Articles | Volume 8, issue 1
https://doi.org/10.5194/essd-8-235-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/essd-8-235-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A compilation of global bio-optical in situ data for ocean-colour satellite applications
André Valente
CORRESPONDING AUTHOR
Marine and Environmental Sciences Centre (MARE), University of Lisbon, Lisbon, Portugal
Shubha Sathyendranath
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Vanda Brotas
Marine and Environmental Sciences Centre (MARE), University of Lisbon, Lisbon, Portugal
Steve Groom
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Michael Grant
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Malcolm Taberner
EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt, Germany
David Antoine
Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, 06238, France
Remote Sensing and Satellite Research Group, Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, Perth, WA 6845, Australia
Robert Arnone
University of Southern Mississippi, Stennis Space Center, Kiln, MS, USA
William M. Balch
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
Kathryn Barker
ARGANS Ltd, Plymouth, UK
Ray Barlow
Bayworld Centre for Research and Education, Cape Town, South Africa
Simon Bélanger
Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski (Québec), Canada
Jean-François Berthon
European Commission, Joint Research Centre, Ispra, Italy
Şükrü Beşiktepe
Institute of Marine Science and Technology, Dokuz Eylul University, Izmir, Turkey
Vittorio Brando
CSIRO Oceans and Atmosphere, Canberra, Australia
CNR IREA, Milan, Italy
Elisabetta Canuti
European Commission, Joint Research Centre, Ispra, Italy
Francisco Chavez
Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
Hervé Claustre
Laboratoire d'Océanographie de Villefranche (LOV), Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Richard Crout
Naval Research Laboratory, Stennis Space Center, Kiln, MS, USA
Robert Frouin
Scripps Institution of Oceanography, University of California, San Diego, CA, USA
Carlos García-Soto
Spanish Institute of Oceanography (IEO), Corazón de María 8, 28002 Madrid, Spain
Plentziako Itsas Estazioa/Euskal Herriko Unibetsitatea (PIE/EHU), Areatza z/g, 48620 Plentzia, Spain
Stuart W. Gibb
Environmental Research Institute, North Highland College, University of the Highlands and Islands, Thurso, Scotland, UK
Richard Gould
Naval Research Laboratory, Stennis Space Center, Kiln, MS, USA
Stanford Hooker
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Mati Kahru
Scripps Institution of Oceanography, University of California, San Diego, CA, USA
Holger Klein
Operational Oceanography Group, Federal Maritime and Hydrographic Agency, Hamburg, Germany
Susanne Kratzer
Department of Ecology, Environment and Plant Sciences, Frescati Backe, Stockholm University, 106 91 Stockholm, Sweden
Hubert Loisel
Laboratoire d'Océanologie et de Géosciences, Université du Littoral – Côte d'Opale, Maison de la Recherche en Environnement Naturel, Wimereux, France
David McKee
Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland, UK
Brian G. Mitchell
Scripps Institution of Oceanography, University of California, San Diego, CA, USA
Tiffany Moisan
NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA, USA
Frank Muller-Karger
Institute for Marine Remote Sensing/ImaRS, College of Marine Science, University of South Florida, St. Petersburg, FL, USA
Leonie O'Dowd
Fisheries and Ecosystem Advisory Services, Marine Institute, Rinville, Oranmore, Galway, Ireland
Michael Ondrusek
NOAA/NESDIS/STAR/SOCD, College Park, MD, USA
Alex J. Poulton
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre, Waterfront Campus, Southampton, UK
Michel Repecaud
IFREMER Centre de Brest, Plouzane, France
Timothy Smyth
Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK
Heidi M. Sosik
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Michael Twardowski
Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
Kenneth Voss
Physics Department, University of Miami, Coral Gables, FL, USA
Jeremy Werdell
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Marcel Wernand
Physical Oceanography, Marine Optics & Remote Sensing, Royal Netherlands Institute for Sea Research, Texel, Netherlands
Giuseppe Zibordi
European Commission, Joint Research Centre, Ispra, Italy
Related authors
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jaime Pitarch and Vittorio Ernesto Brando
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-295, https://doi.org/10.5194/essd-2024-295, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This research presents a comprehensive synthetic dataset in the optical domain, created thanks to a large mining of available bio-optical data. Utilizing the Hydrolight radiative transfer model, the dataset provides detailed light fields from ultraviolet to visible light, aiding in the development of satellite algorithms. The dataset will significantly enhance research on light behavior in water and supporting future hyperspectral missions. It has been made publicly available on Zenodo.
