Data description paper 12 Mar 2020
Data description paper | 12 Mar 2020
The dead line for oil and gas and implication for fossil resource prediction
Xiongqi Pang et al.
Related subject area
Geosciences – Geochemistry
Description of a global marine particulate organic carbon-13 isotope data set
A new local meteoric water line for Inuvik (NT, Canada)
Introducing GloRiSe – a global database on river sediment composition
CASCADE – The Circum-Arctic Sediment CArbon DatabasE
Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the global ground-based Network for Observation of Volcanic and Atmospheric Change
A European map of groundwater pH and calcium
Bioavailable soil and rock strontium isotope data from Israel
Isoscape of amount-weighted annual mean precipitation tritium (3H) activity from 1976 to 2017 for the Adriatic–Pannonian region – AP3H_v1 database
TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific)
Global whole-rock geochemical database compilation
Gridded maps of geological methane emissions and their isotopic signature
OCTOPUS: an open cosmogenic isotope and luminescence database
Data on geochemical and hydraulic properties of a characteristic confined/unconfined aquifer system of the younger Pleistocene in northeast Germany
The IRHUM (Isotopic Reconstruction of Human Migration) database – bioavailable strontium isotope ratios for geochemical fingerprinting in France
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Michael Fritz, Sebastian Wetterich, Joel McAlister, and Hanno Meyer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-294, https://doi.org/10.5194/essd-2021-294, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
From 2015 to 2018 we have collected rain and snow samples in Inuvik, Canada. We have measured the stable water isotope composition of oxygen (δ18O) and hydrogen (δ2H) with a mass spectrometer. This data will be of interest for other scientists that work in the Arctic. They will be able to compare our modern data with their own isotope data in old ice, for example in glaciers, and in permafrost. This will help to correctly interpret the climate signals of the environmental history of the Earth.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Jannik Martens, Evgeny Romankevich, Igor Semiletov, Birgit Wild, Bart van Dongen, Jorien Vonk, Tommaso Tesi, Natalia Shakhova, Oleg V. Dudarev, Denis Kosmach, Alexander Vetrov, Leopold Lobkovsky, Nikolay Belyaev, Robie W. Macdonald, Anna J. Pieńkowski, Timothy I. Eglinton, Negar Haghipour, Salve Dahle, Michael L. Carroll, Emmelie K. L. Åström, Jacqueline M. Grebmeier, Lee W. Cooper, Göran Possnert, and Örjan Gustafsson
Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, https://doi.org/10.5194/essd-13-2561-2021, 2021
Short summary
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
Santiago Arellano, Bo Galle, Fredy Apaza, Geoffroy Avard, Charlotte Barrington, Nicole Bobrowski, Claudia Bucarey, Viviana Burbano, Mike Burton, Zoraida Chacón, Gustavo Chigna, Christian Joseph Clarito, Vladimir Conde, Fidel Costa, Maarten De Moor, Hugo Delgado-Granados, Andrea Di Muro, Deborah Fernandez, Gustavo Garzón, Hendra Gunawan, Nia Haerani, Thor H. Hansteen, Silvana Hidalgo, Salvatore Inguaggiato, Mattias Johansson, Christoph Kern, Manne Kihlman, Philippe Kowalski, Pablo Masias, Francisco Montalvo, Joakim Möller, Ulrich Platt, Claudia Rivera, Armando Saballos, Giuseppe Salerno, Benoit Taisne, Freddy Vásconez, Gabriela Velásquez, Fabio Vita, and Mathieu Yalire
Earth Syst. Sci. Data, 13, 1167–1188, https://doi.org/10.5194/essd-13-1167-2021, https://doi.org/10.5194/essd-13-1167-2021, 2021
Short summary
Short summary
This study presents a dataset of volcanic sulfur dioxide (SO2) emissions from 2005–2017. Measurements were obtained by Network for Observation of Volcanic and Atmospheric Change (NOVAC) scanning differential optical absorption spectrometer (ScanDOAS) instruments at 32 volcanoes and processed using a standardized procedure. We show statistics of volcanic gas emissions under a variety of conditions and compare them with averages derived from measurements from space and historical inventories.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Ian Moffat, Rachel Rudd, Malte Willmes, Graham Mortimer, Les Kinsley, Linda McMorrow, Richard Armstrong, Maxime Aubert, and Rainer Grün
Earth Syst. Sci. Data, 12, 3641–3652, https://doi.org/10.5194/essd-12-3641-2020, https://doi.org/10.5194/essd-12-3641-2020, 2020
Short summary
Short summary
This research has measured the bioavailable strontium isotope composition of soil and rock samples from the major geological units in Israel. Plants, animals and people take up this value into their bones and teeth via food and water and so mapping these values has important implications for understanding where archaeological, ecological, food science and forensic samples are from.
