Articles | Volume 13, issue 1
https://doi.org/10.5194/essd-13-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018
Yongzhe Chen
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085,
China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049,
China
Xiaoming Feng
CORRESPONDING AUTHOR
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085,
China
Bojie Fu
State Key Laboratory of Urban and Regional Ecology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085,
China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049,
China
Related authors
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Shan Sang, Yan Li, Shuang Zong, Lu Yu, Shuai Wang, Yanxu Liu, Xutong Wu, Shuang Song, Wenwu Zhao, Xuhui Wang, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2025-5597, https://doi.org/10.5194/egusphere-2025-5597, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Regional coupled human–natural systems models are essential for regional sustainability. We developed a new model, CHANS-SD-YRB, using System Dynamics for the Yellow River Basin in China, which faces severe human-water conflicts. The model links 10 components, including Population, Economy, Energy, Food, Water, Sediment, Land, Carbon, and Climate to simulate basin’s key human-natural interactions. The model is applicable for sustainable development through scenario analyses and predictions.
Yichu Huang, Xiaoming Feng, Chaowei Zhou, and Bojie Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3393, https://doi.org/10.5194/egusphere-2024-3393, 2024
Preprint archived
Short summary
Short summary
This study uses an integrated water-energy-land optimization model to explore sustainable water use pathways in the Yellow River Basin. We find water conflicts between energy and irrigation water use, and quantify the mitigation and spillover effects of water transfer. We also highlight the critical role of energy production, implying that the energy sector transformation is key to the water system of the Yellow River Basin.
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024, https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary
Short summary
This study generated a spatially continuous plant functional trait dataset (~1 km) in China in combination with field observations, environmental variables and vegetation indices using machine learning methods. Results showed that wood density, leaf P concentration and specific leaf area showed good accuracy with an average R2 of higher than 0.45. This dataset could provide data support for development of Earth system models to predict vegetation distribution and ecosystem functions.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Shuang Song, Shuai Wang, Xutong Wu, Yongyuan Huang, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 2035–2044, https://doi.org/10.5194/hess-26-2035-2022, https://doi.org/10.5194/hess-26-2035-2022, 2022
Short summary
Short summary
A reasonable assessment of the contribution of the water resources in a river basin to domestic crops supplies will be the first step in balancing the water–food nexus. Our results showed that although the Yellow River basin had reduced its virtual water outflow, its importance to crop production in China had been increasing when water footprint networks were considered. Our complexity-based approach provides a new perspective for understanding changes in a basin with a severe water shortage.
Bojie Fu, Xutong Wu, Zhuangzhuang Wang, Xilin Wu, and Shuai Wang
Earth Syst. Dynam., 13, 795–808, https://doi.org/10.5194/esd-13-795-2022, https://doi.org/10.5194/esd-13-795-2022, 2022
Short summary
Short summary
To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we propose a conceptual
pattern–process–service–sustainabilitycascade framework. The use of this framework is systematically illustrated by a review of CHANS research experience in China's Loess Plateau in terms of coupling landscape patterns and ecological processes, linking ecological processes to ecosystem services, and promoting social–ecological sustainability.
Maierdang Keyimu, Zongshan Li, Bojie Fu, Guohua Liu, Fanjiang Zeng, Weiliang Chen, Zexin Fan, Keyan Fang, Xiuchen Wu, and Xiaochun Wang
Clim. Past, 17, 2381–2392, https://doi.org/10.5194/cp-17-2381-2021, https://doi.org/10.5194/cp-17-2381-2021, 2021
Short summary
Short summary
We created a residual tree-ring width chronology and reconstructed non-growth-season precipitation (NGSP) over the period spanning 1600–2005 in the southeastern Tibetan Plateau (SETP), China. Reconstruction model verification as well as similar variations of NGSP reconstruction and Palmer Drought Severity Index reconstructions from the surrounding region indicate the reliability of the present reconstruction. Our reconstruction is representative of NGSP variability of a large region in the SETP.
Xuejing Leng, Xiaoming Feng, Bojie Fu, and Yu Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-377, https://doi.org/10.5194/hess-2021-377, 2021
Manuscript not accepted for further review
Short summary
Short summary
At present, there is a lack of time series of runoff generated by glacial regions in the world. In this paper, we quantified glacial runoff (including meltwater runoff and delayed runoff) in arid regions of China from 1961 to 2015 by using remote sensing datasets of glacier mass balance with high resolution. Glacier runoff is the water resource used by oases in arid regions of China. The long-term glacial runoff data can indicate the climate risk faced by different basins in arid regions.
Cited articles
Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer,
S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and
modelled soil moisture products using global ground-based in situ
observations, Remote Sens. Environ., 118, 215–226,
https://doi.org/10.1016/j.rse.2011.11.017, 2012.
Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P.,
Muñoz-Sabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and
Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote
Sensing, J. Hydrometeorol., 14, 1259–1277, https://doi.org/10.1175/JHM-D-12-0161.1,
2013.
Al-Yaari, A., Wigneron, J. P., Ducharne, A., Kerr, Y. H., Wagner, W., De
Lannoy, G., Reichle, R., Al Bitar, A., Dorigo, W., Richaume, P., and Mialon,
A.: Global-scale comparison of passive (SMOS) and active (ASCAT) satellite
based microwave soil moisture retrievals with soil moisture simulations
(MERRA-Land), Remote Sens. Environ., 152, 614–626,
https://doi.org/10.1016/j.rse.2014.07.013, 2014.
Al-Yaari, A., Wigneron, J. P., Kerr, Y., de Jeu, R., Rodriguez-Fernandez,
N., van der Schalie, R., Al Bitar, A., Mialon, A., Richaume, P., Dolman, A.,
and Ducharne, A.: Testing regression equations to derive long-term global
soil moisture datasets from passive microwave observations, Remote Sens.