Alain Fumenia, Hubert Loisel, Rick Allen Reynolds, and Dariusz Stramski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2218, https://doi.org/10.5194/egusphere-2024-2218, 2024
Short summary
Short summary
Particulate organic nitrogen (PON) in the ocean refers to nitrogen contained in particles suspended such as phytoplankton, zooplankton, bacteria, viruses, and organic detritus. We used field measurements to determine relationships between PON and inherent optical properties of seawater across a broad range of marine environments. The presented relationships are expected to have application in the assessment of PON distribution and variations from in situ and satellite optical observations
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
EGUsphere, https://doi.org/10.5194/egusphere-2024-990, https://doi.org/10.5194/egusphere-2024-990, 2024
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change the Southern Ocean will be warmer, more acidic, more productive and have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters, we propose ways of reducing this uncertainty.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Hongyan Xi, Marine Bretagnon, Svetlana N. Losa, Vanda Brotas, Mara Gomes, Ilka Peeken, Leonardo M. A. Alvarado, Antoine Mangin, and Astrid Bracher
State Planet, 1-osr7, 5, https://doi.org/10.5194/sp-1-osr7-5-2023, https://doi.org/10.5194/sp-1-osr7-5-2023, 2023
Short summary
Short summary
Continuous monitoring of phytoplankton groups using satellite data is crucial for understanding global ocean phytoplankton variability on different scales in both space and time. This study focuses on four important phytoplankton groups in the Atlantic Ocean to investigate their trend, anomaly and phenological characteristics both over the whole region and at subscales. This study paves the way to promote potentially important ocean monitoring indicators to help sustain the ocean health.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022, https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide minus that lost through respiration. This time series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Michael P. Hemming, Jan Kaiser, Jacqueline Boutin, Liliane Merlivat, Karen J. Heywood, Dorothee C. E. Bakker, Gareth A. Lee, Marcos Cobas García, David Antoine, and Kiminori Shitashima
Ocean Sci., 18, 1245–1262, https://doi.org/10.5194/os-18-1245-2022, https://doi.org/10.5194/os-18-1245-2022, 2022
Short summary
Short summary
An underwater glider mission was carried out in spring 2016 near a mooring in the northwestern Mediterranean Sea. The glider deployment served as a test of a prototype ion-sensitive field-effect transistor pH sensor. Mean net community production rates were estimated from glider and buoy measurements of dissolved oxygen and inorganic carbon concentrations before and during the spring bloom. Incorporating advection is important for accurate mass budgets. Unexpected metabolic quotients were found.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Müjdat Aydın and Şükrü Turan Beşiktepe
Ocean Sci., 18, 1081–1091, https://doi.org/10.5194/os-18-1081-2022, https://doi.org/10.5194/os-18-1081-2022, 2022
Short summary
Short summary
This study provides observational evidence and dynamical reasoning for the sub-inertial waves in the Black Sea using a series of sea level data and Black Sea reanalysis products from the Copernicus Marine Environment Monitoring Service. These waves were generated by strong alongshore winds during autumn–winter and caused 10–20 cm of variability in sea level. They accelerated the coastal current and quickly transferred waters from west to east.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
Paula Maria Salgado-Hernanz, Aurore Regaudie-de-Gioux, David Antoine, and Gotzon Basterretxea
Biogeosciences, 19, 47–69, https://doi.org/10.5194/bg-19-47-2022, https://doi.org/10.5194/bg-19-47-2022, 2022
Short summary
Short summary
For the first time, this study presents the characteristics of primary production in coastal regions of the Mediterranean Sea based on satellite-borne observations for the period 2002–2016. The study concludes that there are significant spatial and temporal variations among different regions. Quantifying primary production is of special importance in the marine food web and in the sequestration of carbon dioxide from the atmosphere to the deep waters.