Zoltán Kern, Dániel Erdélyi, Polona Vreča, Ines Krajcar Bronić, István Fórizs, Tjaša Kanduč, Marko Štrok, László Palcsu, Miklós Süveges, György Czuppon, Balázs Kohán, and István Gábor Hatvani
Earth Syst. Sci. Data, 12, 2061–2073, https://doi.org/10.5194/essd-12-2061-2020, https://doi.org/10.5194/essd-12-2061-2020, 2020
Short summary
Short summary
Here we present the spatially continuous gridded database for amount-weighted annual mean tritium activity in precipitation for the period 1976 to 2017 for the Adriatic–Pannonian region, with a special focus on the years after 2010, which are not represented by existing global models. This AP3H database is capable of providing reliable spatiotemporal input for hydrogeological applications at any place within Slovenia, Hungary, and their surroundings.
Maxim V. Portnyagin, Vera V. Ponomareva, Egor A. Zelenin, Lilia I. Bazanova, Maria M. Pevzner, Anastasia A. Plechova, Aleksei N. Rogozin, and Dieter Garbe-Schönberg
Earth Syst. Sci. Data, 12, 469–486, https://doi.org/10.5194/essd-12-469-2020, https://doi.org/10.5194/essd-12-469-2020, 2020
Short summary
Short summary
Tephra is fragmented material produced by explosive volcanic eruptions. Geochemically characterized tephra layers are excellent time marker horizons and samples of magma composition. TephraKam is database of the ages and chemical composition of volcanic glass in tephra from the Kamchatka volcanic arc (northwestern Pacific). TephraKam enables the identification of tephra sources, correlation and dating of natural archives, and reconstruction of spatiotemporal evolution of volcanism in Kamchatka.
Matthew Gard, Derrick Hasterok, and Jacqueline A. Halpin
Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, https://doi.org/10.5194/essd-11-1553-2019, 2019
Short summary
Short summary
We compiled a database of more than 1 million chemical analyses of igneous, sedimentary and metamorphic rocks, derived from existing databases, governmental data and academic studies. Our database enhances temporal distributions, simplifies the structure, and adds geochemical indices, naming schema, and estimates of physical properties such as density. This database provides a source for the rapid production of crustal models and chemical evolution throughout 4 billion years of geologic history.
Giuseppe Etiope, Giancarlo Ciotoli, Stefan Schwietzke, and Martin Schoell
Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, https://doi.org/10.5194/essd-11-1-2019, 2019
Short summary
Short summary
We developed the first global maps of natural geological CH4 flux and isotopic values which can be used for new atmospheric CH4 modelling. The maps, based on updated, measured and theoretically estimated data, show that the highest geo-CH4 emissions are located in the Northern Hemisphere (N. America, Caspian region, Europe, Siberian Arctic Shelf), and that geo-CH4 is less 13C-enriched than what has been assumed so far in other studies. Other CH4 sources can now be estimated with higher accuracy.
Alexandru T. Codilean, Henry Munack, Timothy J. Cohen, Wanchese M. Saktura, Andrew Gray, and Simon M. Mudd
Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018, https://doi.org/10.5194/essd-10-2123-2018, 2018
Short summary
Short summary
OCTOPUS is a database of cosmogenic radionuclide and luminescence measurements in fluvial sediment made available to the research community via an Open Geospatial Consortium compliant web service. OCTOPUS and its associated data curation framework provide the opportunity for researchers to reuse previously published but otherwise unusable CRN and luminescence data. This delivers the potential to harness old but valuable data that would otherwise be lost to the research community.
C. Merz and J. Steidl
Earth Syst. Sci. Data, 7, 109–116, https://doi.org/10.5194/essd-7-109-2015, https://doi.org/10.5194/essd-7-109-2015, 2015
Short summary
Short summary
The paper presents a database of hydrochemical and hydraulic groundwater measurements of a younger Pleistocene aquifer system in NE Germany. The Leibniz Centre for Agricultural Landscape Research (ZALF) operates seven groundwater monitoring wells in the Quillow catchment located in the Uckermark region (Federal State of Brandenburg, Germany). This database can be used for the investigation of subsurface water geochemistry under changing hydraulic boundary conditions regarding a 14-year period.