Environ., 180, 453–464, https://doi.org/10.1016/j.rse.2015.11.022, 2016.
Al-Yaari, A., Wigneron, J. P., Dorigo, W., Colliander, A., Pellarin, T.,
Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y.
H., and De Lannoy, G.: Assessment and inter-comparison of recently
developed/reprocessed microwave satellite soil moisture products using ISMN
ground-based measurements, Remote Sens. Environ., 224, 289–303,
https://doi.org/10.1016/j.rse.2019.02.008, 2019.
An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J., Shen, X., Gao,
W., Huang, L., Zhao, Y., and Ke, Z.: Validation of the ESA CCI soil moisture
product in China, Int. J. Appl. Earth Obs. Geoinf., 48, 28–36,
https://doi.org/10.1016/j.jag.2015.09.009, 2016.
Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena,
H. R., and Looms, M. C.: Status and Perspectives on the Cosmic-Ray Neutron
Method for Soil Moisture Estimation and Other Environmental Science
Applications, Vadose Zone J., 16, 1–11, https://doi.org/10.2136/vzj2017.04.0086,
2017.
Baldocchi, D., Tang, J., and Xu, L.: How switches and lags in biophysical
regulators affect spatial-temporal variation of soil respiration in an
oak-grass savanna, J. Geophys. Res.-Biogeo., 111, G02008,
https://doi.org/10.1029/2005JG000063, 2006.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P.,
and Smets, B.: GEOV1: LAI and FAPAR essential climate variables and FCOVER
global time series capitalizing over existing products. Part 1: Principles of
development and production, Remote Sens. Environ., 137, 299–309,
https://doi.org/10.1016/j.rse.2012.12.027, 2013.
Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp,
H., Figa, J., and Anderson, C.: Initial soil moisture retrievals from the
METOP-A Advanced Scatterometer (ASCAT), Geophys. Res. Lett., 34, L20401,
https://doi.org/10.1029/2007GL031088, 2007.
Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N., and Wood, E. F.: Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-184, in review, 2020.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of Climate
Research, Applications, and Policy, B. Am. Meteorol. Soc., 95,
1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Brooks, E. B., Thomas, V. A., Wynne, R. H., and Coulston, J. W.: Fitting the
Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem
in Remote Sensing Analysis, IEEE T. Geosci. Remote, 50,
3340–3353, https://doi.org/10.1109/TGRS.2012.2183137, 2012.
Burgin, M., Colliander, A., Njoku, E., Chan, S., Cabot, F., Kerr, H. Y.,
Bindlish, R., Jackson, T., Entekhabi, D., and Yueh, S.: A Comparative Study
of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil
Moisture Products, IEEE T. Geosci. Remote, 55, 2959–2971,
https://doi.org/10.1109/TGRS.2017.2656859, 2017.
Camacho, F., Cernicharo, J., Lacaze, R., Baret, F., and Weiss, M.: GEOV1:
LAI, FAPAR essential climate variables and FCOVER global time series
capitalizing over existing products. Part 2: Validation and intercomparison
with reference products, Remote Sens. Environ., 137, 310–329,
https://doi.org/10.1016/j.rse.2013.02.030, 2013.
Cammalleri, C., Verger, A., Lacaze, R., and Vogt, J. V.: Harmonization of
GEOV2 fAPAR time series through MODIS data for global drought monitoring,
Int. J. Appl. Earth Obs. Geoinf., 80, 1–12,
https://doi.org/10.1016/j.jag.2019.03.017, 2019.
Chan, S. K., Bindlish, R., O'Neill, P., Jackson, T., Njoku, E., Dunbar, S.,
Chaubell, J., Piepmeier, J., Yueh, S., Entekhabi, D., Colliander, A., Chen,
F., Cosh, M. H., Caldwell, T., Walker, J., Berg, A., McNairn, H., Thibeault,
M., Martínez-Fernández, J., Uldall, F., Seyfried, M., Bosch, D.,
Starks, P., Holifield Collins, C., Prueger, J., van der Velde, R., Asanuma,
J., Palecki, M., Small, E. E., Zreda, M., Calvet, J., Crow, W. T., and Kerr,
Y.: Development and assessment of the SMAP enhanced passive soil moisture
product, Remote Sens. Environ., 204, 931–941,
https://doi.org/10.1016/j.rse.2017.08.025, 2018.
Chen, F., Crow, W. T., Bindlish, R., Colliander, A., Burgin, M. S., Asanuma,
J., and Aida, K.: Global-scale evaluation of SMAP, SMOS and ASCAT soil
moisture products using triple collocation, Remote Sens. Environ., 214,
1–13, https://doi.org/10.1016/j.rse.2018.05.008, 2018.
Chen, Y.: A new dataset of satellite observation-based global surface soil
moisture covering 2003–2018, PANGAEA, https://doi.org/10.1594/PANGAEA.912597, 2020.
Chen, Y., Feng, X., Fu, B., Shi, W., Yin, L., and Lv, Y.: Recent Global
Cropland Water Consumption Constrained by Observations, Water Resour. Res.,
55, 3708–3738, https://doi.org/10.1029/2018WR023573, 2019.
Cheng, S., Huang, J., Ji, F., and Lin, L.: Uncertainties of soil moisture in
historical simulations and future projections, J. Geophys. Res.-Atmos., 122,
2239–2253, https://doi.org/10.1002/2016JD025871, 2017.
