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Abstract. Soil moisture is an important variable linking the atmosphere and terrestrial ecosystems. However,
long-term satellite monitoring of surface soil moisture at the global scale needs improvement. In this study, we
conducted data calibration and data fusion of 11 well-acknowledged microwave remote-sensing soil moisture
products since 2003 through a neural network approach, with Soil Moisture Active Passive (SMAP) soil moisture
data applied as the primary training target. The training efficiency was high (R2

= 0.95) due to the selection of
nine quality impact factors of microwave soil moisture products and the complicated organizational structure of
multiple neural networks (five rounds of iterative simulations, eight substeps, 67 independent neural networks,
and more than 1 million localized subnetworks). Then, we developed the global remote-sensing-based surface
soil moisture dataset (RSSSM) covering 2003–2018 at 0.1◦ resolution. The temporal resolution is approximately
10 d, meaning that three data records are obtained within a month, for days 1–10, 11–20, and from the 21st to
the last day of that month. RSSSM is proven comparable to the in situ surface soil moisture measurements of
the International Soil Moisture Network sites (overall R2 and RMSE values of 0.42 and 0.087 m3 m−3), while
the overall R2 and RMSE values for the existing popular similar products are usually within the ranges of 0.31–
0.41 and 0.095–0.142 m3 m−3), respectively. RSSSM generally presents advantages over other products in arid
and relatively cold areas, which is probably because of the difficulty in simulating the impacts of thawing and
transient precipitation on soil moisture, and during the growing seasons. Moreover, the persistent high quality
during 2003–2018 as well as the complete spatial coverage ensure the applicability of RSSSM to studies on
both the spatial and temporal patterns (e.g. long-term trend). RSSSM data suggest an increase in the global mean
surface soil moisture. Moreover, without considering the deserts and rainforests, the surface soil moisture loss on
consecutive rainless days is highest in summer over the low latitudes (30◦ S–30◦ N) but mostly in winter over the
mid-latitudes (30–60◦ N, 30–60◦ S). Notably, the error propagation is well controlled with the extension of the
simulation period to the past, indicating that the data fusion algorithm proposed here will be more meaningful
in the future when more advanced microwave sensors become operational. RSSSM data can be accessed at
https://doi.org/10.1594/PANGAEA.912597 (Chen, 2020).
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1 Introduction

Soil moisture plays an important role in modulating the ex-
change of water, carbon, and energy between the land sur-
face and atmosphere, and it also links the global water, car-
bon, and energy cycles (Dorigo et al., 2012; Karthikeyan et
al., 2017a). Soil moisture has been endorsed by the Global
Climate Observing System (GCOS) as an essential climate
variable (Bojinski et al., 2014) because it can indicate the
climatic impact on the ecosystems, such as during ecological
droughts (Martínez-Fernández et al., 2016; Samaniego et al.,
2018). Current research requires high-quality soil moisture
information in terms of data accuracy and spatio-temporal
coverage (Hashimoto et al., 2015; Stocker et al., 2019).

Reanalysis-based land surface model products are fre-
quently used, including the Global Land Data Assimila-
tion System (GLDAS; with 0.25◦ resolution) (Rodell et al.,
2004), European Reanalysis (ERA)-Interim (0.75◦) (Bal-
samo et al., 2015), and its successors ERA5 (0.25◦) and
ERA5-Land (0.1◦) (Hoffmann et al., 2019). These products
can often predict temporal variations well due to the incor-
poration of the time variance of environmental factors, e.g.
precipitation. In addition, the modelling approach can also
provide information on the soil moisture in soil layers deeper
than the surface layer (< 5 cm). The uncertainties arise from
meteorological forcing data and model parameters as well as
inadequacies in model physics (Cheng et al., 2017). More-
over, the anthropogenic impacts from irrigation and land
cover changes are rarely considered (Kumar et al., 2015; Qiu
et al., 2016).

With advances of remote-sensing technology, microwave
remote sensing became an alternative to soil moisture moni-
toring. Currently, global-scale soil moisture can be acquired
from either passive sensors (e.g. SMMR, SSM/I, TMI, Wind-
Sat, AMSR-E, AMSR2, SMOS, SMAP; see Table 1 for the
full names) or active sensors (e.g. ERS and ASCAT), with
that within the top 5 cm of soil being detectable (Feng et al.,
2017; Jiao et al., 2016; Piles et al., 2018). The data quality
and spatial coverage are improved step by step (Karthikeyan
et al., 2017b). However, valid temporal spans of all these
sensors are limited, and the data quality and spatial cover-
age were considered to be unsatisfactory until the launch of
AMSR-E in June 2002 (Karthikeyan et al., 2017b; Kawan-
ishi et al., 2003). Currently, ASCAT sensors have produced
the longest continuous record of global surface soil mois-
ture of microwave remote sensing (Bartalis et al., 2007), with
the temporal span from 2007 until present. Satellite-based
soil moisture retrievals may also suffer from various distur-
bances, such as lower quality over dense vegetation cover,
high open-water fractions, and complex topography (Draper
et al., 2012; Fan et al., 2020; Ye et al., 2015). Differences
in the algorithms dealing with the disturbances make dif-
ferent microwave soil moisture products hardly compara-
ble with each other (Kim et al., 2015a; Mladenova et al.,
2014). New sensors, such as SMOS (Kerr et al., 2001) and

SMAP (Entekhabi et al., 2010), can produce significantly
improved estimates because L-band microwaves (1.4 GHz;
Kerr et al., 2001) penetrate the vegetation canopy better than
shorter wavelengths (Burgin et al., 2017; Chen et al., 2018;
Karthikeyan et al., 2017b; Kerr et al., 2016; Kim et al., 2018;
Leroux et al., 2014a; Stillman and Zeng, 2018). However,
SMOS data are noisy and lack data in Eurasia due to high ra-
dio frequency interference (RFI) (Oliva et al., 2012). While
the SMAP passive product has achieved an unbiased RMSE
that is close to its target of 0.04 m3 m−3 and has incorporated
hardware RFI mitigation (Chen et al., 2018; Colliander et al.,
2017), the data have only been available since March 2015.

Interest in fusing satellite-observed and modelled soil
moisture has increased recently. The European Space
Agency (ESA) published a long-term surface soil moisture
dataset called the Climate Change Initiative (CCI), and the
latest version (v4.5) covers the time period of 1978–2018.
Two steps contribute to the combined CCI product. The first
step involves rescaling the soil moisture of all microwave
sensors against the reference data (GLDAS Noah product) by
cumulative distribution function (CDF) matching, while the
second step merges the rescaled products together by select-
ing the best product in each subperiod or averaging the prod-
ucts weighted by the estimated errors (Dorigo et al., 2017;
Gruber et al., 2019; Liu et al., 2012). CCI utilized almost all
the available microwave soil moisture datasets to form a long
time series and generally agrees well with measured values
at some sites, e.g. the Irish grassland sites and the grassland
and agricultural fields in the United States, France, Spain,
China, and Australia (Albergel et al., 2013; An et al., 2016;
Dorigo et al., 2017; Pratola et al., 2015). Valid microwave ob-
servations were quite limited before June 2002 due to satel-
lite sensor constraints (Dorigo et al., 2017). Through CDF
matching, the CCI soil moisture references the spatial pat-
terns of all the satellite products relative to that of GLDAS
(Gruber et al., 2019; Liu et al., 2012, 2011b). The temporal
variation in each satellite product is retained, although the
data averaging (Liu et al., 2012) cannot efficiently distinguish
between the divergent interannual variations in various prod-
ucts (Feng et al., 2017). The Soil Moisture Operational Prod-
uct System (SMOPS) v3.0 is another global blended surface
soil moisture dataset that was developed in a similar way (Yin
et al., 2019). SMOPS v3.0 is a daily and 6-hourly temporal-
interval dataset with a complete global land coverage since
March 2017. The overall performance, which is indicated
by an RMSE of 0.035–0.066 m3 m−3 is slightly lower than
that of CCI (with RMSE of 0.031–0.06 m3 m−3) (Wang et
al., 2021). The Global Land Evaporation Amsterdam Model
(GLEAM) surface soil moisture was produced by assimilat-
ing CCI data into a land surface model, GLEAM (Burgin et
al., 2017; Martens et al., 2017; Miralles et al., 2011), through
an optimized Newtonian nudging approach (Martens et al.,
2016). The general performance of the GLEAM soil mois-
ture product is satisfactory (Beck et al., 2020). In the cur-
rent version, the CCI soil moisture anomalies (the deviations
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Table 1. Abbreviations for the name of satellites, remote sensors, and missions.

Abbreviation Full name

SMMR Scanning Multichannel Microwave Radiometer
SSM/I Special Sensor Microwave/Imager
TMI Tropical Rainfall Measuring Mission (TRMM)’s Microwave Imager
AMSR-E Advanced Microwave Scanning Radiometer for the Earth Observing System
AMSR2 Advanced Microwave Scanning Radiometer 2
SMOS Soil Moisture Ocean Salinity
SMAP Soil Moisture Active Passive
ERS European Remote Sensing Active Microwave Instrument Wind Scatterometer
ASCAT Advanced Scatterometer
MODIS Moderate Resolution Imaging Spectroradiometer
MEaSUREs Making Earth System Data Records for Use in Research Environments

to the seasonal climatology, which indicate whether the soil
moisture at a time point is more humid or drier than the mul-
tiyear average) are assimilated instead of the original CCI
time series (Martens et al., 2017). Therefore, satellite obser-
vations play a much smaller role than modelling in form-
ing the GLEAM product. For further improvements in the
efficiency of soil moisture assimilation, a high-quality long-
term surface soil moisture dataset basically derived from mi-
crowave remote sensing is highly needed.

