Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3177-2020
https://doi.org/10.5194/essd-12-3177-2020
Data description paper
 | 
04 Dec 2020
Data description paper |  | 04 Dec 2020

High-resolution global atmospheric moisture connections from evaporation to precipitation

Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal

Related authors

Local moisture recycling across the globe
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023,https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020,https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Tracking the global flows of atmospheric moisture and associated uncertainties
Obbe A. Tuinenburg and Arie Staal
Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020,https://doi.org/10.5194/hess-24-2419-2020, 2020
Short summary
The residence time of water in the atmosphere revisited
Ruud J. van der Ent and Obbe A. Tuinenburg
Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017,https://doi.org/10.5194/hess-21-779-2017, 2017
Short summary
Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013,https://doi.org/10.5194/hess-17-4869-2013, 2013

Related subject area

Meteorology
Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data, 16, 5753–5766, https://doi.org/10.5194/essd-16-5753-2024,https://doi.org/10.5194/essd-16-5753-2024, 2024
Short summary
The PAZ polarimetric radio occultation research dataset for scientific applications
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024,https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Water vapor Raman lidar observations from multiple sites in the framework of WaLiNeAs
Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant
Earth Syst. Sci. Data, 16, 5579–5602, https://doi.org/10.5194/essd-16-5579-2024,https://doi.org/10.5194/essd-16-5579-2024, 2024
Short summary
SARAH-3 – satellite-based climate data records of surface solar radiation
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024,https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024,https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary

Cited articles

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and Kurths, J.: Complex networks reveal global pattern of extreme-rainfall teleconnections, Nature, 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019. 
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of continental precipitation recycling, J. Climate, 6, 1077–1089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2, 1993. 
Burde, G. I., Gandush, C., and Bayarjargal, Y.: Bulk recycling models with incomplete vertical mixing. Part II: Precipitation recycling in the Amazon basin, J. Climate, 19, 1473–1489, https://doi.org/10.1175/JCLI3688.1, 2006. 
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 2 December 2020. 
Costa, M. H. and Foley, J. A.: Trends in the hydrologic cycle of the Amazon basin, J. Geophys. Res.-Atmos., 104, 14189–14198, https://doi.org/10.1029/1998JD200126, 1999. 
Download
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
Share
Altmetrics
Final-revised paper
Preprint