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B.,
Cosh, M. H., Dunbar, R. S., Dang, L., Pashaian, L., Asanuma, J., Aida, K.,
Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., Goodrich, D.,
al Jassar, H., Lopez-Baeza, E., Martínez-Fernández, J.,
González-Zamora, A., Livingston, S., McNairn, H., Pacheco, A.,
Moghaddam, M., Montzka, C., Notarnicola, C., Niedrist, G., Pellarin, T.,
Prueger, J., Pulliainen, J., Rautiainen, K., Ramos, J., Seyfried, M.,
Starks, P., Su, Z., Zeng, Y., van der Velde, R., Thibeault, M., Dorigo, W.,
Vreugdenhil, M., Walker, J. P., Wu, X., Monerris, A., O'Neill, P. E.,
Entekhabi, D., Njoku, E. G., and Yueh, S.: Validation of SMAP surface soil
moisture products with core validation sites, Remote Sens. Environ., 191,
215–231, https://doi.org/10.1016/j.rse.2017.01.021, 2017.
Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., and El-rayes, M. A.:
Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models,
IEEE T. Geosci. Remote, GE-23, 35–46,
https://doi.org/10.1109/TGRS.1985.289498, 1985.
Dorigo, W., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., and
Fernández-Prieto, D.: Evaluating global trends (1988–2010) in
harmonized multi-satellite surface soil moisture, Geophys. Res. Lett., 39, L18405,
https://doi.org/10.1029/2012GL052988, 2012.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D.,
Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y.,
Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C.,
Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and
Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding:
State-of-the art and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Dorigo, W. A., Scipal, K., Parinussa, R. M., Liu, Y. Y., Wagner, W., de Jeu, R. A. M., and Naeimi, V.: Error characterisation of global active and passive microwave soil moisture datasets, Hydrol. Earth Syst. Sci., 14, 2605–2616, https://doi.org/10.5194/hess-14-2605-2010, 2010.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011.
Dorigo, W. A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A.,
Sanchis-Dufau, A. D., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M.:
Global Automated Quality Control of In Situ Soil Moisture Data from the
International Soil Moisture Network, Vadose Zone J., 12,
https://doi.org/10.2136/vzj2012.0097, 2013.
Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew,
A., Albergel, C., Brocca, L., Chung, D., Parinussa, R. M., and Kidd, R.:
Evaluation of the ESA CCI soil moisture product using ground-based
observations, Remote Sens. Environ., 162, 380–395,
https://doi.org/10.1016/j.rse.2014.07.023, 2015.
Draper, C. S., Reichle, R. H., De Lannoy, G. J. M., and Liu, Q.:
Assimilation of passive and active microwave soil moisture retrievals,
Geophys. Res. Lett., 39, L04401, https://doi.org/10.1029/2011GL050655, 2012.
Du, Y., Ulaby, F. T., and Dobson, M. C.: Sensitivity to soil moisture by
active and passive microwave sensors, IEEE T. Geosci. Remote,
38, 105–114, https://doi.org/10.1109/36.823905, 2000.
Entekhabi, D., Njoku, E., O'neill, P., Kellogg, K. H., Crow, W., Edelstein,
W. N., Entin, J. K., Goodman, S. D., Jackson, T., Johnson, F. M., Kimball,
J., Piepmeier, J., Koster, R. D., Martin, E., McDonald, C. K., Moghaddam,
M., Moran, M. S., Reichle, R., Shi, J. C., Spencer, D., Thurman, S. W.,
Tsang, L., and Zyl, J. V.: The Soil Moisture Active Passive (SMAP) Mission,
Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010.
Etminan, A., Tabatabaeenejad, A., and Moghaddam, M.: Retrieving Root-Zone
Soil Moisture Profile From P-Band Radar via Hybrid Global and Local
Optimization, IEEE T. Geosci. Remote, 58, 1–9,
https://doi.org/10.1109/TGRS.2020.2965569, 2020.
Fan, X., Liu, Y., Gan, G., and Wu, G.: SMAP underestimates soil moisture in
vegetation-disturbed areas primarily as a result of biased surface
temperature data, Remote Sens. Environ., 247, 111914,
https://doi.org/10.1016/j.rse.2020.111914, 2020.
Feng, X., Li, J., Cheng, W., Fu, B., Wang, Y., Lü, Y., and Shao, M. A.:
Evaluation of AMSR-E retrieval by detecting soil moisture decrease following
massive dryland re-vegetation in the Loess Plateau, China, Remote Sens.
Environ., 196, 253–264, https://doi.org/10.1016/j.rse.2017.05.012, 2017.
Fernandez-Moran, R., Al-Yaari, A., Mialon, A., Mahmoodi, A., Al Bitar, A.,
De Lannoy, G., Rodriguez-Fernandez, N., Lopez-Baeza, E., Kerr, Y., and
Wigneron, J.-P.: SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation
Optical Depth Product, Remote Sens., 9, 457, https://doi.org/10.3390/rs9050457,
2017a.
Fernandez-Moran, R., Wigneron, J. P., De Lannoy, G., Lopez-Baeza, E.,
Parrens, M., Mialon, A., Mahmoodi, A., Al-Yaari, A., Bircher, S., Al Bitar,
A., Richaume, P., and Kerr, Y.: A new calibration of the effective
scattering albedo and soil roughness parameters in the SMOS SM retrieval
algorithm, Int. J. Appl. Earth Obs. Geoinf., 62, 27–38,
https://doi.org/10.1016/j.jag.2017.05.013, 2017b.
Fujii, H., Koike, T., and Imaoka, K.: Improvement of the AMSR-E Algorithm
for Soil Moisture Estimation by Introducing a Fractional Vegetation Coverage
Dataset Derived from MODIS Data, J. Meteorol. Soc. Japan, 29, 282–292,
https://doi.org/10.11440/rssj.29.282, 2009.
Gaiser, P. W., Germain, K. M. S., Twarog, E. M., Poe, G. A., Purdy, W.,
Richardson, D., Grossman, W., Jones, W. L., Spencer, D., Golba, G.,
Cleveland, J., Choy, L., Bevilacqua, R. M., and Chang, P. S.: The WindSat
spaceborne polarimetric microwave radiometer: sensor description and early
orbit performance, IEEE T. Geosci. Remote, 42, 2347–2361,
https://doi.org/10.1109/TGRS.2004.836867, 2004.