In addition to the CDF matching algorithm, at least four
methods have been proposed that target the use of the in-
formation acquired by one sensor to produce soil moisture
data that are compatible with the data retrieved from an-
other. Based on physically based equations (Wigneron et al.,
2004), the regression between SMOS soil moisture and dual-
polarized brightness temperature (Tb) data from AMSR-E is
applied to match the AMSR-E soil moisture time series to
SMOS (R2

= 0.36) (Al-Yaari et al., 2016). An example of
the second method uses the Land Parameter Retrieval Model
(LPRM) (Owe et al., 2008) to retrieve soil moisture from
SMOS and then match the “SMOS-LPRM” data with the
AMSR-E-LPRM product by calibrating the LPRM param-
eters and then applying a linear regression (Van der Schalie
et al., 2017). Thirdly, copula functions allow us to model the
structure of the dependence between two different Tb or soil
moisture datasets and thus could perform better for the ex-
treme values, thereby reducing the RMSE (Gao et al., 2007;
Leroux et al., 2014b; Lorenz et al., 2018; Verhoest et al.,
2015). To better characterize the nonlinear relationship be-
tween two datasets (Rodriguez-Fernandez et al., 2015), re-
searchers built a neural network that links SMOS soil mois-
ture to the Tb at different polarizations and frequencies of
AMSR-E to produce a calibrated soil moisture data prod-
uct that covers 9 years (2003–2011) (Rodríguez-Fernández
et al., 2016). This approach proves to be efficient according
to the connection between precipitation and the soil moisture
changes, as evaluated based on a data assimilation technique
and triple-collocation analysis results (Van der Schalie et al.,
2018).

A global long-term observational-based soil moisture
product was recently developed by building a neural network
between the SMOS product and the Tb data from AMSR-
E (2003–September 2011) and AMSR2 (July 2012–2015)
(Yao et al., 2017). Environmental factors, including the land
surface temperature (LST) derived from the Tb at 36.5 GHz
(Holmes et al., 2009) and the microwave vegetation index
(MVI; an indicator of vegetation cover), were also incorpo-
rated as ancillary inputs. The training R-squared value (R2)
of this product was only 0.45 (or correlation coefficient, r ,
equals 0.67), and the validation against in situ measurements
showed a temporal r of 0.52 and temporal RMSE of 0.084.
Soil moisture data are partially missing due to the gap be-
tween the temporal spans of AMSR-E and AMSR2 and the
lack of SMOS data in Asia. As SMAP observations have be-
come increasingly available, SMAP soil moisture data have
been chosen as the training target, thereby improving the
training R2 to 0.55, while the overall r and RMSE against
measurements are 0.44 and 0.113 (Yao et al., 2019). An-
other study rebuilt a soil moisture time series over the Ti-
betan Plateau by using SMAP data as the reference for a
random forest (Qu et al., 2019). For the environmental fac-
tors, while vegetation cover is not considered, elevation, In-
ternational Geosphere–Biosphere Programme (IGBP) land
use cover type, grid location, and the day of a year (DOY)
were chosen as ancillary inputs. The training R2 in this re-
gion reached 0.9, with a high temporal accuracy (temporal
r = 0.7; RMSE= 0.07 in the unfrozen season). However,
these data are regional (for the Tibetan Plateau only) and
have a temporal gap between AMSR-E and AMSR2 data
(October 2011–June 2012).

Therefore, although previous studies have focused on
developing long-term satellite-based surface soil moisture
products using machine learning, major concerns remain to
be addressed: (1) training designed for soil moisture estima-
tion at the global scale should be more complex than that for
only a specific region to ensure a satisfactory training effi-
ciency; (2) microwave observations are often limited to three
sensors, leading to temporal and spatial gaps at the global
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scale and limited training efficiency; (3) the environmental
factors that should be incorporated as ancillary inputs have
not been clarified. In this study, 11 high-quality microwave
soil moisture products starting from 2003 are incorporated
into iterative five-round neural networks to produce a spa-
tially and temporally continuous dataset for 2003–2018, and
as many sources of microwave observational data as possible
are used as predictors in each neural network. The quality
impact factors of microwave soil moisture retrievals are also
determined and then incorporated as ancillary inputs to im-
prove the training efficiency. Moreover, we designed local-
ized subnetworks instead of one global-scale neural network
to account for the regional differences in training rules.

2 Data and methods

2.1 Data for the production of global long-term surface
soil moisture data

2.1.1 Satellite-based surface soil moisture data
products

SMAP currently has the highest quality of all remote-
sensing-based soil moisture products (Al-Yaari et al., 2019)
and is thus chosen as the primary training target. The
SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-
Grid Soil Moisture V002 (SPL3SMP_E_002; hereinafter
SMAP_E for short), which was developed by improving the
spatial interpolation of the original 36 km resolution SMAP
soil moisture data (Chan et al., 2018), was adopted in this
study. SMAP_E was reprojected from the EASE-Grid 2.0
projection with 9 km resolution to the WGS 1984 geographic
coordinate system with 0.1◦ resolution. The nominal penetra-
tion depth of SMAP_E is ∼ 5 cm.

Previous studies often used Tb observations at various
bands as network inputs (Rodríguez-Fernández et al., 2016).
However, in this study, the well-acknowledged surface soil
moisture products retrieved through mature algorithms (see
Fig. 1) are directly applied instead of Tb because (1) the pri-
mary goal of this study is to calibrate and then fuse the exist-
ing popular microwave soil moisture products, and (2) the Tb
signals at multiple bands contain too much information that
is not related to soil moisture, which may weaken the train-
ing efficiency and lead to overfitting. Although the drawback
is that the final soil moisture products may inherit the uncer-
tainties associated with each retrieval method, this problem
can be generally solved by including quality impact factors
(see Sect. 2.1.2). The first satellite soil moisture product that
is used as a predictor is the ASCAT soil water index (ASCAT-
SWI) product, which was developed by the European Meteo-
rological Satellite Organization (EUMETSAT) and provided
by the ESA-Copernicus Land Monitoring Service (Albergel
et al., 2008; Wagner et al., 1999). The saturation degree in
the top soil layer (SWI_001) was converted to volumetric
soil moisture by multiplication with soil porosity data in-

cluded in the SMAP L4 Global Surface and Root Zone Soil
Moisture Land Model Constants V004 dataset (hereinafter,
“SMAP Constant”; note that porosity data were not provided
in the ASCAT-SWI). Second, AMSR2-JAXA is the AMSR2
soil moisture retrieved by the Japan Aerospace Exploration
Agency (JAXA) using Tb at the X band (10.65 GHz) (Fujii et
al., 2009), and version 3 data on the Global Portal System
(G-Portal) were used. Third, AMSR2-LPRM-X stands for
the AMSR2 soil moisture produced by applying the LPRM
algorithm at the X band (Parinussa et al., 2014) (X-band re-
trievals may not perform well in high-vegetated areas, but C-
band data such as AMSR2-LPRM-C or AMSR-E-LPRM-C
were not applied due to the high RFI, especially in the United
States, Japan, and the Middle East; Njoku et al., 2005), and
are obtained from NASA’s Earthdata Search website. The
fourth predictor, SMOS-IC (SMOS INRA-CESBIO), is a
new SMOS soil moisture product created by INRA (Institut
National de la Recherche Agronomique) and CESBIO (Cen-
tre d’Etudes Spatiales de la BIOsphère) with the main goal of
being as independent as possible from the auxiliary data, in-
cluding the simulated soil moisture (Fernandez-Moran et al.,
2017a, b; Wigneron et al., 2007). The accuracy of SMOS-
IC has been proven to be higher than that of other SMOS
products (Al-Yaari et al., 2019; Ma et al., 2019), and the data
version 105 offered by Centre Aval de Traitement des Don-
nées SMOS (CATDS) is adopted. TMI-LPRM-X is the X-
band LPRM product of TMI and was created by the NASA
Goddard Space Flight Center (GSFC), which is used as the
5th predictor. Fengyun 3B is a Chinese meteorological satel-
lite with a Microwave Radiation Imager (MWRI) on board
(Yang et al., 2011, 2012). The National Satellite Meteoro-
logical Center product is retrieved using the Tb at 10.7 GHz,
and it is denoted by “FY-3B-NSMC” (the sixth predictor
product). WindSat is onboard the Coriolis satellite (Gaiser
et al., 2004), and the soil moisture retrieved by LPRM at
the X band (Parinussa et al., 2012) is provided by NASA
(the seventh predictor). Three AMSR-E products are used,
including the NASA product (AE_Land3) created by the Na-
tional Snow and Ice Data Center (AMSR-E-NSIDC) (Njoku
et al., 2003), the JAXA product (AMSR-E-JAXA) (Fujii et
al., 2009; Koike et al., 2004) obtained from G-Portal, and
the LPRM product (AMSR-E-LPRM) available at the NASA
Earthdata Search. All these data are reprojected to the WGS
1984 reference coordinate system and resampled to 0.1◦.

To reduce noise and fill the gaps between sensor observa-
tion tracks (at least 3 d are required for a microwave sensor
to cover the whole globe), for every soil moisture product,
both the daytime and nighttime observations within each 10 d
period are combined by data averaging (the relative superi-
ority of daytime and nighttime retrievals is not considered).
For example, for SMAP, 11 % of the global land surface has
data for only 5 d or less within a 10 d period. Therefore, the
temporal resolution of the dataset developed in this study is
approximately 10 d, meaning that three data records are ob-
tained within a month for days 1–10, 11–20, and from the
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Figure 1. Overview of the time periods of different soil moisture datasets and the “quality impact factor” products (e.g. leaf area index,
LAI, dataset) used in this study (listed above the timeline) as well as the periods of data applied for the training of the 67 independent neural
networks and the neural network simulation outputs (i.e. simulated soil moisture) in eight substeps (listed below the timeline).
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21st to the last day of that month. This format is exactly
the same as that of the ASCAT-SWI and many other prod-
ucts developed by the Copernicus Land Monitoring Service
(https://land.copernicus.eu, last access: 19 September 2020).

