Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3177-2020
https://doi.org/10.5194/essd-12-3177-2020
Data description paper
 | 
04 Dec 2020
Data description paper |  | 04 Dec 2020

High-resolution global atmospheric moisture connections from evaporation to precipitation

Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal

Related authors

Local moisture recycling across the globe
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023,https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020,https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Tracking the global flows of atmospheric moisture and associated uncertainties
Obbe A. Tuinenburg and Arie Staal
Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020,https://doi.org/10.5194/hess-24-2419-2020, 2020
Short summary
The residence time of water in the atmosphere revisited
Ruud J. van der Ent and Obbe A. Tuinenburg
Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017,https://doi.org/10.5194/hess-21-779-2017, 2017
Short summary
Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013,https://doi.org/10.5194/hess-17-4869-2013, 2013

Related subject area

Meteorology
Global projections of heat stress at high temporal resolution using machine learning
Pantelis Georgiades, Theo Economou, Yiannis Proestos, Jose Araya, Jos Lelieveld, and Marco Neira
Earth Syst. Sci. Data, 17, 1153–1171, https://doi.org/10.5194/essd-17-1153-2025,https://doi.org/10.5194/essd-17-1153-2025, 2025
Short summary
A new high-resolution multi-drought-index dataset for mainland China
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025,https://doi.org/10.5194/essd-17-837-2025, 2025
Short summary
Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data, 16, 5753–5766, https://doi.org/10.5194/essd-16-5753-2024,https://doi.org/10.5194/essd-16-5753-2024, 2024
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in Southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia Raquel Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-522,https://doi.org/10.5194/essd-2024-522, 2024
Revised manuscript accepted for ESSD
Short summary
The PAZ polarimetric radio occultation research dataset for scientific applications
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024,https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary

Cited articles

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and Kurths, J.: Complex networks reveal global pattern of extreme-rainfall teleconnections, Nature, 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019. 
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of continental precipitation recycling, J. Climate, 6, 1077–1089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2, 1993. 
Burde, G. I., Gandush, C., and Bayarjargal, Y.: Bulk recycling models with incomplete vertical mixing. Part II: Precipitation recycling in the Amazon basin, J. Climate, 19, 1473–1489, https://doi.org/10.1175/JCLI3688.1, 2006. 
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 2 December 2020. 
Costa, M. H. and Foley, J. A.: Trends in the hydrologic cycle of the Amazon basin, J. Geophys. Res.-Atmos., 104, 14189–14198, https://doi.org/10.1029/1998JD200126, 1999. 
Download
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
Share
Altmetrics
Final-revised paper
Preprint