Gao, H., Wood, E. F., Jackson, T. J., Drusch, M., and Bindlish, R.: Using
TRMM/TMI to Retrieve Surface Soil Moisture over the Southern United States
from 1998 to 2002, J. Hydrometeorol., 7, 23–38,
https://doi.org/10.1175/JHM473.1, 2006.
Gao, H., Wood, E. F., Drusch, M., and McCabe, M. F.: Copula-Derived
Observation Operators for Assimilating TMI and AMSR-E Retrieved Soil
Moisture into Land Surface Models, J. Hydrometeorol., 8, 413–429,
https://doi.org/10.1175/JHM570.1, 2007.
Gao, L., Sadeghi, M., and Ebtehaj, A.: Microwave retrievals of soil moisture
and vegetation optical depth with improved resolution using a combined
constrained inversion algorithm: Application for SMAP satellite, Remote
Sens. Environ., 239, 111662, https://doi.org/10.1016/j.rse.2020.111662,
2020.
Griend, A. A. V. D. and Wigneron, J.: On the measurement of microwave
vegetation properties: some guidelines for a protocol, IEEE T. Geosci. Remote, 42, 2277–2289, https://doi.org/10.1109/TGRS.2004.832243,
2004.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet,
J. C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi,
M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C.,
Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C.,
Scanlon, T., van der Schalie, R., Wigneron, J. P., and Wagner, W.:
Validation practices for satellite soil moisture retrievals: What are (the)
errors?, Remote Sens. Environ., 244, 111806,
https://doi.org/10.1016/j.rse.2020.111806, 2020.
Hahn, S., Reimer, C., Vreugdenhil, M., Melzer, T., and Wagner, W.: Dynamic
Characterization of the Incidence Angle Dependence of Backscatter Using
Metop ASCAT, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 10,
2348–2359, https://doi.org/10.1109/JSTARS.2016.2628523, 2017.
Hansen, M. and Song, X. P.: Vegetation Continuous Fields (VCF) Yearly Global
0.05 Deg, https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001, 2018.
Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and Reichstein, M.: Global spatiotemporal distribution of soil respiration modeled using a global database, Biogeosciences, 12, 4121–4132, https://doi.org/10.5194/bg-12-4121-2015, 2015.
Hermance, J. F., Jacob, R. W., Bradley, B. A., and Mustard, J. F.:
Extracting Phenological Signals From Multiyear AVHRR NDVI Time Series:
Framework for Applying High-Order Annual Splines With Roughness Damping,
IEEE T. Geosci. Remote, 45, 3264–3276,
https://doi.org/10.1109/TGRS.2007.903044, 2007.
Hoffmann, L., Günther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng, Y., Konopka, P., Müller, R., Vogel, B., and Wright, J. S.: From ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations, Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019.
Holmes, T. R. H., De Jeu, R. A. M., Owe, M., and Dolman, A. J.: Land surface
temperature from Ka band (37 GHz) passive microwave observations, J.
Geophys. Res.-Atmos., 114, D04113, https://doi.org/10.1029/2008JD010257, 2009.
Howell, D. C., Rogier, M., Yzerbyt, V., and Bestgen, Y.: Statistical methods
in human sciences, Wadsworth, New York, 1998.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213,
https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.:
GPM IMERG Final Precipitation L3 1 day 0.1 degree × 0.1 degree V06,
https://doi.org/10.5067/GPM/IMERGDF/DAY/06, 2019.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212,
https://doi.org/10.1016/0034-4257(91)90057-D, 1991.
Jackson, T. J., Schmugge, T. J., and Wang, J. R.: Passive microwave sensing
of soil moisture under vegetation canopies, Water Resour. Res., 18,
1137–1142, https://doi.org/10.1029/WR018i004p01137, 1982.
Jiao, Q., Li, R., Wang, F., Mu, X., Li, P., and An, C.: Impacts of
Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based
on Remote Sensing Datasets, Remote Sens., 8, 156,
https://doi.org/10.3390/rs8020156, 2016.
Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. F.: Four
decades of microwave satellite soil moisture observations: Part 1. A review
of retrieval algorithms, Adv. Water Resour., 109, 106–120,
https://doi.org/10.1016/j.advwatres.2017.09.006, 2017a.
Karthikeyan, L., Pan, M., Wanders, N., Kumar, D. N., and Wood, E. F.: Four
decades of microwave satellite soil moisture observations: Part 2. Product
validation and inter-satellite comparisons, Adv. Water Resour., 109,
236–252, https://doi.org/10.1016/j.advwatres.2017.09.010, 2017b.
Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y.,
Shibata, A., Miura, M., Inahata, H., and Spencer, R. W.: The Advanced
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E),
NASDA's contribution to the EOS for global energy and water cycle studies,
IEEE T. Geosci. Remote, 41, 184–194,
https://doi.org/10.1109/TGRS.2002.808331, 2003.
Kerr, Y. H., Waldteufel, P., Wigneron, J., Martinuzzi, J., Font, J., and
Berger, M.: Soil moisture retrieval from space: the Soil Moisture and Ocean
Salinity (SMOS) mission, IEEE T. Geosci. Remote, 39, 1729–1735,
https://doi.org/10.1109/36.942551, 2001.
Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B.,
Leroux, D., Bircher, S., Mahmoodi, A., Mialon, A., Richaume, P., Delwart,
S., Al Bitar, A., Pellarin, T., Bindlish, R., Jackson, T. J., Rüdiger,
C., Waldteufel, P., Mecklenburg, S., and Wigneron, J. P.: Overview of SMOS
performance in terms of global soil moisture monitoring after six years in
operation, Remote Sens. Environ., 180, 40–63,
https://doi.org/10.1016/j.rse.2016.02.042, 2016.
Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi,
V., Zohaib, M., and Choi, M.: Global-scale assessment and combination of
SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products, Remote
Sens. Environ., 204, 260–275, https://doi.org/10.1016/j.rse.2017.10.026,
2018.
Kim, S., Liu, Y. Y., Johnson, F. M., Parinussa, R. M., and Sharma, A.: A
global comparison of alternate AMSR2 soil moisture products: Why do they
differ?, Remote Sens. Environ., 161, 43–62,
https://doi.org/10.1016/j.rse.2015.02.002, 2015a.
Kim, S., Parinussa, R. M., Liu, Y. Y., Johnson, F. M., and Sharma, A.: A
framework for combining multiple soil moisture retrievals based on
maximizing temporal correlation, Geophys. Res. Lett., 42, 6662–6670,
https://doi.org/10.1002/2015GL064981, 2015b.
Koike, T., Nakamura, Y., Kaihotsu, I., Davaa, G., Matsuura, N., Tamagawa,
K., and Fujii, H.: Development of an advanced microwave scanning radiometer
(AMSR-E) algorithm for soil moisture and vegetation water content,
Proc. Hydraul. Eng., 48, 217–222,
https://doi.org/10.2208/prohe.48.217, 2004.
Kolassa, J., Reichle, R. H., Liu, Q., Alemohammad, S. H., Gentine, P., Aida,
K., Asanuma, J., Bircher, S., Caldwell, T., Colliander, A., Cosh, M.,
Holifield Collins, C., Jackson, T. J., Martínez-Fernández, J.,
McNairn, H., Pacheco, A., Thibeault, M., and Walker, J. P.: Estimating
surface soil moisture from SMAP observations using a Neural Network
technique, Remote Sens. Environ., 204, 43–59,
https://doi.org/10.1016/j.rse.2017.10.045, 2018.
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation
optical depth and effective scattering albedo estimation from SMAP, Remote
Sens. Environ., 198, 460–470, https://doi.org/10.1016/j.rse.2017.06.037,
2017.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of
the Köppen-Geiger climate classification updated, Meteorol. Z., 15,
259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kozak, J. A., Ahuja, L. R., Green, T. R., and Ma, L.: Modelling crop canopy
and residue rainfall interception effects on soil hydrological components
for semi-arid agriculture, Hydrol. Process., 21, 229–241,
https://doi.org/10.1002/hyp.6235, 2010.
Kumar, S. V., Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F.: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes, Hydrol. Earth Syst. Sci., 19, 4463–4478, https://doi.org/10.5194/hess-19-4463-2015, 2015.
Lakhankar, T., Ghedira, H., Temimi, M., Azar, E. A., and Khanbilvardi, R.:
Effect of Land Cover Heterogeneity on Soil Moisture Retrieval Using Active
Microwave Remote Sensing Data, Remote Sens., 1, 80–91,
https://doi.org/10.3390/rs1020080, 2009.
Lei, F., Crow, W. T., Shen, H., Su, C.-H., Holmes, T. R. H., Parinussa, R.
M., and Wang, G.: Assessment of the impact of spatial heterogeneity on
microwave satellite soil moisture periodic error, Remote Sens. Environ.,
205, 85–99, https://doi.org/10.1016/j.rse.2017.11.002, 2018.
Leroux, D. J., Kerr, Y. H., Bitar, A. A., Bindlish, R., Jackson, T. J.,
Berthelot, B., and Portet, G.: Comparison Between SMOS, VUA, ASCAT, and
ECMWF Soil Moisture Products Over Four Watersheds in U.S, IEEE T. Geosci. Remote, 52, 1562–1571,
https://doi.org/10.1109/TGRS.2013.2252468, 2014a.
Leroux, D. J., Kerr, Y. H., Wood, E. F., Sahoo, A. K., Bindlish, R., and
Jackson, T. J.: An Approach to Constructing a Homogeneous Time Series of
Soil Moisture Using SMOS, IEEE T. Geosci. Remote, 52, 393–405,
https://doi.org/10.1109/TGRS.2013.2240691, 2014b.
Lievens, H., Martens, B., Verhoest, N. E. C., Hahn, S., Reichle, R. H., and
Miralles, D. G.: Assimilation of global radar backscatter and radiometer
brightness temperature observations to improve soil moisture and land
evaporation estimates, Remote Sens. Environ., 189, 194–210,
https://doi.org/10.1016/j.rse.2016.11.022, 2017.
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A.
I. J. M.: Global long-term passive microwave satellite-based retrievals of
vegetation optical depth, Geophys. Res. Lett., 38, L18402,
https://doi.org/10.1029/2011GL048684, 2011a.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011b.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W.,
McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Trend-preserving
blending of passive and active microwave soil moisture retrievals, Remote
Sens. Environ., 123, 280–297, https://doi.org/10.1016/j.rse.2012.03.014,
2012.
Lorenz, C., Montzka, C., Jagdhuber, T., Laux, P., and Kunstmann, H.:
Long-Term and High-Resolution Global Time Series of Brightness Temperature
from Copula-Based Fusion of SMAP Enhanced and SMOS Data, Remote Sens., 10, 1842,
https://doi.org/10.3390/rs10111842, 2018.
Lu, Z., Chai, L., Ye, Q., and Zhang, T.: Reconstruction of time-series soil
moisture from AMSR2 and SMOS data by using recurrent nonlinear
autoregressive neural networks, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 26–31 July 2015, 980–983,
https://doi.org/10.1109/IGARSS.2015.7325932, 2015.
Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., and Wang, W.: Satellite
surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive
assessment using global ground-based observations, Remote Sens. Environ.,
231, 111215, https://doi.org/10.1016/j.rse.2019.111215, 2019.
Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., and
Verhoest, N. E. C.: Improving terrestrial evaporation estimates over
continental Australia through assimilation of SMOS soil moisture, Int. J.