2.1.2 Quality impact factors of soil moisture retrievals

Environmental factors, including elevation, LST, and vege-
tation cover (indicated by the Normalized Difference Vege-
tation Index, MVI, etc.), were used as ancillary neural net-
work inputs to improve the soil moisture simulation (Lu et
al., 2015; Qu et al., 2019; Yao et al., 2017). According to
these studies, these factors alone may not predict surface soil
moisture well without the incorporation of any microwave
remote-sensing data because although they are somewhat re-
lated to soil moisture (e.g. soil moisture is generally lim-
ited in areas with low vegetation cover but high in forests;
McColl et al., 2017), the relationships are rather uncertain
(e.g. at smaller scales, the leaf area index (LAI) may have
a negative influence on soil moisture due to the variation in
evapotranspiration (Naithani et al., 2013) or may not have a
clear impact (Zhao et al., 2010); also, soil moisture can be
either high or low in summers, when vegetation peaks; Bal-
docchi et al., 2006; Méndez-Barroso et al., 2009). However,
these factors are quite essential due to their direct impacts
on microwave-based soil moisture retrieval through the ra-
diative transfer model and other models (Fan et al., 2020;
Karthikeyan et al., 2017a); thus, they are retrieval-quality im-
pact factors. Detailed explanations are as follows. (1) The
bias of soil moisture estimates derived from a certain sen-
sor or a specific algorithm can be correlated with the degree
of disturbances from various environmental factors. For ex-
ample, in vegetated areas, LST is overestimated by LPRM
(Ma et al., 2019), whereas soil moisture is underestimated by
JAXA (Kim et al., 2015a), and the magnitudes of the biases
are often determined by vegetation amount or vegetation op-
tical depth (VOD). Therefore, the environmental factors are
essential for a better calibration of various products, espe-
cially when soil moisture, which contains errors associated
with the retrieval method, is directly applied instead of the
Tb. (2) The relative performances of different products is also
controlled by environmental factors; for example, the AS-
CAT product is preferable to AMSR-E-LPRM in vegetated
areas (Dorigo et al., 2010), while LST influences the relative
superiority of the LPRM and JAXA algorithms (Kim et al.,
2015a). Therefore, for improved data fusion, the weights as-
signed to different soil moisture (or Tb) predictor data avail-
able at the same time should be determined by referring to
these quality impact factors (Kim et al., 2015b).

In this study, nine quality impact factors are incorporated:
LAI, water fraction, LST, land use cover, tree cover frac-
tion, non-tree vegetation fraction, topographic complexity,
soil sand fraction, and clay fraction (see Fig. 1). The reasons
are as follows.

Based on the two criteria above, the first environmental
factor to be included is the “vegetation factor” (i.e. vegetation
water content, VWC). Plants can absorb or scatter radiation
from soil and emit radiation, thereby reducing the sensitivi-
ties of both radiometers and radars to soil moisture (Du et al.,
2000; Owe et al., 2001). However, L-band microwaves can
penetrate the vegetation layer better due to their longer wave-
lengths (Konings et al., 2017; Piles et al., 2018). On the other
hand, although vegetation effects can be somewhat corrected
(Jackson and Schmugge, 1991), different methods have dif-
ferent efficiencies. Radiative transfer models such as LPRM
may have difficulty describing the radiation attenuation by
dense canopy due to the neglect of multiple scattering (Mo
et al., 1982; Owe et al., 2008), whereas the TU Wien change
detection algorithm applied to ASCAT utilizes the quadratic
polynomial dependence of backscatter on the incidence an-
gle to better characterize the vegetation effect on backscat-
ter and then remove it by identifying the reference angles
(Hahn et al., 2017; Vreugdenhil et al., 2016). Microwave
vegetation indexes may contain large uncertainty and have
coarse resolutions (Liu et al., 2011a; Shi et al., 2008). The
Normalized Difference Vegetation Index (NDVI) becomes
saturated at high vegetation cover (Huete et al., 2002). Be-
cause the LAI stands for the total leaf area per unit land,
which is closely related to the VWC assuming a relatively
stable leaf equivalent water thickness (Yilmaz et al., 2008),
LAI is a suitable surrogate. Copernicus global 1 km reso-
lution LAI (called GEOV2-LAI, which consists of SPOT-
VGT and PROBA-V LAI) data are adopted here due to the
high accuracy and full coverage (Baret et al., 2013; Cama-
cho et al., 2013; Verger et al., 2014). Because the sensor con-
version from SPOT-VGT to PROBA-V in 2014 led to LAI
data discontinuity in specific areas (Cammalleri et al., 2019),
which may reduce neural network training and simulation ef-
ficiency, the Global LAnd Surface Satellite (GLASS) LAI
product (Xiao et al., 2014, 2016) from 2007–2017 is also
used (Fig. 1). The LAIs are averaged on a monthly scale
and aggregated to 0.1◦ resolution. The second is the “wa-
ter fraction factor” (i.e. the fraction of water area in each
pixel). Waters in land pixels dramatically decrease the Tb,
thereby leading to overestimated soil moisture. Because dif-
ferent methods are used to detect and correct small areas of
water – either open water, wetlands, or partly inundated wet-
lands and croplands (Entekhabi et al., 2010; Kerr et al., 2001;
Mladenova et al., 2014; Njoku et al., 2003) – microwave soil
moisture data calibration and weight assignment based on the
water fraction within land pixels make sense (Ye et al., 2015).
In addition, the water fraction is a direct indicator of sur-
face soil moisture. In this study, the daily water area fraction
derived from the Surface WAter Microwave Product Series
(SWAMPS) v3.2 dataset (Schroeder et al., 2015) is applied.
The third factor is the “heat factor” (i.e. LST). Soil mois-
ture retrievals from passive microwave sensors are based on
the correlation between the soil dielectric constant, which is
influenced by soil moisture, and the emissivity estimated as
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the ratio of Tb to soil physical temperature (Ts) (Karthikeyan
et al., 2017a). Ts is approximate to the LST and can be de-
rived from the Tb at 36.5 GHz (Holmes et al., 2009; Parinussa
et al., 2011) or from reanalysis datasets including ECMWF,
MERRA, and NCEP, or set as a constant of 293 K (Kim et
al., 2015a). Active microwave products are independent of
LST (Ulaby et al., 1978). Because different LST estimates
are used in the retrievals of different soil moisture products,
while the bias of each LST estimate compared to the actual
LST is influenced by the actual LST, we assume that the ac-
tual LST can determine the accuracy of every LST estimate
and finally the relative performances of various soil moisture
products (Kim et al., 2015a). In this study, we averaged the
MODIS monthly LST acquired from the ascending and de-
scending passes of both Terra and Aqua. Factors 4–6 are the
“land cover factors”, which are added because the parameters
essential for soil moisture retrieval (vegetation effect correc-
tion) are set based on land use types (Griend and Wigneron,
2004; Jackson and Schmugge, 1991; Jackson et al., 1982;
Panciera et al., 2009). Additionally, landscape heterogeneity
influences the retrieval accuracy (Lakhankar et al., 2009; Lei
et al., 2018; Ma et al., 2019). Here, both the annual MODIS
land use cover maps and the MEaSUREs vegetation continu-
ous fields (i.e. the cover fractions of trees and non-tree vege-
tation; Hansen and Song, 2018) are adopted. Apart from the
above dynamic factors, three (7th–9th) static factors are in-
cluded: the “topographic factor” (i.e. topographic complex-
ity) and the “soil texture factors” (two factors: sand fraction
and clay fraction) (Neill et al., 2011). Both factors can in-
fluence the relationship between soil moisture and emissivity
or the dielectric constant (Dobson et al., 1985; Karthikeyan
et al., 2017a; Njoku and Chan, 2006), but they are charac-
terized and corrected differently, leading to different relative
performances of various soil moisture products (Gao et al.,
2006; Kim et al., 2015a). For topographic complexity, the
static layer of the Copernicus ASCAT-SWI product (here-
inafter the ASCAT Constant) is adopted, while for soil tex-
ture, the SMAP Constant is used (topographic complexity
data are not available from SMAP Constant, while soil tex-
ture is not provided by ASCAT Constant). The contribution
analysis results show that because various microwave soil
moisture retrievals have already been included, precipitation
data are not an essential indicator of soil moisture and are not
utilized as a physically based “quality impact factor” either
(see Text S1 in the Supplement for detailed explanations).

2.2 Methods for the production of global long-term
surface soil moisture data

Global long-term surface soil moisture data production in-
cludes three basic parts, including (1) preprocessing, or the
production of high-quality neural network inputs, including
the training target soil moisture, predictor soil moisture prod-
ucts, and the quality impact factors (i.e. nine environmental
factors); (2) neural network operation, or the training of lo-

calized neural networks (i.e. the rules for soil moisture pre-
diction are separately trained in different 1◦× 1◦ zones) fol-
lowed by surface soil moisture simulation based on the lo-
calized neural networks; and (3) postprocessing, or the cor-
rection of potential errors or deficiencies in the soil moisture
simulation outputs.

The temporal span of the primary training target SMAP
does not overlap with that of TMI, FY-3B, WindSat, or
AMSR-E (see Fig. 1), while most microwave soil moisture
products are not available from the beginning year 2003 (e.g.
AMSR2 data are only available since July 2012). Therefore,
to fully utilize the 10 predictor surface soil moisture prod-
ucts retrieved from seven different microwave sensors and
form a temporally continuous soil moisture dataset covering
2003–2018, several iterative rounds of simulations are per-
formed. Here, “iterative” means that the simulated soil mois-
ture data in a round were also converted to part of the train-
ing targets of the next round’s neural network (hereinafter
the “secondary training targets”), thus extending the potential
temporal span of the target soil moisture data. Accordingly,
the postprocessing steps which are intended to transform the
simulation outputs to reliable secondary training targets can
be seen as preprocessing steps as well. The basic flow of this
process is shown in Fig. 2.