M. Willmes, L. McMorrow, L. Kinsley, R. Armstrong, M. Aubert, S. Eggins, C. Falguères, B. Maureille, I. Moffat, and R. Grün
Earth Syst. Sci. Data, 6, 117–122, https://doi.org/10.5194/essd-6-117-2014, https://doi.org/10.5194/essd-6-117-2014, 2014
Cited articles
Behar, F., de Barros Penteado, H. L., Lorant, F., and Budzinski, H.: Study
of biodegradation processes along the Carnaubais trend, Potiguar Basin
(Brazil) – Part 1, Org. Geochem., 37, 1042–1051,
https://doi.org/10.1016/j.orggeochem.2006.05.009, 2006.
Cao, J., Zhang, Y., Hu, W., Yao, S., Wang, X., Zhang, Y., and Tang, Y.: The
Permian hybrid petroleum system in the northwest margin of the Junggar
Basin, northwest China, Mar. Petrol. Geol., 22, 331–349,
https://doi.org/10.1016/j.marpetgeo.2005.01.005, 2005.
Chen, Z., Zha, M., Liu, K., Zhang, Y., Yang, D., Tang, Y., Tang, Y., Wu, K.,
and Chen, Y.: Origin and accumulation mechanisms of petroleum in the
Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin,
China, J. Asian Earth Sci., 127, 170–196,
https://doi.org/10.1016/j.jseaes.2016.06.002, 2016.
Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T., and
Westfall, L.: International energy outlook 2016 with projections to 2040
(No. DOE/EIA-0484, 2016), USDOE Energy Information Administration (EIA),
Office of Energy Analysis, Washington, DC, US, https://doi.org/10.2172/1296780, 2016.
Durand, B.: Kerogen: Insoluble organic matter from sedimentary rocks,
Editions technip, Paris, France, 1980.
Espitalie, J., Deroo, G., and Marquis, F.: La pyrolyse Rock-Eval etses
applications, Deuxièmepartie, Revue de l'Institutfrançais du
Pétrole, 40, 755–784, https://doi.org/10.2516/ogst:1985045, 1985.
Fetter, N., Blichert-Toft, J., Ludden, J., Lepland, A., Borque, J. S.,
Greenhalgh, E., Garcia, B., Edwards, D., Télouk, P., and Albarède,
F.: Lead isotopes as tracers of crude oil migration within deep crustal
fluid systems, Earth Planet. Sc. Lett., 525, 115747,
https://doi.org/10.1016/0146-6380(88)90237-9, 2019.
Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D.
W., Klett, T. R., More, T. E., Pitman, J. K., Schenk, C. J., Schuenemeyer,
J. H., Sørensen, K., Tennyson, M. E., Valin, Z. C., and Wandrey, C. J.:
Assessment of undiscovered oil and gas in the Arctic, Science, 324,
1175–1179, https://doi.org/10.1126/science.1169467, 2009.
Glasby, G. P.: Abiogenic origin of hydrocarbons: An historical overview, Resour. Geol., 56, 83–96, https://doi.org/10.1111/j.1751-3928.2006.tb00271.x, 2006.
Global, B. P.: BP statistical review of world energy June 2017,
Relatório, Disponível em, available at: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (last access: 7 March 2020), 2017.
Gold, T.: The Origin of Methane (and Oil) in the Crust of the Earth, USGS
Professional Paper, 1570, 1–27, 1993.
Hao, F., Zou, H., Gong, Z., Yang, S., and Zeng, Z.: Hierarchies of
overpressure retardation of organic matter maturation: Case studies from
petroleum basins in China, AAPG Bulletin, 91, 1467–1498,
https://doi.org/10.1306/05210705161, 2007.
Hayes, J. B.: Porosity evolution of sandstones related to vitrinite
reflectance, Org. Geochem., 17, 117–129,
https://doi.org/10.1016/0146-6380(91)90070-Z, 1991.
Höök, M., Bardi, U., Feng, L., and Pang, X.: Development of oil
formation theories and their importance for peak oil, Mar. Petrol. Geol., 27, 1995–2004, https://doi.org/10.1016/j.marpetgeo.2010.06.005, 2010.
Hunt, J. M.: Petroleum geochemistry and geology, WH Freeman, New York, US, 2, 1–743, 1996.
IHS Energy Group: International petroleum exploration and production
database, IHS Energy Group, Englewood, Colorado, 2010.