Appl. Earth Obs. Geoinf., 48, 146–162,
https://doi.org/10.1016/j.jag.2015.09.012, 2016.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martínez-Fernández, J., González-Zamora, A., Sánchez, N.,
Gumuzzio, A., and Herrero-Jiménez, C. M.: Satellite soil moisture for
agricultural drought monitoring: Assessment of the SMOS derived Soil Water
Deficit Index, Remote Sens. Environ., 177, 277–286,
https://doi.org/10.1016/j.rse.2016.02.064, 2016.
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and
Entekhabi, D.: The global distribution and dynamics of surface soil
moisture, Nat. Geosci., 10, 100, https://doi.org/10.1038/ngeo2868, 2017.
Méndez-Barroso, L. A., Vivoni, E. R., Watts, C. J., and Rodríguez,
J. C.: Seasonal and interannual relations between precipitation, surface
soil moisture and vegetation dynamics in the North American monsoon region,
J. Hydrol., 377, 59–70, https://doi.org/10.1016/j.jhydrol.2009.08.009, 2009.
Merriam, R. A.: A note on the interception loss equation, Int. J. Digit.
Earth, 65, 3850–3851, https://doi.org/10.1029/jz065i011p03850, 1960.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Mladenova, I. E., Jackson, T. J., Njoku, E., Bindlish, R., Chan, S., Cosh,
M. H., Holmes, T. R. H., de Jeu, R. A. M., Jones, L., Kimball, J., Paloscia,
S., and Santi, E.: Remote monitoring of soil moisture using passive
microwave-based techniques – Theoretical basis and overview of selected
algorithms for AMSR-E, Remote Sens. Environ., 144, 197–213,
https://doi.org/10.1016/j.rse.2014.01.013, 2014.
Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R., and Jackson, T. J.:
A model for microwave emission from vegetation-covered fields, J. Geophys.
Res.-Oceans, 87, 11229–11237, https://doi.org/10.1029/JC087iC13p11229, 1982.
Naithani, K. J., Baldwin, D. C., Gaines, K. P., Lin, H., and Eissenstat, D.
M.: Spatial Distribution of Tree Species Governs the Spatio-Temporal
Interaction of Leaf Area Index and Soil Moisture across a Forested
Landscape, PLoS One, 8, e58704,
https://doi.org/10.1371/journal.pone.0058704, 2013.
Neill, P. E. O., Podest, E., and Njoku, E. G.: Utilization of ancillary data
sets for SMAP algorithm development and product generation, 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, 24–29 July 2011, 2436–2439, https://doi.org/10.1109/IGARSS.2011.6049703, 2011.
Njoku, E. G. and Chan, T. K.: Vegetation and surface roughness effects on
AMSR-E land observations, Remote Sens. Environ., 100, 190–199,
https://doi.org/10.1016/j.rse.2005.10.017, 2006.
Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K., and Nghiem, S. V.:
Soil moisture retrieval from AMSR-E, IEEE T. Geosci. Remote, 41,
215–229, https://doi.org/10.1109/TGRS.2002.808243, 2003.
Njoku, E. G., Ashcroft, P., Chan, T. K., and Li, L.: Global survey and
statistics of radio-frequency interference in AMSR-E land observations, IEEE T. Geosci. Remote, 43, 938–947,
https://doi.org/10.1109/TGRS.2004.837507, 2005.
Oliva, R., Daganzo, E., Kerr, Y. H., Mecklenburg, S., Nieto, S., Richaume,
P., and Gruhier, C.: SMOS Radio Frequency Interference Scenario: Status and
Actions Taken to Improve the RFI Environment in the 1400–1427-MHz Passive
Band, IEEE T. Geosci. Remote, 50, 1427–1439,
https://doi.org/10.1109/TGRS.2012.2182775, 2012.
Owe, M., Jeu, R. D., and Walker, J.: A methodology for surface soil moisture
and vegetation optical depth retrieval using the microwave polarization
difference index, IEEE T. Geosci. Remote, 39, 1643–1654,
https://doi.org/10.1109/36.942542, 2001.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys. Res.-Earth
Surf., 113, F01002, https://doi.org/10.1029/2007JF000769, 2008.
Panciera, R., Walker, J. P., Kalma, J. D., Kim, E. J., Saleh, K., and
Wigneron, J.-P.: Evaluation of the SMOS L-MEB passive microwave soil
moisture retrieval algorithm, Remote Sens. Environ., 113, 435–444,
https://doi.org/10.1016/j.rse.2008.10.010, 2009.
Parinussa, R. M., Holmes, T. R. H., Yilmaz, M. T., and Crow, W. T.: The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations, Hydrol. Earth Syst. Sci., 15, 3135–3151, https://doi.org/10.5194/hess-15-3135-2011, 2011.
Parinussa, R. M., Holmes, T. R. H., and Jeu, R. A. M. D.: Soil Moisture
Retrievals From the WindSat Spaceborne Polarimetric Microwave Radiometer,
IEEE T. Geosci. Remote, 50, 2683–2694,
https://doi.org/10.1109/TGRS.2011.2174643, 2012.
Parinussa, R. M., Holmes, T. R. H., Wanders, N., Dorigo, W. A., and de Jeu,
R. A. M.: A Preliminary Study toward Consistent Soil Moisture from AMSR2, J.
Hydrometeorol., 16, 932–947, https://doi.org/10.1175/JHM-D-13-0200.1, 2014.
Piles, M., Schalie, R. V. D., Gruber, A., Muñoz-Marí, J.,
Camps-Valls, G., Mateo-Sanchis, A., Dorigo, W., and Jeu, R. D.: Global
Estimation of Soil Moisture Persistence with L and C-Band Microwave Sensors, IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia,
22–27 July 2018, 8259–8262,
https://doi.org/10.1109/IGARSS.2018.8518161, 2018.