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Short summary
Multi-angle polarimetric measurements can retrieve accurate aerosol properties over complex atmosphere and ocean systems; however, most retrieval algorithms require high computational costs. We propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems and then conduct simultaneous aerosol and ocean color retrievals on AirHARP measurements. The computational acceleration is 103 times with CPU or 104 times with GPU.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Joost de Vries, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee
Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, https://doi.org/10.5194/bg-18-1161-2021, 2021
Short summary
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
R. Sauzède, J. E. Johnson, H. Claustre, G. Camps-Valls, and A. B. Ruescas
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 949–956, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-949-2020, 2020
Jean-Pierre Gattuso, Bernard Gentili, David Antoine, and David Doxaran
Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, https://doi.org/10.5194/essd-12-1697-2020, 2020
Short summary
Short summary
Light is a key ocean variable shaping the composition of benthic and pelagic communities by controlling the three-dimensional distribution of primary producers. It also plays a major role in the global carbon cycle. We provide a continuous monthly data set of the global distribution of light reaching the seabed. It is 4 times longer (21 vs 5 years) than the previous data set, the spatial resolution is better (4.6 vs 9.3 km), and the bathymetric resolution is also better (0.46 vs 3.7 km).
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Kirk Knobelspiesse, Amir Ibrahim, Brian Cairns, Susanne E. Craig, Guangliang Fu, Otto Hasekamp, Yongxiang Hu, and P. Jeremy Werdell
Atmos. Meas. Tech., 13, 3939–3956, https://doi.org/10.5194/amt-13-3939-2020, https://doi.org/10.5194/amt-13-3939-2020, 2020
Hannah K. Donald, Gavin L. Foster, Nico Fröhberg, George E. A. Swann, Alex J. Poulton, C. Mark Moore, and Matthew P. Humphreys
Biogeosciences, 17, 2825–2837, https://doi.org/10.5194/bg-17-2825-2020, https://doi.org/10.5194/bg-17-2825-2020, 2020
Short summary
Short summary
The boron isotope pH proxy is increasingly being used to reconstruct ocean pH in the past. Here we detail a novel analytical methodology for measuring the boron isotopic composition (δ11B) of diatom opal and apply this to the study of the diatom Thalassiosira weissflogii grown in culture over a range of pH. To our knowledge this is the first study of its kind and provides unique insights into the way in which diatoms incorporate boron and their potential as archives of palaeoclimate records.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Yongxiang Hu, Kirk Knobelspiesse, P. Jeremy Werdell, Amir Ibrahim, Brian Cairns, and Alison Chase
Atmos. Meas. Tech., 12, 3921–3941, https://doi.org/10.5194/amt-12-3921-2019, https://doi.org/10.5194/amt-12-3921-2019, 2019
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Huw W. Lewis, John Siddorn, Juan Manuel Castillo Sanchez, Jon Petch, John M. Edwards, and Tim Smyth
Ocean Sci., 15, 761–778, https://doi.org/10.5194/os-15-761-2019, https://doi.org/10.5194/os-15-761-2019, 2019
Short summary
Short summary
Oceans are modified at the surface by winds and by the exchange of heat with the atmosphere. The effect of changing atmospheric information that is available to drive an ocean model of north-west Europe, which can simulate small-scale details of the ocean state, is tested. We show that simulated temperatures agree better with observations located near the coast around the south-west UK when using data from a high-resolution atmospheric model, and when atmosphere and ocean feedbacks are included.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Katja Fennel, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, Richard A. Feely, Jose Martin Hernandez-Ayon, Xinping Hu, Steven Lohrenz, Frank Muller-Karger, Raymond Najjar, Lisa Robbins, Elizabeth Shadwick, Samantha Siedlecki, Nadja Steiner, Adrienne Sutton, Daniela Turk, Penny Vlahos, and Zhaohui Aleck Wang
Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, https://doi.org/10.5194/bg-16-1281-2019, 2019
Short summary
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237, https://doi.org/10.5194/tc-2018-237, 2018
Revised manuscript not accepted
Short summary
Short summary
We studied long-term satellite data of the Barents and Kara Seas (BKS) of atmospheric CH4 and sea surface temperature (SST). Enhanced CH4 was found near Novaya Zemlya and Franz Josef Land, sources not in current budgets and areas of shoaling–where currents drive CH4–rich seabed water upslope to escape to the atmosphere, far from the source. Trends suggest increasing current heat transport warms the seabed, driving CH4 seepage from submerged hydrates and permafrost.