Jia, C. Z., Pang, X. Q., and Jiang, F. J.: Research status and development
directions of hydrocarbon resources in China, Petroleum Science Bulletin, 1,
2–23, 2016.
Jiang, F., Pang, X., Bai, J., Zhou, X., Li, J., and Guo, Y.: Comprehensive
assessment of source rocks in the Bohai Sea area, eastern China, AAPG
Bulletin, 100, 969–1002, https://doi.org/10.1306/02101613092, 2016.
Kenney, J. F., Kutcherov, V. A., Bendeliani, N. A., and Alekseev, V. A.:
The evolution of multicomponent systems at high pressures: VI. The
thermodynamic stability of the hydrogen–carbon system: The genesis of
hydrocarbons and the origin of petroleum, P. Natl. Acad. Sci. USA, 99, 10976–10981, https://doi.org/10.1073/pnas.172376899, 2002.
Magoon, L. B. and Dow, W. G.: The petroleum system, in: The petroleum system – From source to trap, edited by: Magoon, L. B. and Dow, W. G., American Association of Petroleum Geologists Memoir 60, 3–24, 1994
McTavish, R. A.: The role of overpressure in the retardation of organic
matter maturation, J. Petrol. Geol., 21, 153–186,
https://doi.org/10.1111/j.1747-5457.1998.tb00652.x, 1998.
Pang, X., Chen, Z., and Chen, F: Basic concept of hydrocarbon expulsion
threshold and its research significance and application, Geoscience, 11,
510–521, 1997.
Pang, X., Li, S., Jin, Z., and Bai, G.: Quantitative assessment of
hydrocarbon expulsion of petroleum systems in the Niuzhuang sag, Bohai Bay
Basin, East China, Acta Geol. Sin.-Engl., 78, 615–625,
https://doi.org/10.1111/j.1755-6724.2004.tb00174.x, 2004.
Pang, X., Li, M., Li, S., and Jin, Z.: Geochemistry of petroleum systems in
the Niuzhuang South Slope of Bohai Bay Basin: Part 3. Estimating hydrocarbon
expulsion from the Shahejie formation, Org. Geochem., 36, 497–510,
https://doi.org/10.1016/j.orggeochem.2004.12.001, 2005.
Pang, X. Q., Jia, C. Z., and Wang, W. Y.: Petroleum geology features and
research developments of hydrocarbon accumulation in deep petroliferous
basins, Pet. Sci., 12, 1–53, https://doi.org/10.1007/s12182-015-0014-0, 2015.
Pang, X. Q., Jia, C. Z., Zhang, K., Li, M. W., Wang, Y. W., Peng, J. W., Li,
B. Y., and Chen, J. Q.: Geological and geochemical data of 13634 source rock
samples from 1286 exploration wells and 116489 porosity data from target
layers in the six petroliferous basins of China, PANGAEA,
https://doi.org/10.1594/PANGAEA.900865, 2019.
Peng, J., Pang, X., Shi, H., Peng, H., and Xiao, S.: Hydrocarbon-generation
potential of upper Eocene Enping Formation mudstones in the Huilu area,
northern Pearl River Mouth Basin, South China Sea, AAPG Bulletin, 102,
1323–1342, https://doi.org/10.1306/0926171602417005, 2018.
Peters, K. E. and Cassa, M. R.: Applied source-rock geochemistry, in: The Petroleum System – From Source to Trap, edited by: Magoon, L. B. and Dow, W. G., American Association of Petroleum Geologists Memoir 60, 93–120, 1994.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The
biomarker guide (Vol. 1), Cambridge University Press, Cambridge, UK, 2005.
Ping, H., Chen, H., and Jia, G.: Petroleum accumulation in the deeply
buried reservoirs in the northern Dongying Depression, Bohai Bay Basin,
China: New insights from fluid inclusions, natural gas geochemistry, and 1-D
basin modeling, Mar. Petrol. Geol., 80, 70–93,
https://doi.org/10.1016/j.marpetgeo.2016.11.023, 2017.
Rullkötter, J., Leythaeuser, D., Horsfield, B., Littke, R., Mann, U.,
Müller, P. J., Schaefer, R. G., Schenk, H.-J., Schwochau, K., and Witte,
E. G.: Organic matter maturation under the influence of a deep intrusive
heat source: a natural experiment for quantitation of hydrocarbon generation
and expulsion from a petroleum source rock (Toarcian shale, northern
Germany), Org. Geochem., 13, 847–856,
https://doi.org/10.1016/0146-6380(88)90237-9, 1988.
