisconsin, Ann. Assoc. Am. Geogr., 62, 401–410, https://doi.org/10.1111/j.1467-8306.1972.tb00872.x, 1972.
Le Hir, P., Roberts, W., Cazaillet, O., Christie, M., Bassoullet, P., and Bacher, C.: Characterization of intertidal flat hydrodynamics, Cont. Shelf Res., 20, 1433–1459, 2000.
Leonardi, N., Camacina, I., Donatelli, C., Ganju, N. K., Plater, A. J., Schuerch, M., and Temmerman, S.: Dynamic interactions between coastal storms and salt marshes: A review, Geomorphology, 301, 92–107,
https://doi.org/10.1016/j.geomorph.2017.11.001, 2018.
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G. S.: Development and validation of a three-dimensional morphological model, Coast. Eng., 51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004.
Mariotti, G. and Fagherazzi, S.: A numerical model for the coupled long-term evolution of salt marshes and tidal flats, J. Geophys. Res.-Earth Surf., 115, F01004, https://doi.org/10.1029/2009JF001326, 2010.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Mcowen, C. J., Weatherdon, L. V., Van Bochove, J.-W., Sullivan, E., Blyth, S., Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C. S., Spalding, M., and Fletcher, S.: A global map of saltmarshes, Biodivers. Data J., 5, e11764, https://doi.org/10.3897/BDJ.5.e11764, 2017.
Möller, I., Spencer, T., French, J. R., Leggett, D. J., and Dixon, M.: Wave transformation over salt marshes: A field and numerical modelling study from north Norfolk, England, Estuar. Coast. Shelf Sci., 49, 411–426, https://doi.org/10.1006/ecss.1999.0509, 1999.
Möller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B. K., Wolters, G., Jensen, K., Bouma, T. J., Miranda-Lange, M., and Schimmels, S.: Wave attenuation over coastal salt marshes under storm surge conditions, Nat. Geosci., 7, 727–731, https://doi.org/10.1038/ngeo2251, 2014.
Nambu, R., Saito, H., Tanaka, Y., Higano, J., and Kuwahara, H.: Wave actions and topography determine the small-scale spatial distribution of newly settled Asari clams Ruditapes philippinarum on a tidal flat, Estuar. Coast. Shelf Sci., 99, 1–9, 2012.
Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., and Brown, S.: Future response of global coastal wetlands to sea-level rise, Nature, 561, 231–234, https://doi.org/10.1038/s41586-018-0476-5, 2018.
Schwarz, C., Bouma, T. J., Zhang, L. Q., Temmerman, S., Ysebaert, T., and Herman, P. M. J.: Interactions between plant traits and sediment
characteristics influencing species establishment and scale-dependent
feedbacks in salt marsh ecosystems, Geomorphology, 250, 298–307,
https://doi.org/10.1016/j.geomorph.2015.09.013, 2015.
Shi, B. W., Yang, S. L., Wang, Y. P., Yu, Q., and Li, M. L.: Intratidal erosion and deposition rates inferred from field observations of hydrodynamic and sedimentary processes: A case study of a mudflat-saltmarsh transition at the Yangtze delta front, Cont. Shelf Res., 90, 109–116, https://doi.org/10.1016/j.csr.2014.01.019, 2014.
Silinski, A., van, B., Fransen, E., Bouma, T. J., Troch, P., Meire, P., and Temmerman, S.: Quantifying critical conditions for seaward expansion of tidal marshes: A transplantation experiment, Estuar. Coast. Shelf Sci., 169, 227–237, https://doi.org/10.1016/j.ecss.2015.12.012, 2016.
Spencer, T., Möller, I., Rupprecht, F., Bouma, T. J., Wesenbeeck, B. K. van, Kudella, M., Paul, M., Jensen, K., Wolters, G., Miranda-Lange, M., and Schimmels, S.: Salt marsh surface survives true-to-scale simulated storm surges, Earth Surf. Process. Landf., 41, 543–552, https://doi.org/10.1002/esp.3867, 2016.
