Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3177-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-3177-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution global atmospheric moisture connections from evaporation to precipitation
Copernicus Institute of Sustainable Development, Utrecht
University, Utrecht, 3508 TC, the Netherlands
Jolanda J. E. Theeuwen
Copernicus Institute of Sustainable Development, Utrecht
University, Utrecht, 3508 TC, the Netherlands
Wetsus, European Centre of Excellence for Sustainable Water
Technology, Leeuwarden, 8911 MA, the Netherlands
Arie Staal
Copernicus Institute of Sustainable Development, Utrecht
University, Utrecht, 3508 TC, the Netherlands
Stockholm Resilience Centre, Stockholm University, Stockholm,
10691, Sweden
Related authors
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020, https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Short summary
Glaciers worldwide are shrinking, yet glaciers in parts of High Mountain Asia are growing. Using models of the regional climate and glacier growth, we reproduce the observed patterns of glacier growth and shrinkage in High Mountain Asia of the last decades. Increases in snow, in part from water that comes from lowland agriculture, have probably been more important than changes in temperature to explain the growing glaciers. We now better understand changes in the crucial mountain water cycle.
Jolanda J. E. Theeuwen, Sarah N. Warnau, Imme B. Benedict, Stefan C. Dekker, Hubertus V. M. Hamelers, Chiel C. van Heerwaarden, and Arie Staal
EGUsphere, https://doi.org/10.5194/egusphere-2025-289, https://doi.org/10.5194/egusphere-2025-289, 2025
Short summary
Short summary
The Mediterranean Basin is prone to drying. This study uses a simple model to explore how forests affect the potential for rainfall by analyzing the lowest part of the atmosphere. Results show that forestation amplifies drying in dry areas and boosts rainfall potential in wet regions, where it also promotes cooling. These findings suggest that the impact of forestation varies with soil moisture, and may possibly mitigate or intensify future drying.
Arie Staal, Pim Meijer, Maganizo Kruger Nyasulu, Obbe A. Tuinenburg, and Stefan C. Dekker
Earth Syst. Dynam., 16, 215–238, https://doi.org/10.5194/esd-16-215-2025, https://doi.org/10.5194/esd-16-215-2025, 2025
Short summary
Short summary
Many areas across the globe rely on upwind land areas for their precipitation supply through terrestrial precipitation recycling. Here we simulate global precipitation recycling in four climate and land-use scenarios until 2100. We find that global terrestrial moisture recycling decreases by 1.5 % with every degree of global warming but with strong regional differences.
Mohsen Soltani, Bert Hamelers, Abbas Mofidi, Christopher G. Fletcher, Arie Staal, Stefan C. Dekker, Patrick Laux, Joel Arnault, Harald Kunstmann, Ties van der Hoeven, and Maarten Lanters
Earth Syst. Dynam., 14, 931–953, https://doi.org/10.5194/esd-14-931-2023, https://doi.org/10.5194/esd-14-931-2023, 2023
Short summary
Short summary
The temporal changes and spatial patterns in precipitation events do not show a homogeneous tendency across the Sinai Peninsula. Mediterranean cyclones accompanied by the Red Sea and Persian troughs are responsible for the majority of Sinai's extreme rainfall events. Cyclone tracking captures 156 cyclones (rainfall ≥10 mm d-1) either formed within or transferred to the Mediterranean basin precipitating over Sinai.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020, https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Short summary
Glaciers worldwide are shrinking, yet glaciers in parts of High Mountain Asia are growing. Using models of the regional climate and glacier growth, we reproduce the observed patterns of glacier growth and shrinkage in High Mountain Asia of the last decades. Increases in snow, in part from water that comes from lowland agriculture, have probably been more important than changes in temperature to explain the growing glaciers. We now better understand changes in the crucial mountain water cycle.
Cited articles
Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and
Kurths, J.: Complex networks reveal global pattern of extreme-rainfall
teleconnections, Nature, 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x,
2019.
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of
continental precipitation recycling, J. Climate, 6, 1077–1089,
https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2,
1993.
Burde, G. I., Gandush, C., and Bayarjargal, Y.: Bulk recycling models with
incomplete vertical mixing. Part II: Precipitation recycling in the Amazon
basin, J. Climate, 19, 1473–1489, https://doi.org/10.1175/JCLI3688.1, 2006.
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS),
available at: https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 2 December 2020.
Costa, M. H. and Foley, J. A.: Trends in the hydrologic cycle of the Amazon
basin, J. Geophys. Res.-Atmos., 104, 14189–14198,
https://doi.org/10.1029/1998JD200126, 1999.
Dirmeyer, P. A. and Brubaker, K. L.: Characterization of the global
hydrologic cycle from a back-trajectory analysis of atmospheric water vapor,
J. Hydrometeorol., 8, 20–37, https://doi.org/10.1175/JHM557.1, 2007.
Dirmeyer, P. A., Schlosser, C. A., and Brubaker, K. L.: Precipitation,
recycling, and land memory: an integrated analysis, J.
Hydrometeorol., 10, 278–288, https://doi.org/10.1175/2008JHM1016.1, 2009.
Dirmeyer, P. A., Wei, J., Bosilovich, M. G., and Mocko, D. M.: Comparing
evaporative sources of terrestrial precipitation and their extremes in MERRA
using relative entropy, J. Hydrometeorol., 15, 102–116, 2014.
Döll, P. and Lehner, B.: Validation of a new global 30-min drainage
direction map, J. Hydrol., 258, 214–231,
https://doi.org/10.1016/S0022-1694(01)00565-0, 2002.
Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling in the Amazon
basin, Q. J. Roy. Meteorol. Soc., 120,
861–880, https://doi.org/10.1002/qj.49712051806, 1994.
Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., and Stohl, A.: On the
origin of continental precipitation, Geophys. Res. Lett., 37, L13804,
https://doi.org/10.1029/2010GL043712, 2010.
Keune, J. and Miralles, D. G.: A precipitation recycling network to assess
freshwater vulnerability: challenging the watershed convention, Water
Resour. Res., 55, 9947–9961, https://doi.org/10.1029/2019WR025310, 2019.
Keys, P. W., van der Ent, R. J., Gordon, L. J., Hoff, H., Nikoli, R., and Savenije, H. H. G.: Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions, Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, 2012.
Keys, P. W., Wang-Erlandsson, L., and Gordon, L. J.: Revealing invisible
water: moisture recycling as an ecosystem service, PloS ONE, 11,
e0151993, https://doi.org/10.1371/journal.pone.0151993, 2016.
Keys, P. W., Porkka, M., Wang-Erlandsson, L., Fetzer, I., Gleeson, T., and
Gordon, L. J.: Invisible water security: moisture recycling and water
resilience, Water Security, 8, 100046, https://doi.org/10.1016/j.wasec.2019.100046,
2019.
Koster, R. D., de Valpine, D. P., and Jouzel, J.: Continental water recycling
and H218O concentrations, Geophys. Res. Lett., 20, 2215–2218,
https://doi.org/10.1029/93GL01781, 1993.
Krönke, J., Wunderling, N., Winkelmann, R., Staal, A., Stumpf, B.,
Tuinenburg, O. A., and Donges, J. F.: Dynamics of tipping cascades on complex
networks, Phys. Rev. E, 101, 042311,
https://doi.org/10.1103/PhysRevE.101.042311, 2020.
Kurita, N. and Yamada, H.: The role of local moisture recycling evaluated
using stable isotope data from over the middle of the Tibetan Plateau during
the monsoon season, J. Hydrometeorol., 9, 760–775,
https://doi.org/10.1175/2007JHM945.1, 2008.
Link, A., van der Ent, R., Berger, M., Eisner, S., and Finkbeiner, M.: The fate of land evaporation – a global dataset, Earth Syst. Sci. Data, 12, 1897–1912, https://doi.org/10.5194/essd-12-1897-2020, 2020.
Savenije, H. H. G.: The runoff coefficient as the key to moisture recycling,
J. Hydrol., 176, 219–225, https://doi.org/10.1016/0022-1694(95)02776-9,
1996.
Spracklen, D. V., Arnold, S. R., and Taylor, C. M.: Observations of increased
tropical rainfall preceded by air passage over forests, Nature, 489,
282–285, https://doi.org/10.1038/nature11390, 2012.
Staal, A., Tuinenburg, O. A., Bosmans, J. H. C., Holmgren, M., van Nes, E.
H., Scheffer, M., Zemp, D. C., and Dekker, S. C.: Forest-rainfall cascades
buffer against drought across the Amazon, Nat. Clim. Change, 8,
539–543, https://doi.org/10.1038/s41558-018-0177-y, 2018.
Staal, A., Flores, B. M., Aguiar, A. P. D., Bosmans, J. H. C., Fetzer, I.,
and Tuinenburg, O. A.: Feedback between drought and deforestation in the
Amazon, Environ. Res. Lett., 15, 044024,
https://doi.org/10.1088/1748-9326/ab738e, 2020.
Trenberth, K. E.: Atmospheric moisture recycling: role of advection and
local evaporation, J. Climate, 12, 1368–1381,
https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2,
1999.
Tuinenburg, O. A.: UTrack global database processing scripts, GitHub, available at: https://github.com/ObbeTuinenburg/UTrack_global_database, last access: 2 December 2020.
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020.
Tuinenburg, O. A., Hutjes, R. W. A., and Kabat, P.: The fate of evaporated
water from the Ganges basin, J. Geophys. Res.-Atmos.,
117, D01107, https://doi.org/10.1029/2011JD016221, 2012.
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: Global evaporation to
precipitation flows obtained with Lagrangian atmospheric moisture tracking,
PANGAEA, https://doi.org/10.1594/PANGAEA.912710, 2020.
Van der Ent, R. J. and Savenije, H. H.: Oceanic sources of continental
precipitation and the correlation with sea surface temperature, Water
Resour. Res., 49, 3993–4004, https://doi.org/10.1002/wrcr.20296, 2013.
Van der Ent, R. J. and Savenije, H. H. G.: Length and time scales of atmospheric moisture recycling, Atmos. Chem. Phys., 11, 1853–1863, https://doi.org/10.5194/acp-11-1853-2011, 2011.
Van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S.
C.: Origin and fate of atmospheric moisture over continents, Water Resour.
Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
Van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, 2014.
Wang-Erlandsson, L., Fetzer, I., Keys, P. W., van der Ent, R. J., Savenije, H. H. G., and Gordon, L. J.: Remote land use impacts on river flows through atmospheric teleconnections, Hydrol. Earth Syst. Sci., 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-2018, 2018.
Wei, J. and Dirmeyer, P. A.: Sensitivity of land precipitation to surface
evapotranspiration: a nonlocal perspective based on water vapor transport,
Geophys. Res. Lett., 46, 12588–12597,
https://doi.org/10.1029/2019GL085613, 2019.
Wei, J., Dirmeyer, P. A., Bosilovich, M. G., and Wu, R.: Water vapor sources
for Yangtze River Valley rainfall: climatology, variability, and
implications for rainfall forecasting, J. Geophys. Res.-Atmos., 117, D05126, https://doi.org/10.1029/2011JD016902, 2012.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014.
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
We provide a global database of moisture flows through the atmosphere using the most recent ERA5...
Altmetrics
Final-revised paper
Preprint