2.2.1 Neural network design (1): localized neural
networks

In this study, instead of a universal network, we devised
localized neural networks. The data within each individ-
ual zone are used to train a zonal neural network (here-
inafter a subnetwork), which is used for soil moisture
simulation at that zone. By comparison, localized neural
networks help improve the training efficiency; however,
a smaller zonal size does not indicate a better simula-
tion accuracy. We noticed that over arid regions, the sur-
face soil moisture values retrieved by the LPRM algorithm
(AMSR2/TMI/WindSat/AMSR-E-LPRM-X) can be obvi-
ously different on the two sides of each edge of 1◦× 1◦ sized
squares, which was probably attributed to the spatial distribu-
tion of key parameters (i.e. some parameters are at 1◦ resolu-
tion). This finding suggests that subnetworks should be built
at the 1◦× 1◦ scale. Therefore, we divided the global extent
except the polar areas (80◦ N–60◦ S) into 140× 360 zones.
Here, for a 0.1◦ pixel during a specific 10 d period, if all the
input data (input soil moisture products and quality impact
factors) have valid values, one valid data point is provided.
Therefore, the maximal number of valid data points applied
to train a subnetwork is 100 times the number of 10 d periods
within the training period. The subnetworks with fewer than
100 valid data points (e.g. those in oceans) were dropped,
leaving usually > 15000 zonal subnetworks included in an
independent neural network. The training was performed in
MATLAB 2016a using the neural network fitting toolbox,
and the number of nodes in the hidden layer (between the
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Figure 2. Flow chart for the production of global surface soil moisture data (remote-sensing-based surface soil moisture, RSSSM).

input and output layers; Stinchcombe and White, 1989) of
each subnetwork was seven. We chose the gradient descent
backpropagation algorithm as the training function.

2.2.2 Preprocessing and postprocessing steps

After standardization of the original soil moisture data, to
improve the neural network training efficiency, the potential
salt and pepper noises are removed. For each map (a specific
10 d period), within each 1◦× 1◦ zone, the soil moisture val-
ues are filtered to the level of 3 standard deviations relative
to the mean in that zone (the principle is that 99.87 % of the
data appear within this range for a normal distribution (How-
ell et al., 1998); also note that the filter is applied spatially
rather than temporally to detect and delete the extreme val-
ues, which are usually noise in mountain areas, and therefore
the extreme climatic events will not be mistakenly removed).
This preprocessing step is thus called “3σ denoising”.

After neural network operation, boundary fuzzification is
first applied, and it is a step in both preprocessing and post-
processing. Because the localized 1◦× 1◦ network is applied
instead of the global network, the boundary between nearby
zones may be too obvious over some areas. To blur the
boundary, a simple algorithm is applied as shown in Fig. S1
in the Supplement. The soil moisture data with fuzzified
boundaries are transformed into both the final product and
the next round’s training target. To produce the final prod-
uct, two postprocessing steps are essential: filling of missing
values and data masking. Because “3σ denoising” deleted
suspicious soil moisture retrievals, the simulation outputs
also contain few missing values, which can be simply filled
by sequentially searching and averaging nearby valid values
(Chen et al., 2019). While the snow mask and ice mask of
the ASCAT-SWI product can be transferred to the simulation
output, the potential snow or ice cover before 2007 should be
identified. For a pixel in a specific 10 d period, if ice cover is

reported by ASCAT-SWI in most years, it should also be cov-
ered by snow or ice unless the thaw state is observed in the
MEaSUREs Global Record of Daily Landscape Freeze/Thaw
Status V4 dataset. The simulated soil moisture in the rain-
forests identified in the “ASCAT Constant” is retained but
not recommended due to the high uncertainty. On the other
hand, to avoid error propagation with the training times by
ensuring a high-quality training target for the next round’s
simulation, we remove all suspicious values for every simu-
lated result. This preprocessing step is performed by first ob-
taining the maximal and minimum values of SMAP_E soil
moisture in each pixel. If the simulated value is out of the
range of the SMAP data during 2015–2018, then the value
is considered suspicious and not used as a training target.
Subsequently, “3σ denoising” is performed again before the
simulated soil moisture becomes a secondary training target,
which are referred to as SIM-1T, SIM-2T, and so on (“SIM”
stands for the simulated soil moisture, the number after the
hyphen indicates the round of simulation, and “T” means it
is applied as a training target; the temporal spans of SIM-XT
and SIM-X are the same, as shown in Fig. 1).

2.2.3 Neural network design (2): five rounds of
simulations

The 11 microwave soil moisture data products with differ-
ent temporal spans are incorporated and utilized as fully as
possible through up to five rounds of neural-network-based
simulations, with at least four different soil moisture prod-
ucts retrieved from three different sensors applied as pre-
dictors in each round (see Fig. 1). Although increasing the
sources of soil moisture data inputs can improve the train-
ing efficiency, the spatial coverage of the simulation output
is sacrificed because the overlapping area decreases as the
number of soil moisture products increases. After all, most
products have missing data in specific regions (e.g. moun-
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tains, wetlands, and urban settlements), and some sensors are
even unable to produce data at the global scale (e.g. TMI
is limited to 40◦ N, 40◦ S; SMOS has many missing values
in Eurasia). To resolve this dilemma, we classified all 0.1◦

pixels according to the predictor soil moisture products that
have a valid value over a 10 d period (for example, if there
are four predictor soil moisture datasets in one round, there
should be 4+ 6+ 4+ 1= 15 combinations; here, “1” indi-
cates the condition that all four products have a valid value
in the 0.1◦ pixel, and there are “6” conditions when only
two of the four predictors have a valid value in the pixel).
However, to avoid soil moisture simulation under snow or
ice cover (see Sect. 2.2.2), not all combinations are consid-
ered. Then, an independent neural network corresponding to
each selected combination is trained. For data simulations
in a 0.1◦ pixel, the most preferable independent neural net-
work is expected to be trained using all the available soil
moisture data sources in that pixel (i.e. if valid values are
provided by three soil moisture products, then the preferable
neural network is the one trained using those three predic-
tors). However, in the 1◦ zone in which the 0.1◦ pixel is
located, the subnetwork belonging to that preferable inde-
pendent neural network may not exist due to limited valid
data points (see Sect. 2.2.1). Then, an alternative subnet-
work driven by the combination of fewer soil moisture data
inputs should be applied instead. Hence, we should deter-
mine the neural network collocation that is the best choice
for every pixel. Apart from applicability, the relative prior-
ity order of different neural networks was obtained by com-
prehensively considering the number and quality of input
soil moisture products, the variety of sensors, the quantity
of training samples indicated by the number of 10 d peri-
ods, and the relative quality of the training targets (the train-
ing target quality declines monotonically: SMAP>SIM-
1T>SIM-2T>SIM-3T>SIM-4T). Occasionally, the two
most likely priority orders are given, and the simulation re-
sults of the corresponding two substeps are integrated later.
Specifically, when the LAI data source changes, the division
of a single round into two substeps is also essential. Based on
these principles, five rounds of neural networks are designed,
with eight substeps containing a total of 67 independent neu-
ral networks. The training period for each neural network and
the simulation period for each substep are shown in Fig. 1
(below the timeline), and the details are as follows.

For the first round’s neural network (labelled as NN1),
the potential training period is 2015D10–2018 (“D” is the
ordinal of the 10 d period; therefore, “2015D10” represents
the period from 1 April to 10 April 2015) because SMAP
soil moisture data that cover only that period are applied
as the training target, while ASCAT-SWI10 (abbreviated as
ASCAT), SMOS-IC (SMOS), AMSR2-JAXA, and AMSR2-
LPRM-X (AMSR2-LPRM) are the four soil moisture prod-
ucts used as predictors (details are in Tables S1–S2 in the
Supplement). Because all four predictors have data since
2012D19, the potential soil moisture simulation period is

2012D19–2018, which is further divided into two parts:
2014–2018 (substep 1), for which the PROBA-V LAI data
that begin in 2014 are applied, and 2012D19–2013 (sub-
step 2), for which GLASS LAI data are used (note: because
GLASS LAI covers from the beginning of our study period
until 2017, the training period for substep 2 is 2015D10–
2017). The simulation results of the two substeps (SIM-1-1
and SIM-1-2) are combined as SIM-1, which is then trans-
formed into a secondary training target, denoted as SIM-1T.
In the second round of simulation, the training target can
be either SMAP or SIM-1T, while the soil moisture input
data are ASCAT, SMOS, TMI-LPRM-X (TMI), and FY-3B-
NSMC (FY). The simulation output SIM-2 covers the pe-
riod of 2011D20–2012D18, which is constrained by the com-
mon period of the four predictors (Tables S3–S4). SIM-2 was
also converted into the training target SIM-2T. In the third
round of neural network operation, the simulation period is
2010D16–2011D19. SMAP, SIM-1T, and SIM-2T are com-
bined and used as the training targets (the training periods are
within the range of 2011D20–2017D36), while the predictor
soil moisture data are ASCAT, SMOS, TMI, and WindSat-
LPRM-X (WINDSAT). There are two substeps in round 3
that are distinguished by whether the priority order of the
neural networks is determined mainly based on the training
sample quantity and the training target quality (SIM-3-1) or
by first considering the number of predictor soil moisture
products (SIM-3-2; Tables S5–S8). Because these two meth-
ods emphasize different aspects of neural network quality,
in some pixels, SIM-3-1 will be advantageous, whereas in
others, SIM-3-2 could be better. Hence, an algorithm is de-
vised to combine the advantages of both simulations (SIM-
3), which is described in Table S9. Next, the fourth round
is for the simulations from 2007D01 to 2010D15. SIM-2T
and SIM-3T are combined to be the training target, and AS-
CAT, WINDSAT, TMI, AMSR-E-JAXA, AMSR-E-LPRM-
X (AMSR-E-LPRM), and AMSR-E-NSIDC are all applied
as predictors (LAI data now come from SPOT-VGT). Two
substeps are also considered. In the first substep, neural net-
works are sorted by focusing on the number of soil mois-
ture inputs and the sensors they are derived from, while the
training sample size and training target quality are priori-
tized to create an alternative estimate (Tables S10–S13). Af-
terwards, SIM-4 is obtained by reasonably integrating these
two results. In the final round, the soil moisture simulation
is extended to as early as 2003. SIM-2T, SIM-3T, and SIM-
4T together are the training targets, while the predictor soil
moisture data entering the neural networks consist of WIND-
SAT, TMI, AMSR-E-JAXA, AMSR-E-LPRM, and AMSR-
E-NSIDC (Tables S14–S15).