Selley, R. C. and Sonnenberg, S. A.: Elements of petroleum geology, Academic Press, San Diego, USA, 2014.
Tissot, B., Durand, B., Espitalie, J., and Combaz, A.: Influence of nature
and diagenesis of organic matter in formation of petroleum, AAPG Bulletin, 58, 499–506, https://doi.org/10.1306/83D90CEB-16C7-11D7-8645000102C1865D, 1974.
Tissot, B. P. and Welte, D. H.: Petroleum Formation and Occurrence, 1st edn.,
Springer, Berlin, 538 pp., 1978.
Wang, C. S., Chang, E. Z., and Zhang, S. N.: Potential oil and gas-bearing
basins of the Qinghai-Tibetan Plateau, China, Int. Geol. Rev., 39, 876–890, https://doi.org/10.1080/00206819709465307, 1997.
Wang, S., He, L., and Wang, J.: Thermal regime and petroleum systems in
Junggar Basin, northwest China, Phys. Earth Planet. In., 126, 237–248, https://doi.org/10.1016/S0031-9201(01)00258-8, 2001.
Wang, T. G., Zhong, N. N., Wang, C. J., Zhu, Y. X., Liu, Y., and Song, D.
F.: Source beds and oil entrapment-alteration histories of
fossil-oil-reservoirs in the Xiamaling formation basal sandstone, Jibei
depression, Petroleum Science Bulletin, 1, 24–37,
https://doi.org/10.3969/j.issn.2096-1693.2016.01.002, 2016.
Wang, Y., Yang, R., Song, M., Lenhardt, N., Wang, X., Zhang, X., Yang, S.,
Wang, J., and Cao, H.: Characteristics, controls and geological models of
hydrocarbon accumulation in the Carboniferous volcanic reservoirs of the
Chunfeng Oilfield, Junggar Basin, northwestern China, Mar. Petrol. Geol., 94, 65–79, https://doi.org/10.1016/j.marpetgeo.2018.04.001, 2018.
Wu, S. X., Jin, Z. J., Tang, L. J., and Bai, Z. R.: Characteristics of
Triassic petroleum systems in the Longmenshan foreland basin, Sichuan
province, China, Acta Geol. Sin.-Engl., 82, 554–561,
https://doi.org/10.1111/j.1755-6724.2008.tb00606.x, 2008.
Zhou, J. and Pang, X. Q.: A method for calculating the quantity of
hydrocarbon generation and expulsion, Petrol. Explor. Dev.+,
29, 24–27, 2002.
Zhou, Y. and Littke, R.: Numerical simulation of the thermal maturation,
oil generation and migration in the Songliao Basin, Northeastern China, Mar. Petrol. Geol., 16, 771–792,
https://doi.org/10.1016/S0264-8172(99)00043-4, 1999.
Zhu, C., Hu, S., Qiu, N., Rao, S., and Yuan, Y.: The thermal history of the
Sichuan Basin, SW China: Evidence from the deep boreholes, Sci. China Earth Sci., 59, 70–82, https://doi.org/10.1007/s11430-015-5116-4, 2016.
Zhu, D., Liu, Q., Jin, Z., Meng, Q., and Hu, W.: Effects of deep fluids on
hydrocarbon generation and accumulation in Chinese petroliferous basins,
Acta Geol. Sin.-Engl., 91, 301–319,
https://doi.org/10.1111/1755-6724.13079, 2017.
Zhu, G., Cao, Y., Yan, L., Yang, H., Sun, C., Zhang, Z., Li, T., and Chen,
Y.: Potential and favorable areas of petroleum exploration of ultra-deep
marine strata more than 8000 m deep in the Tarim Basin, Northwest China,
Journal of Natural Gas Geoscience, 3, 321–337,
https://doi.org/10.1016/j.jnggs.2018.12.002, 2018.
Zhu, Y. M.: Coal Mine Geology, China University of Mining and Technology
Press, Xuzhou, China, 2011.
Short summary
Based on geochemical data of 13 634 source rock samples from 1286 wells and 116 489 drilling results for oil and gas from 4978 wells in six major basins of China, we proposed the concept of the active source rock depth limit. It can be used to clarify and predict the maximum depth of fossil fuel distribution in sedimentary basins. The study provides fundamental information for deep hydrocarbon exploration and also advances understanding of the vertical distribution of fossil fuels on our planet.
Based on geochemical data of 13 634 source rock samples from 1286 wells and 116 489 drilling...