Benjamin Roger Loveday and Timothy Smyth
Earth Syst. Sci. Data, 10, 2043–2054, https://doi.org/10.5194/essd-10-2043-2018, https://doi.org/10.5194/essd-10-2043-2018, 2018
Short summary
Short summary
A 40-year data set of ocean reflectance is derived from an atmospherically corrected climate quality record of top-of-atmosphere signals taken from the satellite-based AVHRR sensor. The data set provides a unique view of visible changes in the global ocean over timescales where climatic effects are demonstrable and spans coverage gaps left by more traditional satellite ocean colour sensors. It is particularly relevant to monitoring bright plankton blooms, such as coccolithophores.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Liliane Merlivat, Jacqueline Boutin, David Antoine, Laurence Beaumont, Melek Golbol, and Vincenzo Vellucci
Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, https://doi.org/10.5194/bg-15-5653-2018, 2018
Short summary
Short summary
The fugacity of carbon dioxide in seawater (fCO2) was measured hourly in the surface waters of the NW Mediterranean Sea during two 3-year sequences separated by 18 years. A decrease of pH of 0.0022 yr−1 was computed. About 85 % of the accumulation of dissolved inorganic carbon (DIC) comes from chemical equilibration with increasing atmospheric CO2; the remaining 15 % accumulation is consistent with estimates of transfer of Atlantic waters through the Gibraltar Strait.
Karine Leblanc, Véronique Cornet, Peggy Rimmelin-Maury, Olivier Grosso, Sandra Hélias-Nunige, Camille Brunet, Hervé Claustre, Joséphine Ras, Nathalie Leblond, and Bernard Quéguiner
Biogeosciences, 15, 5595–5620, https://doi.org/10.5194/bg-15-5595-2018, https://doi.org/10.5194/bg-15-5595-2018, 2018
Short summary
Short summary
The Si biogeochemical cycle was studied during two oceanographic cruises in the tropical South Pacific in 2005 and 2015, between New Caledonia and the Chilean upwelling (8–34° S). Some of the lowest levels of biogenic silica stocks were found in the southern Pacific gyre, where Chlorophyll a concentrations are most depleted worldwide. Size-fractionated biogenic silica concentrations as well as Si kinetic uptake experiments revealed biological Si uptake by the picoplanktonic size fraction.
Cécile Dupouy, Robert Frouin, Marc Tedetti, Morgane Maillard, Martine Rodier, Fabien Lombard, Lionel Guidi, Marc Picheral, Jacques Neveux, Solange Duhamel, Bruno Charrière, and Richard Sempéré
Biogeosciences, 15, 5249–5269, https://doi.org/10.5194/bg-15-5249-2018, https://doi.org/10.5194/bg-15-5249-2018, 2018
Short summary
Short summary
The marine diazotrophic Cyanobacterium Trichodesmium from the Underwater Vision Profiler 5 is concentrated in the first 50 m in the western tropical Pacific Ocean (18–22° S, 160° E–160° W). Its contribution to Tchl a and zeaxanthin is 60 % in the Melanesian archipelago and 30 % in the Fijian archipelago. Its impact on UV–VIS radiance is a peculiar signal in the green and yellow and possibly associated with backscattering or phycoerythrin fluorescence from Trichodesmium.
Guillaume Rousset, Florian De Boissieu, Christophe E. Menkes, Jérôme Lefèvre, Robert Frouin, Martine Rodier, Vincent Ridoux, Sophie Laran, Sophie Bonnet, and Cécile Dupouy
Biogeosciences, 15, 5203–5219, https://doi.org/10.5194/bg-15-5203-2018, https://doi.org/10.5194/bg-15-5203-2018, 2018
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018, https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Short summary
Seasonal patterns in nanophytoplankton and diatom biomass in the Gulf of Mexico were examined with an ocean–biogeochemical model. We found silica limitation of model diatom growth in the deep GoM and Mississippi delta. Zooplankton grazing and both transport and vertical mixing of biomass substantially influence the model phytoplankton biomass seasonality. We stress the need for integrated analyses of biologically and physically driven biomass fluxes to describe phytoplankton seasonal changes.