2.3 Methods for the validation of surface soil moisture
products

For the evaluation of global-scale soil moisture data, we
adopted the International Soil Moisture Network (ISMN)
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Figure 3. Global distribution of the networks and stations in the ISMN dataset.

dataset (Dorigo et al., 2011, 2013). Because the training
target SMAP represents the soil moisture within 0–5 cm,
the simulated soil moisture is intended for that surface soil
layer as well. Accordingly, the measurements used for val-
idation are limited to ≤ 5 cm depth. Records outside of the
RSSSM data period (2003–2018), such as those from Rus-
sian networks, are ignored as well. The quality flags of
ISMN (Dorigo et al., 2013) are also checked to retain only
the “good-quality” data. After data screening and process-
ing (e.g. the pixels with average annual maximal water area
fractions greater than 5 % are excluded, please see Text S2),
more than 100 000∼ 10 d averaged soil moisture records ob-
tained from 728 stations of 29 networks are applied for vali-
dation of the soil moisture products. The detailed information
of these stations and the periods of the data used are listed in
Table S16, while the spatial distribution of these stations is
shown in Fig. 3. The major climate types of the sites are de-
termined from the Köppen–Geiger climate classification map
(see Table 2 for the description; Kottek et al., 2006). Next,
we further aggregated the site-scale 10 d averaged soil mois-
ture data to a 0.1◦ pixel scale by averaging all the measure-
ments made by different stations or different sensors within
the pixel (Gruber et al., 2020). Specifically, if soil moisture is
not simulated due to snow or ice cover, then the correspond-
ing measurement is useless. This process resulted in a final
collection of ∼ 40 000 pixel-scale 10 d period soil moisture
records within the validation dataset.

The soil moisture datasets to be evaluated include the
RSSSM product in this study (remote-sensing-based sur-
face soil moisture, covering 2003–2018), SMAP_E (the pri-
mary training target, covering April 2015–2018), the longest

record of satellite-based soil moisture (ASCAT-SWI; con-
verted to volumetric fraction; data period is 2007–2018),
the reanalysis-based soil moisture (GLDAS Noah V2.1
and ERA5-Land; data were resampled, 10 d averaged and
then evaluated during 2003–2018), and the soil moisture
datasets developed by combining both satellite observations
and model simulations (CCI v4.5 and GLEAM v3.3; for
v3.3a, the radiation and air temperature forcing data come
from ERA5, whereas for v3.3b, all meteorological data
are satellite-based, yet the data after September 2018 are
not available). The overall performance of any soil mois-
ture product is first evaluated using all of the validation
datasets, with Pearson R-squared (R2) and RMSE values
(unit: m3 m−3) adopted as the main indicators. The next step
is temporal-pattern validation. For pixels with enough (> 20)
10 d averaged in situ records, we compare the estimated
soil moisture during all periods against the corresponding
measurements and calculate the Pearson correlation coef-
ficient (r) and RMSE. Several supplementary indexes are
also added, including bias, unbiased RMSE (ubRMSE), and
the correlation coefficient between the anomalies (anoma-
lies r , abbreviated here as “A.R”; A.R can better indicate
the simulation accuracy of interannual variations; soil mois-
ture anomalies are calculated by Eq. 1). Next, we compare
the means and medians of the above evaluation indexes for
different soil moisture products and test whether the differ-
ences are significant. Moreover, the relative performances of
various products in different climatic zones are analysed. Fi-
nally, we perform spatial-pattern validation. In detail, for ev-
ery 10 d period, we compare all the soil moisture measure-
ments that are upscaled to 0.1◦ during that period with the
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Table 2. Description of the Köppen–Geiger climate classification types at all the selected ISMN stations.

Climate_Köppen General description

Aw Equatorial savannah with dry winter
BSk Steppe climate, cold and arid
BWh Desert climate, hot and arid
BWk Desert climate, cold and arid
Cfa Warm temperate climate, fully humid, hot summer
Cfb Warm temperate climate, fully humid, warm summer
Csa Warm temperate climate with dry, hot summer
Csb Warm temperate climate with dry, warm summer
Dfa Snow climate, fully humid, hot summer
Dfb Snow climate, fully humid, warm summer
Dfc Snow climate, fully humid, cool summer and cold winter
Dsb Snow climate with dry, warm summer
Dwc Snow climate with cool summer and cold, dry winter
ET Tundra climate

corresponding estimated values. The spatial-pattern evalua-
tion indexes include the correlation coefficient (r), RMSE,
bias, and ubRMSE values (Eq. 2). The relative superiority of
all products during different 10 d periods in a year and the
changes in data coverage as well as data quality with time
are also investigated.

SSM(k)=

ny∑
y=1

SSM(y,k)

ny

(
ny ≥ 3

)
SSM is either estimated or measured. SSM is surface soil
moisture, k is the ordinal of a 10 d period in a year, y is a
year with measured SSM in the kth 10 d period, and ny is the
number of those years.

SSManom (y,k)= SSM(y,k)−SSM(t), (1)

where SSManom (y, t) is the anomalies of surface soil mois-
ture during the t th 10 d period in year y (Eq. 1).

SSMest =

∑ng
i=1SSMest,i

ng

SSMact =

∑ng
i=1SSMact,i

ng

(
ng ≥ 20

)
,

where i is a grid with upscaled surface soil moisture mea-
surements during a specific 10 d period, and ng is the number
of those grids on the globe.

ubRMSEspatial

=

√√√√ ng∑
i=1
[
(
SSMest,i −SSMest

)
−
(
SSMest,i −SSMact

)
]2/ng

(2)

2.4 Methods for the intra-annual variation analysis of
surface soil moisture

Because the original resolution of SMAP soil moisture is
∼ 0.4◦, while that of most predictor soil moisture products is
0.25◦, the intra-annual variation analysis of RSSSM is per-
formed at 0.5◦ resolution. We also exclude high-latitude ar-
eas (60–90◦ N) where the available data are limited due to
frequent ice cover. Fourier functions can characterize intra-
annual variation well (Brooks et al., 2012; Hermance et
al., 2007). Therefore, for the remaining areas (60◦ S–60◦ N),
based on a total of 36×16 (years)= 576 data points, we fit the
intra-annual cycle of soil moisture using the Fourier function,
with the period fixed to 1 year (36 10 d periods). The num-
ber of terms is set to 1 unless the intra-annual cycle is obvi-
ously asymmetrical and can be much better characterized by
a two-term Fourier function. Subsequently, the highest peak
and lowest trough values of surface soil moisture as well as
the corresponding locations in time (the ordinal of 10 d) are
exported.

The direct driving factor of the variation in surface
soil moisture is precipitation, for which we adopted the
GPM (Global Precipitation Measurement) IMERG (Inte-
grated Multi-satellitE Retrievals for GPM) Precipitation V06
Final Run data (Huffman et al., 2019). Apart from a direct
correlation analysis, we also explored the relationship be-
tween the intra-annual cycles of precipitation and surface soil
moisture using Fourier fitting (the derived fitting function is
dropped if the adjusted R2 is lower than 0.1), with the peak
time difference in each 0.5◦ grid cell calculated (if both cy-
cles have two peaks, the average locations of the two peaks
are calculated). Because RSSSM indicates the average soil
moisture condition during every 10 d period, we evaluate the
surface soil moisture decline after 20 consecutive days (i.e.
two adjacent 10 d periods) without effective precipitation to
explore the impact of dry periods on surface soil moisture.
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Effective precipitation is calculated by precipitation minus
canopy interception, which is estimated by the modified Mer-
riam canopy interception model (Kozak et al., 2010; Mer-
riam, 1960). If the total effective precipitation within two
consecutive 10 d periods (20 d) is less than a given thresh-
old (initially set to 10 mm), we consider the soil moisture
change in the latter period compared to the previous period
to be mostly due to surface evaporation and percolation (cap-
illary rise is negligible; McColl et al., 2017); thus, it should
be negative. Hence, for a 0.5◦ grid cell, if the number of neg-
ative values does not meet 2 times the number of positive
values, the precipitation threshold is reduced by 1 mm until
that condition is satisfied. This loop is terminated when there
are fewer than 36 available data points in dry periods (the
maximal number of data points is 576), and then the grid cell
is excluded from the analysis. In desert areas, the random
noise of the surface soil moisture product can hide the sig-
nal of moisture changes, while in wet areas (e.g. rainforests),
20 d without effective precipitation seldom occurs, thus lead-
ing to no results over most areas. In the remaining areas, the
intra-annual variation in the surface soil moisture loss during
dry days can be fitted by the Fourier function as well, which
is then analysed using the above methods.

3 Results

3.1 Neural network training efficiency: a comparison
between RSSSM and SMAP

To examine the training and simulation efficiency of the neu-
ral network, we compare the neural-network-simulated sur-
face soil moisture (RSSSM) with the training target SMAP
(note: these two datasets are not completely independent
because SMAP data are used as the training target, while
RSSSM data are the simulation results) during April 2015–
2018. The R2 reaches up to 0.95, while the RMSE is
0.031 m3 m−3) (Fig. 4a). If only the pixels with measured
data are considered, the consistency between RSSSM and
SMAP becomes even stronger, with an R2 of 0.97 and an
RMSE of 0.016 (Fig. 4b). When validated against site mea-
surements, the R2 and RMSE values are 0.46 and 0.083, re-
spectively, for both RSSSM and SMAP (Fig. 4c and d). All
these findings justify the high training and prediction effi-
ciency of the neural network set designed in this study.

According to Table 3, RSSSM is just slightly lower than
SMAP in terms of temporal accuracy (the differences in the
five indicators – r , RMSE, bias, ubRMSE, and A.R – are all
nonsignificant). Figure 5 indicates generally the same level of
temporal accuracy for RSSSM and SMAP under all climates.
RSSSM cannot adequately characterize the temporal varia-
tion in soil moisture in the “Dfc” (snow climate, fully humid;
see Table 2) region because the training target, SMAP, does
not have a high temporal accuracy in this area, probably due
to frequent freezing and melting processes.