Pratola, C., Barrett, B., Gruber, A., and Dwyer, E.: Quality Assessment of
the CCI ECV Soil Moisture Product Using ENVISAT ASAR Wide Swath Data over
Spain, Ireland and Finland, Remote Sens., 7, 15388–15423, https://doi.org/10.3390/rs71115388, 2015.
Qiu, J., Gao, Q., Wang, S., and Su, Z.: Comparison of temporal trends from
multiple soil moisture data sets and precipitation: The implication of
irrigation on regional soil moisture trend, Int. J. Appl. Earth Obs.
Geoinf., 48, 17–27, https://doi.org/10.1016/j.jag.2015.11.012, 2016.
Qu, Y., Zhu, Z., Chai, L., Liu, S., Montzka, C., Liu, J., Yang, X., Lu, Z.,
Jin, R., Li, X., Guo, Z., and Zheng, J.: Rebuilding a Microwave Soil
Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness
Temperature and SMAP over the Qinghai–Tibet Plateau, China, Remote Sens.,
11, 683, https://doi.org/10.3390/rs11060683, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodriguez-Fernandez, N., Aires, F., Richaume, P., Kerr, Y. H., Prigent, C.,
Kolassa, J., Cabot, F., Jiménez, C., Mahmoodi, A., and Drusch, M.: Soil
Moisture Retrieval Using Neural Networks: Application to SMOS, IEEE T. Geosci. Remote, 53, 5991–6007,
https://doi.org/10.1109/TGRS.2015.2430845, 2015.
Rodríguez-Fernández, J. N., Kerr, H. Y., Van der Schalie, R.,
Al-Yaari, A., Wigneron, J.-P., De Jeu, R., Richaume, P., Dutra, E., Mialon,
A., and Drusch, M.: Long Term Global Surface Soil Moisture Fields Using an
SMOS-Trained Neural Network Applied to AMSR-E Data, Remote Sens., 8, 959,
https://doi.org/10.3390/rs8110959, 2016.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Chang., 8, 421–426,
https://doi.org/10.1038/s41558-018-0138-5, 2018.
Schroeder, R., McDonald, C. K., Chapman, D. B., Jensen, K., Podest, E.,
Tessler, D. Z., Bohn, J. T., and Zimmermann, R.: Development and Evaluation
of a Multi-Year Fractional Surface Water Data Set Derived from
Active/Passive Microwave Remote Sensing Data, Remote Sens., 7, 16688–16732,
https://doi.org/10.3390/rs71215843, 2015.
Shi, J., Jackson, T., Tao, J., Du, J., Bindlish, R., Lu, L., and Chen, K.
S.: Microwave vegetation indices for short vegetation covers from satellite
passive microwave sensor AMSR-E, Remote Sens. Environ., 112, 4285–4300,
https://doi.org/10.1016/j.rse.2008.07.015, 2008.
Stillman, S. and Zeng, X.: Evaluation of SMAP Soil Moisture Relative to Five
Other Satellite Products Using the Climate Reference Network Measurements
Over USA, IEEE T. Geosci. Remote, 56, 6296–6305,
https://doi.org/10.1109/TGRS.2018.2835316, 2018.
Stinchcombe, M. and White, H.: Universal approximation using feedforward networks
with non-sigmoid hidden layer activation functions,
International 1989 Joint Conference on Neural Networks, Washington, D.C., USA, 613–617, https://doi.org/10.1109/IJCNN.1989.118640, 1989.
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C.,
Seneviratne, S. I., and Peñuelas, J.: Drought impacts on terrestrial
primary production underestimated by satellite monitoring, Nat. Geosci., 12,
264–270, https://doi.org/10.1038/s41561-019-0318-6, 2019.
Ulaby, F. T., Batlivala, P. P., and Dobson, M. C.: Microwave Backscatter
Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part
I-Bare Soil, IEEE Trans. Geosci. Electronics, 16, 286–295,
https://doi.org/10.1109/TGE.1978.294586, 1978.
Van der Schalie, R., de Jeu, R. A. M., Kerr, Y. H., Wigneron, J. P.,
Rodríguez-Fernández, N. J., Al-Yaari, A., Parinussa, R. M.,
Mecklenburg, S., and Drusch, M.: The merging of radiative transfer based
surface soil moisture data from SMOS and AMSR-E, Remote Sens. Environ., 189,
180–193, https://doi.org/10.1016/j.rse.2016.11.026, 2017.
Van der Schalie, R., De Jeu, R., Parinussa, R.,
Rodríguez-Fernández, N., Kerr, Y., Al-Yaari, A., Wigneron, J.-P.,
and Drusch, M.: The Effect of Three Different Data Fusion Approaches on the
Quality of Soil Moisture Retrievals from Multiple Passive Microwave Sensors,
Remote Sens., 10, 107, https://doi.org/10.3390/rs10010107, 2018.
Verger, A., Baret, F., and Weiss, M.: Near Real-Time Vegetation Monitoring
at Global Scale, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 7,
3473–3481, https://doi.org/10.1109/JSTARS.2014.2328632, 2014.
Verhoest, N. E. C., Berg, M. J. V. D., Martens, B., Lievens, H., Wood, E.
F., Pan, M., Kerr, Y. H., Bitar, A. A., Tomer, S. K., Drusch, M., Vernieuwe,
H., Baets, B. D., Walker, J. P., Dumedah, G., and Pauwels, V. R. N.:
Copula-Based Downscaling of Coarse-Scale Soil Moisture Observations With
Implicit Bias Correction, IEEE T. Geosci. Remote, 53, 3507–3521,
https://doi.org/10.1109/TGRS.2014.2378913, 2015.