Temmerman, S. and Kirwan, M. L.: Building land with a rising sea, Science, 349, 588–589, https://doi.org/10.1126/science.aac8312, 2015.
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J.: Ecosystem-based coastal defence in the face of global change, Nature, 504, 79–83, https://doi.org/10.1038/nature12859, 2013.
Tucker, M. J. and Pitt, E. G.: Waves in Ocean Engineering, 1st Edn., Elsevier Science, Amsterdam, New York, 2001.
Underwood, G. J. C. and Paterson, D. M.: Recovery of intertidal benthic diatoms after biocide treatment and associated sediment dynamics, J. Mar. Biol. Assoc. UK, 73, 25, https://doi.org/10.1017/s002531540003263x, 1993.
Van Eerden, M. R., Drent, R. H., Stahl, J., and Bakker, J. P.: Connecting seas: western Palaearctic continental flyway for water birds in the perspective of changing land use and climate, Glob. Change Biol., 11, 894–908, https://doi.org/10.1111/j.1365-2486.2005.00940.x, 2005.
Vink, A., Steffen, H., Reinhardt, L., and Kaufmann, G.: Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea), Quaternary Sci. Rev., 26, 3249–3275,
https://doi.org/10.1016/j.quascirev.2007.07.014, 2007.
Vuik, V., Jonkman, S. N., Borsje, B. W., and Suzuki, T.: Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes, Coast. Eng., 116, 42–56,
https://doi.org/10.1016/j.coastaleng.2016.06.001, 2016.
Wang, H., van der Wal, D., Li, X., Belzen, J. V., Herman, P. M. J., Hu, Z., Ge, Z., Zhang, L., and Bouma, T. J.: Zooming in and out: scale-dependence of extrinsic and intrinsic factors affecting salt marsh erosion, J. Geophys. Res.-Earth Surf., 122, 1455–1470, https://doi.org/10.1002/2016JF004193, 2017.
Whitehouse, R. J. S. and Mitchener, H. J.: Observations of the morphodynamic behaviour of an intertidal mudflat at different timescales, Geol. Soc. Lond. Spec. Publ., 139, 255–271, https://doi.org/10.1144/GSL.SP.1998.139.01.21, 1998.
Willemsen, P. W. J. M., Borsje, B. W., Hulscher, S. J. M. H., Van der Wal, D., Zhu, Z., Oteman, B., Evans, B., Moller, I., and Bouma, T. J.: Quantifying Bed Level Change at the Transition of Tidal Flat and Salt Marsh: Can We Understand the Lateral Location of the Marsh Edge?, J. Geophys. Res.-Earth Surf., 123, 2509–2524, https://doi.org/10.1029/2018JF004742, 2018.
Yang, S. L., Li, H., Ysebaert, T., Bouma, T. J., Zhang, W. X., Wang, Y. Y., Li, P., Li, M., and Ding, P. X.: Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls, Estuar. Coast. Shelf Sci., 77, 657–671, 2008.
Zhu, Q., Yang, S., and Ma, Y.: Intra-tidal sedimentary processes associated with combined wave–current action on an exposed, erosional mudflat, southeastern Yangtze River Delta, China, Mar. Geol., 347, 95–106, https://doi.org/10.1016/j.margeo.2013.11.005, 2014.
Short summary
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and tidal flat) ecosystems and hence substantially affect their valuable ecosystem services. By applying a novel sensor, we obtained unique high-resolution daily bed-level change datasets from 10 marsh–mudflat sites in northwestern Europe. This dataset has revealed diverse spatial bed-level change patterns over daily to seasonal scales, which are valuable to theoretical and model development.
Erosion and accretion processes govern the ecogeomorphic evolution of intertidal (salt marsh and...
Altmetrics
Final-revised paper
Preprint