Next, we compare the spatial accuracy of RSSSM and
SMAP. The spatial correlation of RSSSM is somewhat re-
duced compared to the training target, while the RMSE is
slightly increased (Table 4), indicating a subtle loss of de-
tailed spatial information through neural network operation.
Because ISMN stations are mostly located in the middle to
high latitudes of the Northern Hemisphere, Fig. 6 shows that
(1) the accuracy of RSSSM is highest in summers (growing
seasons) and lowest in winters, which is inherited from its
origin (SMAP), probably due to the impact of freezing on
soil moisture retrieval, and (2) RSSSM has a similar spatial
accuracy as SMAP in most periods except for May to June
and November to December.

3.2 Accuracy comparison between RSSSM and popular
global long-term soil moisture products

3.2.1 Data quality comparison between RSSSM and the
satellite-derived product

The satellite-derived global surface soil moisture product
ASCAT-SWI now covers 12 years, 2007–2018. During that
period, the overall R2 and RMSE for RSSSM are 0.44 and
0.086, respectively (Fig. 7), which appear to be much better
than those for ASCAT-SWI (R2

= 0.33, RMSE= 0.100). If
the data period of SMAP (2015D10–2018) is excluded, the
overall R2 and RMSE for RSSSM are 0.43 and 0.087, re-
spectively, which are still better than those for ASCAT-SWI
(R2
= 0.33, RMSE= 0.1). However, RSSSM overestimates

soil moisture when low moisture occurs, which is a problem
inherited from the SMAP product (Fig. 4), and is a bit non-
linearly correlated with the measured values (Fig. 7a).

According to the temporal-validation results (Table 3), the
evaluation indexes, including r , RMSE, bias, and ubRMSE,
are all significantly (p < 0.05) better for RSSSM than
ASCAT-SWI (anomalies r for RSSSM are also higher but
not significant). The temporal accuracy of RSSSM appears
to be obviously higher in all climatic zones except for polar
areas (Dsb, Dwc, and ET). Specifically, in arid areas (BWh
and BWk), the temporal-correlation coefficients for ASCAT-
SWI are much lower and even negative (Fig. 8). This prob-
lem is known and might be related to the different scattering
mechanisms in dry soils, invalidating the assumptions of the
change detection method (Al-Yaari et al., 2014).

The spatial accuracy of RSSSM is found to be signifi-
cantly higher than that of ASCAT-SWI when any evaluation
index is considered (Table 4). Moreover, the results show that
RSSSM is generally superior to ASCAT-SWI throughout the
year, especially during the growing seasons (Fig. 9).

3.2.2 Data quality comparison between RSSSM and
land surface model products

First, the overall accuracies of RSSSM and GLDAS Noah
V2.1 surface soil moisture data from 2003 to 2018 are com-
pared. While RSSSM is nonlinearly correlated with mea-
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Figure 4. Comparison between the neural-network-simulated surface soil moisture (RSSSM) and SMAP data. The scatterplots are between
(a) RSSSM and SMAP values at all pixels, (b) RSSSM and SMAP values at only the pixels with measurements, (c) RSSSM and the site-
measured soil moisture from April 2015 to 2018, and (d) SMAP and the site measurements during April 2015–2018. All plots are represented
as the point density on a logarithmic scale, while the units for soil moisture content and RMSE values are cubic metres per metre.

sured soil moisture, the relationship between GLDAS soil
moisture and the measurements appears to be slightly more
nonlinear, resulting in a smallerR2 of 0.39 and higher RMSE
of 0.097 for the GLDAS product compared to RSSSM (R2:
0.42; RMSE: 0.087; see Fig. 10). When excluding the SMAP
(training target) data period, the R2 and RMSE for RSSSM
are 0.41 and 0.089, respectively, which are also superior to
those for GLDAS (R2: 0.37; RMSE: 0.099).

The higher temporal accuracy of RSSSM than GLDAS
can be justified by comparing the indicators, including r ,
RMSE, and ubRMSE (Table 3). The advantage of RSSSM
over GLDAS could be identified in almost all climatic re-
gions, especially the cold areas such as BWk, Dfa, Dfc, Dwc,
and ET (Fig. 11), perhaps because the soil thawing and freez-

ing processes are not simulated well. The spatial accuracy of
RSSSM, indicated by r , RMSE, bias, and ubRMSE, is found
to be significantly higher than GLDAS as well (Table 4). The
spatial correlation of RSSSM is somewhat higher than that
of GLDAS during March to May and September to Novem-
ber, and the spatial RMSE is lower all year round except in
January and February (Fig. 12).

ERA5-Land is a newly published reanalysis-based model
product with 0.1◦ resolution. The overall quality validation
(Fig. S2) reveals a frequent overestimation of soil moisture
by ERA5-Land as well as a nonlinear relationship between
the predicted and measured values. Accordingly, although
the R2 for ERA5-Land is 0.41, which is only slightly lower
than that of RSSSM (0.42), the RMSE for ERA5-Land is
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Table 3. Mean and median values of the five evaluation indexes (correlation coefficient r , RMSE, bias, unbiased RMSE (ubRMSE), and the
anomalies r (A.R)) on the temporal accuracy of the surface soil moisture simulated in this study (RSSSM) and the other surface soil moisture
products when validated using the ISMN in situ measurements. Note: (1) for the comparison between the RSSSM and SMAP_E (SMAP)
product, the validation period is from April 2015 to 2018; (2) for the comparison between the RSSSM and ASCAT-SWI (ASCAT), the period
is 2007–2018; (3) for the comparison between RSSSM and GLDAS Noah v2.1 (GLDAS), ERA5-Land (ERA5-L), CCI, or GLEAM v3.3a
(GLE-a) surface soil moisture product, the validation period is 2003–2018; (4) for the comparison between RSSSM and GLEAM v3.3b
(GLE-b), the validation period is 2003 to September 2018. For each pair of comparisons based on each evaluation index, the product with
the better performance and its values are highlighted in bold.

Index r RMSE bias ubRMSE A.R

Product RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP

Mean 0.756 0.762 0.075 0.074 0.015 0.016 0.043 0.043 0.700 0.707
Median 0.795 0.798 0.067 0.066 0.009 0.013 0.043 0.043 0.720 0.744

Product RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT

Mean 0.687 0.561 0.079 0.095 0.002 −0.007 0.047 0.062 0.627 0.554
Median 0.735 0.627 0.074 0.088 −0.001 −0.010 0.048 0.062 0.654 0.595

Product RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS

Mean 0.689 0.613 0.080 0.091 0.001 0.028 0.047 0.051 0.620 0.519
Median 0.737 0.661 0.075 0.082 −0.002 0.029 0.048 0.049 0.661 0.567

Product RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L

Mean 0.689 0.734 0.080 0.112 0.001 0.082 0.047 0.050 0.620 0.648
Median 0.737 0.758 0.075 0.094 −0.002 0.073 0.048 0.049 0.661 0.672

Product RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI

Mean 0.690 0.642 0.080 0.091 0.002 −0.002 0.047 0.049 0.620 0.530
Median 0.735 0.666 0.074 0.080 −0.002 0.006 0.049 0.047 0.658 0.552

Product RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a

Mean 0.689 0.735 0.080 0.126 0.001 0.093 0.047 0.047 0.620 0.681
Median 0.737 0.771 0.075 0.119 −0.002 0.104 0.048 0.046 0.661 0.715

Product RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b

Mean 0.688 0.729 0.080 0.117 0.001 0.077 0.047 0.046 0.618 0.670
Median 0.730 0.762 0.075 0.112 −0.002 0.091 0.048 0.045 0.659 0.705

0.123, much higher than that for RSSSM (0.087) during their
common period. Without considering the SMAP period, the
conditions are the same (the R2 for RSSSM and ERA5-Land
are 0.41 and 0.38; the RMSE values for these two products
are 0.089 and 0.125, respectively). The temporal correlation
indicated by r and A.R is somewhat higher for ERA5-Land
in general (Table 3), but in most cold areas (Dfa, Dwc, and
ET), the opposite condition occurs (Fig. S3a, S3d). The tem-
poral ubRMSE values for RSSSM and ERA5-Land do not
differ significantly, but RSSSM usually performs better in
relatively arid places (Fig. S3c). While the relative temporal
accuracies of RSSSM and ERA5-Land are unclear, the spa-
tial pattern of RSSSM is more accurate than that of ERA5-
Land considering the significantly better spatial correlation,
RMSE, bias, and ubRMSE (Table 4). The considerable ad-
vantage of RSSSM over ERA5-Land exists throughout the

year, especially during the growing seasons from March to
November (Fig. S4).

3.2.3 Data quality comparison between RSSSM and the
soil moisture products derived from both satellite
data and model simulations

CCI is a typical surface soil moisture dataset developed
by combining satellite observations and model simulations.
However, validation against measurements indicates that the
CCI product is not of very good quality because the overall
R2 is only 0.31, with an RMSE value of up to 0.095 (Fig. S5;
when the SMAP data period is excluded, the R2 and RMSE
for CCI are 0.28 and 0.098 compared to 0.41 and 0.089 for
RSSSM). The temporal pattern of RSSSM, indicated by r
and RMSE, is found to be significantly better than that of
CCI (Table 3) under all climate conditions (Fig. S6). Our re-
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Figure 5. Comparison of the temporal accuracy between RSSSM and SMAP in regions with different Köppen–Geiger climate types. The
four indexes are (a) r , (b) RMSE, (c) ubRMSE, and (d) anomalies r (A.R). The lengths of the error bars are 1.5 times that of the interquartile
range, while the upper and lower boundaries and the central lines of the boxes indicate the 75th, 50th, and 25th percentile values, with mean
values marked by “×” (the forms of all the following boxplots are the same).

sults indicate that RSSSM also shows a consistently higher
spatial accuracy than the CCI, especially during the growing
seasons (Table 4 and Fig. S7).

Next, we focus on the interannual change in data qual-
ity. According to Fig. 13a–c, while the correlation coeffi-
cient for RSSSM does not vary significantly among differ-
ent years, the RMSE and ubRMSE values in earlier periods
are somewhat higher compared to those after 2012. Although
the data quality of RSSSM can hardly be maintained as well,
the degradation degree is much slighter than that of CCI. The
comparison of the spatial coverages of the 10 d scale RSSSM
and CCI data (rainforests are excluded) shows that RSSSM
covers all land surfaces except for permafrost, while the in-
terannual variation in coverage is also negligible throughout
the entire period (the intra-annual cycles of data coverages
result from the changes in frozen areas), which are prefer-
able to the CCI, whose data coverage before 2007 is limited
(Fig. 13d).