Vreugdenhil, M., Dorigo, W. A., Wagner, W., Jeu, R. A. M. D., Hahn, S., and
Marle, M. J. E. V.: Analyzing the Vegetation Parameterization in the TU-Wien
ASCAT Soil Moisture Retrieval, IEEE T. Geosci. Remote, 54,
3513–3531, https://doi.org/10.1109/TGRS.2016.2519842, 2016.
Wagner, W., Lemoine, G., and Rott, H.: A Method for Estimating Soil Moisture
from ERS Scatterometer and Soil Data, Remote Sens. Environ., 70, 191–207,
https://doi.org/10.1016/S0034-4257(99)00036-X, 1999.
Wang, Y., Leng, P., Peng, J., Marzahn, P., and Ludwig, R.: Global
assessments of two blended microwave soil moisture products CCI and SMOPS
with in-situ measurements and reanalysis data, Int. J. Appl. Earth Obs.
Geoinf., 94, 102234, https://doi.org/10.1016/j.jag.2020.102234, 2021.
Wigneron, J., Calvet, J., Rosnay, P. d., Kerr, Y., Waldteufel, P., Saleh,
K., Escorihuela, M. J., and Kruszewski, A.: Soil moisture retrievals from
biangular L-band passive microwave observations, IEEE Geosci. Remote Sens.
Lett., 1, 277–281, https://doi.org/10.1109/LGRS.2004.834594, 2004.
Wigneron, J. P., Kerr, Y., Waldteufel, P., Saleh, K., Escorihuela, M. J.,
Richaume, P., Ferrazzoli, P., de Rosnay, P., Gurney, R., Calvet, J. C.,
Grant, J. P., Guglielmetti, M., Hornbuckle, B., Mätzler, C., Pellarin,
T., and Schwank, M.: L-band Microwave Emission of the Biosphere (L-MEB)
Model: Description and calibration against experimental data sets over crop
fields, Remote Sens. Environ., 107, 639–655,
https://doi.org/10.1016/j.rse.2006.10.014, 2007.
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and Song, J.:
Use of General Regression Neural Networks for Generating the GLASS Leaf Area
Index Product From Time-Series MODIS Surface Reflectance, IEEE T. Geosci. Remote, 52, 209–223,
https://doi.org/10.1109/TGRS.2013.2237780, 2014.
Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X., and Song, J.:
Long-Time-Series Global Land Surface Satellite Leaf Area Index Product
Derived From MODIS and AVHRR Surface Reflectance, IEEE T. Geosci. Remote, 54, 5301–5318, https://doi.org/10.1109/TGRS.2016.2560522, 2016.
Yang, H., Weng, F., Lv, L., Lu, N., Liu, G., Bai, M., Qian, Q., He, J., and
Xu, H.: The FengYun-3 Microwave Radiation Imager On-Orbit Verification, IEEE T. Geosci. Remote, 49, 4552–4560,
https://doi.org/10.1109/TGRS.2011.2148200, 2011.
Yang, J., Zhang, P., Lu, N., Yang, Z., Shi, J., and Dong, C.: Improvements
on global meteorological observations from the current Fengyun 3 satellites
and beyond, Int. J. Digit. Earth, 5, 251–265,
https://doi.org/10.1080/17538947.2012.658666, 2012.
Yao, P., Shi, J., Zhao, T., Lu, H., and Al-Yaari, A.: Rebuilding Long Time
Series Global Soil Moisture Products Using the Neural Network Adopting the
Microwave Vegetation Index, Remote Sens., 9, 35,
https://doi.org/10.3390/rs9010035, 2017.
Yao, P., Lu, H., Yue, S., Yang, F., Lyu, H., Yang, K., McColl, K. A.,
Gianotti, D., and ENTekhabi, D.: Estimating Surface Soil Moisture from AMSR2
Tb with Artificial Neural Network Method and SMAP Products, IGARSS 2019 -
2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama,
Japan, 28 July–2 August 2019, 6998–7001, https://doi.org/10.1109/IGARSS.2019.8898152, 2019.
Ye, N., Walker, J. P., Guerschman, J., Ryu, D., and Gurney, R. J.: Standing
water effect on soil moisture retrieval from L-band passive microwave
observations, Remote Sens. Environ., 169, 232–242,
https://doi.org/10.1016/j.rse.2015.08.013, 2015.
Ye, N., Walker, J. P., Yeo, I., Jackson, T. J., Kerr, Y., Kim, E., McGrath,
A., PopStefanija, I., Goodberlet, M., and Hills, J.: Toward P-Band Passive
Microwave Sensing of Soil Moisture, IEEE Geosci. Remote Sens. Lett., PP, 1–5,
https://doi.org/10.1109/LGRS.2020.2976204, 2020.
Yilmaz, M. T., Hunt, E. R., and Jackson, T. J.: Remote sensing of vegetation
water content from equivalent water thickness using satellite imagery,
Remote Sens. Environ., 112, 2514–2522,
https://doi.org/10.1016/j.rse.2007.11.014, 2008.
Yin, J., Zhan, X., Liu, J., and Schull, M.: An Intercomparison of Noah Model
Skills With Benefits of Assimilating SMOPS Blended and Individual Soil
Moisture Retrievals, Water Resour. Res., 55, 2572–2592,
https://doi.org/10.1029/2018WR024326, 2019.
Zhang, R., Kim, S., and Sharma, A.: A comprehensive validation of the SMAP
Enhanced Level-3 Soil Moisture product using ground measurements over varied
climates and landscapes, Remote Sens. Environ., 223, 82–94,
https://doi.org/10.1016/j.rse.2019.01.015, 2019.
Zhao, Y., Peth, S., Wang, X. Y., Lin, H., and Horn, R.: Controls of surface
soil moisture spatial patterns and their temporal stability in a semi-arid
steppe, Hydrol. Process., 24, 2507–2519, https://doi.org/10.1002/hyp.7665,
2010.
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By...
Altmetrics
Final-revised paper
Preprint