Ira Leifer, F. Robert Chen, Thomas McClimans, Frank Muller Karger, and Leonid Yurganov
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-75, https://doi.org/10.5194/tc-2018-75, 2018
Revised manuscript has not been submitted
Short summary
Short summary
Based on long-term satellite data of sea surface temperature and methane in the Barents and Kara Seas trends of increasing methane and sea surface temperature were found that were related to strengthening currents with strong methane anomalies near Franz Josef Land and Novaya Zemlya. Likely sources are methane seepage from subsea permafrost and hydrates, with current shoaling aiding the transport of near seabed dissolved methane to upper waters and the atmosphere.
Raphaëlle Sauzède, Elodie Martinez, Orens Pasqueron de Fommervault, Antoine Poteau, Alexandre Mignot, Christophe Maes, Hervé Claustre, Julia Uitz, Keitapu Maamaatuaiahutapu, Martine Rodier, Catherine Schmechtig, and Victoire Laurent
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-541, https://doi.org/10.5194/bg-2017-541, 2018
Revised manuscript not accepted
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Helen E. K. Smith, Alex J. Poulton, Rebecca Garley, Jason Hopkins, Laura C. Lubelczyk, Dave T. Drapeau, Sara Rauschenberg, Ben S. Twining, Nicholas R. Bates, and William M. Balch
Biogeosciences, 14, 4905–4925, https://doi.org/10.5194/bg-14-4905-2017, https://doi.org/10.5194/bg-14-4905-2017, 2017
Short summary
Short summary
The Great Calcite Belt (GCB), a region of high calcite concentration from coccolithophores, covers 60 % of the Southern Ocean area. We examined the influence of temperature, macronutrients, and carbonate chemistry on the distribution of mineralizing phytoplankton in the GCB. Coccolithophores occupy a niche in the Southern Ocean after the diatom spring bloom depletes silicic acid. No single environmental variable holds a dominant influence over phytoplankton biogeography in summer GCB conditions.
Sandro Carniel, Judith Wolf, Vittorio E. Brando, and Lakshmi H. Kantha
Ocean Sci., 13, 495–501, https://doi.org/10.5194/os-13-495-2017, https://doi.org/10.5194/os-13-495-2017, 2017
John Wood, Tim J. Smyth, and Victor Estellés
Atmos. Meas. Tech., 10, 1723–1737, https://doi.org/10.5194/amt-10-1723-2017, https://doi.org/10.5194/amt-10-1723-2017, 2017
Short summary
Short summary
We have developed an instrument which can be deployed on ships in the remote oceans to measure optical properties of the atmosphere. These optical properties are key to understanding how light and heat are transmitted, absorbed and reflected within the atmosphere. This has consequences for how the wider climate system works. The oceans, covering 70 % of the planet, are chronically under-sampled for such optical properties. Such instruments, when widely deployed, should help rectify this problem.
Rosie M. Sheward, Alex J. Poulton, Samantha J. Gibbs, Chris J. Daniels, and Paul R. Bown
Biogeosciences, 14, 1493–1509, https://doi.org/10.5194/bg-14-1493-2017, https://doi.org/10.5194/bg-14-1493-2017, 2017
Short summary
Short summary
Our culture experiments on modern Coccolithophores find that physiology regulates shifts in the geometry of their carbonate shells (coccospheres) between growth phases. This provides a tool to access growth information in modern and past populations. Directly comparing modern species with fossil coccospheres derives a new proxy for investigating the physiology that underpins phytoplankton responses to environmental change through geological time.
Glaucia M. Fragoso, Alex J. Poulton, Igor M. Yashayaev, Erica J. H. Head, and Duncan A. Purdie
Biogeosciences, 14, 1235–1259, https://doi.org/10.5194/bg-14-1235-2017, https://doi.org/10.5194/bg-14-1235-2017, 2017
Short summary
Short summary
This research describes a detailed analysis of current distributions of spring phytoplankton communities in the Labrador Sea based on 10 years of observations. Phytoplankton community composition varied mainly according to the contrasting hydrographical zones of the Labrador Sea. The taxonomic distinctions of these communities influenced the photosynthetic and biochemical signatures of near-surface waters, which may have a profound impact on the carbon cycle in high-latitude seas.
