Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-1973-2020
https://doi.org/10.5194/essd-12-1973-2020
Data description paper
 | 
03 Sep 2020
Data description paper |  | 03 Sep 2020

A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015

Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez

Related authors

Universal differential equations for glacier ice flow modelling
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023,https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Deep learning applied to glacier evolution modelling
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020,https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary

Related subject area

Glaciology
Annual mass change of the world's glaciers from 1976 to 2024 by temporal downscaling of satellite data with in situ observations
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025,https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary
Glacier-level and gridded mass change in river sources in the eastern Tibetan Plateau region (ETPR) from the 1970s to 2000
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data, 17, 1851–1871, https://doi.org/10.5194/essd-17-1851-2025,https://doi.org/10.5194/essd-17-1851-2025, 2025
Short summary
glenglat: a database of global englacial temperatures
Mylène Jacquemart, Ethan Welty, Marcus Gastaldello, and Guillem Carcanade
Earth Syst. Sci. Data, 17, 1627–1666, https://doi.org/10.5194/essd-17-1627-2025,https://doi.org/10.5194/essd-17-1627-2025, 2025
Short summary
A revised and expanded deep radiostratigraphy of the Greenland Ice Sheet from airborne radar sounding surveys between 1993–2019
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-578,https://doi.org/10.5194/essd-2024-578, 2025
Revised manuscript accepted for ESSD
Short summary
DebDab: A database of supraglacial debris thickness and physical properties
Adrià Fontrodona-Bach, Lars Groeneveld, Evan Miles, Michael McCarthy, Thomas Shaw, Vicente Melo Velasco, and Francesca Pellicciotti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-559,https://doi.org/10.5194/essd-2024-559, 2025
Preprint under review for ESSD
Short summary

Cited articles

Benn, D. I. and Evans, D. J. A.: Glaciers and glaciation, Routledge, New York, NY, USA, 2nd Edn., available at: http://www.imperial.eblib.com/EBLWeb/patron/?target=patron&extendedid=P_615876_0 (last access: 27 August 2020), oCLC: 878863282, 2014. a
Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, À. Þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, 2014. a
Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Front. Earth Sci., 4, 63, https://doi.org/10.3389/feart.2016.00063, 2016. a
Bolibar, J.: ALPGM (ALpine Parameterized Glacier Model) v1.1, Zenodo, https://doi.org/10.5281/zenodo.3609136, 2020. a, b, c
Bolibar, J., Rabatel, A., Gouttevin, I., and Galiez, C.: A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015, Zenodo, https://doi.org/10.5281/zenodo.3922935, 2020a. a, b, c, d
Download
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Share
Altmetrics
Final-revised paper
Preprint