GLEAM products also contain satellite information due
to the assimilation of CCI data, although model simulations
play a much more important role. By validation, the overall
R2 and RMSE values for the GLEAM v3.3a product (2003–

2018) are 0.38 and 0.142, respectively, whereas those for the
v3.3b product are 0.36 and 0.13, respectively. Both estimates
are nonlinearly correlated with and generally higher than the
measured values (Fig. S8). Therefore, with an R2 of 0.42 and
RMSE of 0.087, RSSSM is found to be superior to GLEAM
v3.3a/b in general (if the SMAP data period is excluded,
RSSSM’s R2 and RMSE values are 0.41 and 0.089, respec-
tively, which are still better than both GLEAM v3.3a (R2:
0.35; RMSE: 0.141) and GLEAM v3.3a (R2: 0.34; RMSE:
0.128)). The temporal and spatial accuracies of GLEAM
products and RSSSM are compared in Tables 3–4. The ad-
vantage of GLEAM is its ability to characterize the temporal
variations in soil moisture, with higher temporal correlation
achieved in most climatic regions (Fig. S9a, d). However, the
main potential disadvantage is the obvious overestimation,
which leads to significantly higher RMSE values compared
with RSSSM in all regions and all periods (Figs. S9b and
S10b). Moreover, the spatial pattern of GLEAM products is
less convincing than that of RSSSM, considering the lower
spatial-correlation coefficients, especially in spring (March
to May) and autumn (September to November) (Fig. S10a).
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Table 4. Mean and median values of the four evaluation indexes (r , RMSE, bias, and ubRMSE) on the spatial-pattern accuracy of RSSSM
and the other global long-term surface soil moisture products (SMAP_E, ASCAT-SWI, GLDAS Noah v2.1, ERA5-Land, CCI, GLEAM
v3.3a, and GLEAM v3.3b) in every 10 d period. For each pair of comparisons, the evaluation indexes are for the common period of the two
products, and the product with better performance is highlighted in bold (the same as Table 3). The abbreviations for the products are also
the same as those in Table 3.

Index r RMSE bias ubRMSE

Product RSSSM SMAP RSSSM SMAP RSSSM SMAP RSSSM SMAP

Mean 0.652 0.659 0.084 0.084 0.016 0.016 0.082 0.081
Median 0.655 0.664 0.082 0.081 0.019 0.019 0.080 0.078

Product RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT RSSSM ASCAT

Mean 0.636 0.561 0.087 0.102 0.005 −0.010 0.085 0.097
Median 0.650 0.572 0.086 0.100 0.007 −0.009 0.085 0.095

Product RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS RSSSM GLDAS

Mean 0.617 0.593 0.090 0.097 −0.005 0.035 0.086 0.087
Median 0.643 0.630 0.089 0.096 0.001 0.041 0.086 0.086

Product RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L RSSSM ERA5-L

Mean 0.616 0.575 0.090 0.125 −0.005 0.077 0.086 0.095
Median 0.641 0.633 0.089 0.125 0.001 0.082 0.086 0.092

Product RSSSM CCI RSSSM CCI RSSSM CCI RSSSM CCI

Mean 0.618 0.497 0.090 0.099 −0.004 0.003 0.086 0.093
Median 0.647 0.554 0.089 0.098 0.002 0.006 0.086 0.093

Product RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a RSSSM GLE-a

Mean 0.617 0.576 0.090 0.139 −0.005 0.105 0.086 0.089
Median 0.643 0.616 0.089 0.142 0.001 0.112 0.086 0.088

Product RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b RSSSM GLE-b

Mean 0.616 0.560 0.090 0.128 −0.005 0.088 0.086 0.090
Median 0.643 0.613 0.089 0.130 0.001 0.094 0.086 0.089

Therefore, the potential advantages of RSSSM can exceed
those of GLEAM.

In conclusion, surface soil moisture developed mainly
based on land surface models (GLEAM and ERA5-Land) has
high temporal accuracy but relatively unreliable absolute val-
ues and spatial patterns; however, RSSSM shows good per-
formances in all aspects. Generally, this study indicates that
the expected order of data applicability among various global
long-term surface soil moisture products is RSSSM (applica-
ble to all studies)>GLEAM (suitable for temporal-variation
studies)>ERA5-Land (applicable to temporal-pattern stud-
ies)>GLDAS Noah V2.1 (somewhat applicable to all stud-
ies)>ASCAT-SWI>CCI. The training R2 of the previous
neural networks designed for global surface soil moisture
mapping is 0.45–0.55, while the temporal r and RMSE val-
ues against measurements are 0.52 and 0.084 (Yao et al.,
2017), and the overall R2 and RMSE are 0.2 and 0.113 (Yao
et al., 2019). In this study, by elaborating the neural network,
the training R2 is elevated to 0.95, with improvements in the

temporal r and RMSE (0.69 and 0.08) as well as the over-
all R2 and RMSE (0.42 and 0.087) values. In addition, our
10 d period average product is both spatially and temporally
continuous over 16 years, has a high spatial resolution, and
covers all land except for frozen ground. Hence, our product
could be more useful than previous machine learning prod-
ucts.

3.3 Spatial and temporal patterns of the calculated
surface soil moisture

For the calculated global surface soil moisture, the spatial
pattern averaged during 2003–2018 is shown in Fig. 14a (the
maps for separate months are shown in Fig. S11a). The above
validation results show that except for RSSSM, GLDAS has
the highest spatial accuracy, so the spatial pattern of GLDAS
surface soil moisture is also shown below (Fig. S11b). By
comparison, the spatial patterns of RSSSM and GLDAS are
similar, but some differences also exist (see the regions cir-
cled in red). Obviously, RSSSM has a higher spatial het-
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Figure 6. Comparison of the spatial-pattern accuracy between RSSSM and SMAP in different 10 d periods from April 2015 to 2018. The
three evaluation indexes are (a) r , (b) RMSE, and (c) ubRMSE. The lengths of boxes and error bars are determined from the evaluation index
values in 3 (January to March) or 4 (April to December) years.

erogeneity and probably more reflections on wetlands and
irrigated fields (e.g. the Hetao Irrigation District in China),
whereas GLDAS appears patchy in arid areas. The latitudi-
nal pattern comparison in Fig. S12a also implies that RSSSM
contains more detailed spatial information.

For the interannual variation, because the GLEAM v3.3a
product is proven to have the best accuracy in characteriz-
ing the temporal anomalies of soil moisture and covers the
whole world, this product is selected as the reference to jus-
tify our calculation. According to Fig. S12b, both GLEAM
and RSSSM support a significant rising trend in global mean
surface soil moisture during 2003–2018, while the average
rates are both approximately 0.03 m3 m−3 yr−1 (Fig. S12b).
The spatial patterns of the interannual trends in RSSSM and
GLEAM are shown in Fig. 14c–d, and they are generally
consistent. Soil moisture gains are found over the border be-
tween the USA and Canada as well as over Paraguay, Kaza-
khstan, and north-eastern and southern China (the regions
circled in blue), while soil moisture declines are observed

in northern Asia and eastern Brazil (the regions with red cir-
cles). The main discrepancy between the soil moisture trends
predicted by the two products lies in central Africa, the Ara-
bian Peninsula, and north-western Canada.

Because the validation against measurements proves that
the intra-annual soil moisture variation in the “Dfc” climate
region cannot be captured by SMAP or RSSSM, the acquired
intra-annual analysis results in this region are not considered.
Over low-latitude areas (30◦ S–30◦ N), surface soil moisture
peaks in summers (seasons are opposite in the northern and
southern hemispheres); however, in mid-latitude areas (30–
60◦ S, 30–60◦ N) except for eastern Asia (i.e. east of the
Yenisei River), the soil moisture is high in winters (nongrow-
ing seasons) and low in summers (Figs. 15a and S13a). The
intra-annual range of surface soil moisture is largest in the
tropical monsoon climate regions, including the African sa-
vannas, the Orinoco plain, the Ganges plain, and the plain
areas in the Indochina Peninsula as well as some seasonal
frozen areas, whereas it is lowest in arid places (Figs. 15b,
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Figure 7. Overall data accuracy comparison between RSSSM and the ASCAT-SWI data product. The scatterplot is between (a) RSSSM or
(b) ASCAT-SWI soil moisture and the site-measured values during 2007–2018. The unit of all plots is the density of points on a logarithmic
scale.

Figure 8. Comparison of the temporal accuracy between RSSSM and ASCAT-SWI in different Köppen–Geiger climatic regions. The four
indexes are (a) r , (b) RMSE, (c) ubRMSE, and (d) anomalies R (A.R).

S13b–c). Precipitation is a direct driver of surface soil mois-
ture changes (Fig. S14a–b), and the intra-annual cycle of soil
moisture often strictly follows that of precipitation as long
as it exists (Figs. 15c and S14c). Considering that at low
latitudes, precipitation is often highest in summer, whereas
in the westerlies, rainfall is generally equal among differ-

ent seasons (eastern Asia is an exception probably due to
the monsoon climate and topographic conditions), yet much
higher evapotranspiration occurs in summer, the global intra-
annual patterns of soil moisture can be explained. The peak
time difference between surface soil moisture and precipita-
tion is approximately one 10 d period or 6 d on average at
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Figure 9. Comparison of the spatial accuracy between RSSSM and ASCAT-SWI during different 10 d periods. The evaluation indexes are
(a) r , (b) RMSE, and (c) ubRMSE.