Anastasia Charalampopoulou, Alex J. Poulton, Dorothee C. E. Bakker, Mike I. Lucas, Mark C. Stinchcombe, and Toby Tyrrell
Biogeosciences, 13, 5917–5935, https://doi.org/10.5194/bg-13-5917-2016, https://doi.org/10.5194/bg-13-5917-2016, 2016
Short summary
Short summary
Coccolithophores are global calcifiers, potentially impacted by ocean acidity. Data from the Southern Ocean is scarce, though latitudinal gradients of acidity exist. We made measurements of calcification, species composition and physiochemical environment between America and the Antarctic Peninsula. Calcification and cell calcite declined to the south, though rates of coccolith production did not. Declining temperature and irradiance were more important in driving latitudinal changes than pH.
Xiaobo Jin, Chuanlian Liu, Alex J. Poulton, Minhan Dai, and Xianghui Guo
Biogeosciences, 13, 4843–4861, https://doi.org/10.5194/bg-13-4843-2016, https://doi.org/10.5194/bg-13-4843-2016, 2016
Short summary
Short summary
The vertical structure of the coccolithophore community in the water column was controlled by trophic conditions, which were regulated by mesoscale eddies across the South China Sea basin. Three key species (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) contributed roughly half of the surface ocean coccolith-calcite concentrations. E. huxleyi coccolith length is influenced by light and nutrients through the regulation of growth rates.
Mingxi Yang, Thomas G. Bell, Frances E. Hopkins, Vassilis Kitidis, Pierre W. Cazenave, Philip D. Nightingale, Margaret J. Yelland, Robin W. Pascal, John Prytherch, Ian M. Brooks, and Timothy J. Smyth
Atmos. Chem. Phys., 16, 5745–5761, https://doi.org/10.5194/acp-16-5745-2016, https://doi.org/10.5194/acp-16-5745-2016, 2016
Short summary
Short summary
Coastal seas are sources of methane in the atmosphere and can fluctuate from emitting to absorbing carbon dioxide. Direct air–sea transport measurements of these two greenhouse gases in near shore regions remain scarce. From a recently established coastal atmospheric station on the south-west coast of the UK, we observed that the oceanic absorption of carbon dioxide peaked during the phytoplankton bloom, while methane emission varied with the tidal cycle, likely due to an estuary influence.
Mingxi Yang, Thomas G. Bell, Frances E. Hopkins, and Timothy J. Smyth
Atmos. Chem. Phys., 16, 4771–4783, https://doi.org/10.5194/acp-16-4771-2016, https://doi.org/10.5194/acp-16-4771-2016, 2016
Short summary
Short summary
Exhausts from ships are an important source of air pollution in coastal regions. We observed a ~ 3 fold reduction in the level of sulfur dioxide (a principle pollutant) from the English Channel from 2014 to 2015 after the new International Maritime Organisation regulation on ship sulfur emission became law. Our estimated ship's fuel sulfur content shows a high degree of compliance. Dimethylsulfide from the marine biota becomes a relatively more important source of sulfur in coastal marine air.
Nicolas Mayot, Fabrizio D'Ortenzio, Maurizio Ribera d'Alcalà, Héloïse Lavigne, and Hervé Claustre
Biogeosciences, 13, 1901–1917, https://doi.org/10.5194/bg-13-1901-2016, https://doi.org/10.5194/bg-13-1901-2016, 2016
Short summary
Short summary
The present manuscript provides an analysis of the interannual variability of the phytoplankton seasonality in the Mediterranean Sea, based on 16 years of ocean color data. Important interannual variabilities at regional scale were highlighted and related to environmental factors. Our results demonstrate also that seasonal patterns retrieved from satellite allow to identify the evolution of an oceanic area and to summarize the huge quantity of information that the satellite data offer.
Mati Kahru, Ragnar Elmgren, and Oleg P. Savchuk
Biogeosciences, 13, 1009–1018, https://doi.org/10.5194/bg-13-1009-2016, https://doi.org/10.5194/bg-13-1009-2016, 2016
Short summary
Short summary
Using satellite-derived data sets we have found drastic changes in the timing of the annual cycle in physical and ecological variables of the Baltic Sea over the last 30 years. The summer season starts earlier and extends longer. The period with sea-surface temperature of at least 17 ˚C has doubled; the period with high water turbidity has quadrupled. While both the phytoplankton spring and summer blooms have become earlier, the annual maximum has switched to the summer cyanobacteria bloom.
