Articles | Volume 12, issue 3
Earth Syst. Sci. Data, 12, 1973–1983, 2020
Earth Syst. Sci. Data, 12, 1973–1983, 2020
Data description paper
03 Sep 2020
Data description paper | 03 Sep 2020

A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015

Jordi Bolibar et al.

Related authors

Deep learning applied to glacier evolution modelling
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584,,, 2020
Short summary

Related subject area

Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137,,, 2022
Short summary
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313,,, 2022
Short summary
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185,,, 2022
Short summary
A new global dataset of mountain glacier centerlines and lengths
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913,,, 2022
Short summary
Elevation change of the Antarctic Ice Sheet: 1985 to 2020
Johan Nilsson, Alex S. Gardner, and Fernando S. Paolo
Earth Syst. Sci. Data, 14, 3573–3598,,, 2022
Short summary

Cited articles

Benn, D. I. and Evans, D. J. A.: Glaciers and glaciation, Routledge, New York, NY, USA, 2nd Edn., available at: (last access: 27 August 2020), oCLC: 878863282, 2014. a
Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, À. Þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291,, 2014. a
Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Front. Earth Sci., 4, 63,, 2016. a
Bolibar, J.: ALPGM (ALpine Parameterized Glacier Model) v1.1, Zenodo,, 2020. a, b, c
Bolibar, J., Rabatel, A., Gouttevin, I., and Galiez, C.: A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015, Zenodo,, 2020a. a, b, c, d
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.