Figure 10. Overall data accuracy comparison between RSSSM and the surface soil moisture simulated by GLDAS Noah V2.1. The scatter-
plot is between the (a) RSSSM or (b) GLDAS soil moisture and the measured soil moisture from 2003 to 2018.
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Figure 11. Comparison of the temporal accuracy between RSSSM and GLDAS surface soil moisture in regions with different Köppen–
Geiger climate types. The four indexes are (a) r , (b) RMSE, (c) ubRMSE, and (d) Anomalies r .

global scale (Fig. 15d), which is expected to be related to the
“time lag” effect. On dry days, the fastest surface soil mois-
ture decline is expected in summers, when evapotranspira-
tion is high. However, this study reveals that at mid-latitudes,
the opposite condition occurs: the surface soil moisture loss
without rain is lowest in summer (Figs. 15e and S15a). Fur-
ther analysis identified a positive correlation between surface
soil moisture and its rate of decline, with r > 0.8 over 85 %
of the area (Fig. S15b–c), indicating that because soil mois-
ture in the westerlies is often high in winters, the available
surface soil water for evaporation and percolation loss is lim-
ited in summer, and plants tend to utilize water in deeper
soil layers. When droughts occur during a random period, the
mean surface soil moisture decline is highest in the tropical
monsoon climate regions (Fig. 15f). Therefore, if sufficient
water during rainy seasons is lacking there, then significant
water loss (Fig. S15d) may destroy the local ecosystem.

4 Data availability

The global surface soil moisture dataset RSSSM is available
at https://doi.org/10.1594/PANGAEA.912597 (Chen, 2020).
In the ZIP file, data maps are all provided in Geotiff format,
and we also attached a CSV table relating the filename and
the nominal time period of the file.

5 Discussion and conclusions

5.1 Contributions of microwave observations and
environmental characteristics to the neural network
prediction

In this study, we developed an improved global long-term
remote-sensing-based surface soil moisture dataset named
RSSSM. The key algorithm calibrates and fuses various
sources of microwave surface soil moisture products through
multiple neural networks. Several environmental factors are
also chosen as ancillary neural network inputs because they
are quality impact factors of microwave soil moisture re-
trievals or also direct indicators of surface soil moisture. To
explore the relative roles of soil moisture data retrieved from
microwave observations and the environmental characteris-
tics, we performed contribution tests on all the input features
at the global scale (for each predictor, we added a random
error that is controlled within the standard deviation of the
predictor; then the increased mean squared error (MSE) in
neural network training can be used to determine the rela-
tive contribution of that variable). Taking the first indepen-
dent neural network (NN; NN1-1-1, a primary NN) as an ex-
ample, the results (Fig. 16) indicate that SMOS soil mois-
ture plays a dominant role in the neural network training
(55.5 %), while the four predictor soil moisture products ex-
plained 62.7 % in total. The remaining 37.3 % of the training
efficiency could be attributed to the environmental character-
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Figure 12. Comparison of the spatial accuracy between RSSSM and GLDAS during different 10 d periods. The evaluation indexes are the
same as those in Fig. 7.

istics, among which the water fraction accounts for the most
(13.4 %) since it is both a quality impact factor and a direct
indicator of soil moisture. The tree cover fraction is an im-
portant neural network input as well and reduces the MSE by
7.8 %, which is probably due to the strong impact of forest
cover on microwave soil moisture retrievals.

5.2 Requirement of further validations

Our product is generally more comparable to the in situ mea-
surements at ISMN stations than the existing global long-
term surface soil moisture datasets in general, when all indi-
cators on both spatial and temporal accuracy are considered.
However, we can neither conclude that our product is supe-
rior to the existing products nor determine the performance
of our product at the global scale. This is mainly because
the ISMN measurements are unevenly distributed globally
(Fig. 3) and incompatible at a spatial scale with the scales of
passive microwave observations and land surface modelling
(0.1–0.25◦). We validated the soil moisture products against

the ISMN’s point-scale data just because only such in situ
measurements are currently available, and the ISMN dataset
(Dorigo et al., 2011, 2013) is the most frequently used in the
assessments of large-scale soil moisture data (Al-Yaari et al.,
2019; Albergel et al., 2012; Dorigo et al., 2015; Fernandez-
Moran et al., 2017b; Gao et al., 2020; Karthikeyan et al.,
2017b; Kerr et al., 2016; Kim et al., 2015b; Kolassa et al.,
2018; Lievens et al., 2017; Zhang et al., 2019). In this study,
to alleviate the impact of spatial-scale differences on the eval-
uation, dense networks are more utilized (19 out of 29 net-
works; see Text S2 for details) that contain multiple stations
within the same 0.1◦ pixel. The pixels with non-negligible
water area are also excluded in case of high spatial variabil-
ity in surface soil moisture. In addition, more than 90 % of
the selected stations are located in relatively flat areas with
a topographic complexity of less than 10 %. The cosmic-ray
neutron-sensing (CRNS) method can provide soil moisture
estimates at a scale of hundreds of metres in diameter (An-
dreasen et al., 2017). Hence, the in situ networks generated
using this method, e.g. COSMOS, are more suitable for the
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Figure 13. Changes in the data quality and data spatial coverages of RSSSM and CCI soil moisture with year. The interannual changes in
(a) spatial-correlation coefficients (r), (b) spatial RMSE, (c) spatial ubRMSE values, and (d) the spatial coverages of 10 d period data for
RSSSM and CCI.

Figure 14. Spatial and temporal patterns of the neural-network-simulated surface soil moisture (RSSSM) and comparison against other
products: (a, b) the global map of (a) calculated RSSSM and (b) GLDAS Noah V2.1 soil moisture (averaged during 2003–2018) and (c,
d) interannual trend map of (c) calculated RSSSM and (d) GLEAM v3.3a soil moisture from 2003 to 2018. The circled regions in (a) and
(b) are the places with obvious differences between RSSSM and the other products, while the circled regions in (c) and (d) are those with
significant trends.
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Figure 15. Intra-annual variation in global surface soil moisture and its relationship with precipitation. (a) Spatial pattern of the time when
surface soil moisture reaches its maximum in a year (unit: 10 d; note that the seasons are opposite in the northern and southern hemispheres);
(b) intra-annual variation range of surface soil moisture; (c) map of the correlation coefficient between the intra-annual variations in precip-
itation and surface soil moisture (both are fitted by Fourier periodic functions); (d) peak time difference between the surface soil moisture
and precipitation (unit: 10 d), with the frequency histogram shown as the inset; (e) 10 d period with the fastest surface soil moisture loss on
rainless days in every 0.5◦ grid cell over the world; and (f) map of the annual mean surface soil moisture decline after 10 consecutive dry
days (assuming that the dry period occurs randomly throughout a year).

Figure 16. Relative contributions of the 13 input features (i.e. four predictor soil moisture products retrieved from microwave remote sensing
and nine environmental factors that are quality impact factors of microwave soil moisture retrieval or also indicators of soil moisture) to the
training efficiency of the first round’s primary neural network (NN1-1-1).
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validation of satellite-based or modelled coarse-resolution
soil moisture products. We hope that additional records ob-
tained from cosmic-ray neutron stations become available in
the future so that our product may be better evaluated.

5.3 Approaches towards more accurate soil moisture
predictions

By referring to the ISMN measurements, the accuracy (R2
=

0.42, RMSE= 0.087) of RSSSM requires further improve-
ment. The target RMSE for surface soil moisture set by
GCOS is 0.04 m3 m−3, indicating the need to further improve
the global soil moisture data quality.

Fortunately, this study provides a novel approach that has
the potential to lead to increasingly better soil moisture prod-
ucts in future. The RMSE and ubRMSE values in earlier pe-
riods are somewhat higher than those after 2012, which is be-
cause (1) five rounds of simulations were performed, with the
output converted into the training target of the next round’s
neural networks, thus leading to a little error propagation as
the simulation period extended to the past, and (2) the quality
of microwave soil moisture data is generally lower in earlier
periods due to the relatively non-advanced microwave sen-
sors with low signal-to-noise ratio (SNR). However, due to
the design of localized networks and the full use of 11 mi-
crowave soil moisture products, and quality impact factors,
etc., high training efficiency is achieved, resulting in limited
amplification of noise and high maintenance of valid infor-
mation during 16 years of simulation. The overall data ac-
curacy of RSSSM is only slightly lower than that of SMAP,
which is the primary training target. Therefore, if microwave
sensors with higher SNR or better penetration of the vegeta-
tion canopy than SMAP are launched in the future (e.g. the
upcoming P-band microwave sensors; Etminan et al., 2020;
Ye et al., 2020), we can develop a temporally continuous soil
moisture dataset beginning in 2003 by using the soil mois-
ture or Tb retrieved from the new sensors as the reference.
This upcoming product is expected to have even higher ac-
curacy than the SMAP product (we will update the complete
RSSSM product then). In that sense, the data fusion algo-
rithm proposed here will be even more meaningful in the fu-
ture.

Remote sensing may provide more detailed spatial infor-
mation on surface soil moisture, whereas reanalysis-based
models have advantages in characterizing temporal varia-
tions, even on a daily scale. Furthermore, root-zone soil
moisture, which often plays a more important role in ecosys-
tems, cannot be directly retrieved through microwave remote
sensing. Therefore, combining the advantages of satellite ob-
servation and model simulation helps to improve the data ac-
curacies of both surface and root-zone soil moisture. To re-
alize a better combination, one possible approach is to use
the pixel-specific confidence range and the spatial pattern
of RSSSM to constrain the model parameters or add sup-
plementary modules if necessary. In detail, RSSSM can be

used as the initial base map of surface soil moisture. Then,
after each time of soil moisture simulation in multiple lay-
ers (both root-zone and surface), the model efficiency is ex-
amined through a spatial-correlation test between the simu-
lated surface soil moisture and RSSSM. In addition, whether
the simulated values fall within the confidence range (e.g.
±20 %) reported by RSSSM should also be tested. Using
recurrent adjustments, the model parameters in each pixel
can be optimized. For irrigated croplands, if irrigation is not
considered in the models, the simulated surface soil mois-
ture will soon fall below the confidence range, and the cor-
relation will also decline regardless of the parameters that
are provided. Therefore, a well-designed irrigation module
(Chen et al., 2019) should be introduced. Finally, for regions
with human-induced land cover changes (e.g. afforestation),
optical remote sensing should be applied to better estimate
evapotranspiration.
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