D. Kyryliuk and S. Kratzer
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-2, https://doi.org/10.5194/os-2016-2, 2016
Revised manuscript not accepted
V. E. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. M. Falcieri, A. Coluccelli, A. Russo, and S. Carniel
Ocean Sci., 11, 909–920, https://doi.org/10.5194/os-11-909-2015, https://doi.org/10.5194/os-11-909-2015, 2015
Short summary
Short summary
Sea surface temperature and turbidity, derived from satellite imagery, were used to characterize river plumes in the northern Adriatic Sea during a significant flood event in November 2014. Circulation patterns and sea surface salinity, from an operational coupled ocean-wave model, supported the interpretation of the plumes' interaction with the receiving waters and among them.
B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann
Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, https://doi.org/10.5194/essd-7-319-2015, 2015
Short summary
Short summary
The CoastColour Round Robin (CCRR) project (European Space Agency) was designed to set up the first database for remote-sensing algorithm testing and accuracy assessment of water quality parameter retrieval in coastal waters, from satellite imagery. This paper analyses the CCRR database, which includes in situ bio-geochemical and optical measurements in various water types, match-up reflectance products from the MEdium Resolution Imaging Spectrometer (MERIS), and radiative transfer simulations.
P. R. Renosh, F. G. Schmitt, and H. Loisel
Nonlin. Processes Geophys., 22, 633–643, https://doi.org/10.5194/npg-22-633-2015, https://doi.org/10.5194/npg-22-633-2015, 2015
Short summary
Short summary
Intermittent dynamics of particle size distribution in coastal waters is studied. Particle sizes are separated into four size classes: silt, fine, coarse and macro particles. The time series of each size class is derived, and their multiscaling properties studied. Similar analysis has been done for suspended particulate matter and total volume concentration. All quantities display a nonlinear moment function and a negative Hurst scaling exponent.
R. Sauzède, H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D'Ortenzio, C. Guinet, and S. Pesant
Earth Syst. Sci. Data, 7, 261–273, https://doi.org/10.5194/essd-7-261-2015, https://doi.org/10.5194/essd-7-261-2015, 2015
H. Lavigne, F. D'Ortenzio, M. Ribera D'Alcalà, H. Claustre, R. Sauzède, and M. Gacic
Biogeosciences, 12, 5021–5039, https://doi.org/10.5194/bg-12-5021-2015, https://doi.org/10.5194/bg-12-5021-2015, 2015
Short summary
Short summary
The spatiotemporal variability in the vertical distribution of the chlorophyll concentration in the Mediterranean Sea is investigated. Results are based on a large database of fluorescence profiles intercalibrated from ocean color satellite data. They indicate that two types of chlorophyll seasonality coexist in the Mediterranean Sea. The shape of the chlorophyll profile is very dynamic during winter, and the deep chlorophyll maximum is a dominant feature of Mediterranean chlorophyll profile.
S. Z. Rosengard, P. J. Lam, W. M. Balch, M. E. Auro, S. Pike, D. Drapeau, and B. Bowler
Biogeosciences, 12, 3953–3971, https://doi.org/10.5194/bg-12-3953-2015, https://doi.org/10.5194/bg-12-3953-2015, 2015
Short summary
Short summary
The transfer of particulate organic carbon (POC) into the deep ocean is an important atmospheric carbon dioxide sink. Observations from the Southern Ocean Great Calcite Belt region show that the relationship between POC and biogenic mineral fluxes varies with depth, between the surface and 1000m below. The results suggest that the transfer of POC into the deep ocean is more closely related to phytoplankton community structure than to mineral composition alone.
C. J. Daniels, A. J. Poulton, M. Esposito, M. L. Paulsen, R. Bellerby, M. St John, and A. P. Martin
Biogeosciences, 12, 2395–2409, https://doi.org/10.5194/bg-12-2395-2015, https://doi.org/10.5194/bg-12-2395-2015, 2015
G. Zibordi, F. Mélin, J.-F. Berthon, and M. Talone
Ocean Sci., 11, 275–286, https://doi.org/10.5194/os-11-275-2015, https://doi.org/10.5194/os-11-275-2015, 2015
Short summary
Short summary
The accuracy of primary satellite ocean color data products from MODIS on-board Aqua and the VIIRS is investigated using in situ measurements from the ocean color component of the Aerosol Robotic Network (AERONET-OC). Results from the comparison of normalized water-leaving radiance LWN indicate biases of a few percent between satellite-derived and in situ data at the center wavelengths relevant for the determination of chlorophyll-a concentration.
P. Coupel, A. Matsuoka, D. Ruiz-Pino, M. Gosselin, D. Marie, J.-É. Tremblay, and M. Babin
Biogeosciences, 12, 991–1006, https://doi.org/10.5194/bg-12-991-2015, https://doi.org/10.5194/bg-12-991-2015, 2015
C. D. Nevison, M. Manizza, R. F. Keeling, M. Kahru, L. Bopp, J. Dunne, J. Tiputra, T. Ilyina, and B. G. Mitchell
Biogeosciences, 12, 193–208, https://doi.org/10.5194/bg-12-193-2015, https://doi.org/10.5194/bg-12-193-2015, 2015
Short summary
Short summary
The observed seasonal cycles in atmospheric potential oxygen (APO) at five surface monitoring sites are compared to those inferred from the air-sea O2 fluxes of six ocean biogeochemistry models. The simulated air-sea fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Net primary production (NPP), estimated from satellite ocean color data, is also compared to model output.
C. J. Daniels, R. M. Sheward, and A. J. Poulton
Biogeosciences, 11, 6915–6925, https://doi.org/10.5194/bg-11-6915-2014, https://doi.org/10.5194/bg-11-6915-2014, 2014
J. R. Young, A. J. Poulton, and T. Tyrrell
Biogeosciences, 11, 4771–4782, https://doi.org/10.5194/bg-11-4771-2014, https://doi.org/10.5194/bg-11-4771-2014, 2014
S. Richier, E. P. Achterberg, C. Dumousseaud, A. J. Poulton, D. J. Suggett, T. Tyrrell, M. V. Zubkov, and C. M. Moore
Biogeosciences, 11, 4733–4752, https://doi.org/10.5194/bg-11-4733-2014, https://doi.org/10.5194/bg-11-4733-2014, 2014
R. P. Aryal, K. J. Voss, P. A. Terman, W. C. Keene, J. L. Moody, E. J. Welton, and B. N. Holben
Atmos. Chem. Phys., 14, 7617–7629, https://doi.org/10.5194/acp-14-7617-2014, https://doi.org/10.5194/acp-14-7617-2014, 2014
A. J. Poulton, M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young
Biogeosciences, 11, 3919–3940, https://doi.org/10.5194/bg-11-3919-2014, https://doi.org/10.5194/bg-11-3919-2014, 2014
M. Kahru and R. Elmgren
Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, https://doi.org/10.5194/bg-11-3619-2014, 2014
M. Montes-Hugo, H. Bouakba, and R. Arnone
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-9299-2014, https://doi.org/10.5194/bgd-11-9299-2014, 2014
Revised manuscript not accepted
A. Matsuoka, M. Babin, D. Doxaran, S. B. Hooker, B. G. Mitchell, S. Bélanger, and A. Bricaud
Biogeosciences, 11, 3131–3147, https://doi.org/10.5194/bg-11-3131-2014, https://doi.org/10.5194/bg-11-3131-2014, 2014
J. M. Beltrán-Abaunza, S. Kratzer, and C. Brockmann
Ocean Sci., 10, 377–396, https://doi.org/10.5194/os-10-377-2014, https://doi.org/10.5194/os-10-377-2014, 2014
J. L. Moody, W. C. Keene, O. R. Cooper, K. J. Voss, R. Aryal, S. Eckhardt, B. Holben, J. R. Maben, M. A. Izaguirre, and J. N. Galloway
Atmos. Chem. Phys., 14, 691–717, https://doi.org/10.5194/acp-14-691-2014, https://doi.org/10.5194/acp-14-691-2014, 2014
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
D. Antoine, S. B. Hooker, S. Bélanger, A. Matsuoka, and M. Babin
Biogeosciences, 10, 4493–4509, https://doi.org/10.5194/bg-10-4493-2013, https://doi.org/10.5194/bg-10-4493-2013, 2013
M. Yang, R. Beale, T. Smyth, and B. Blomquist
Atmos. Chem. Phys., 13, 6165–6184, https://doi.org/10.5194/acp-13-6165-2013, https://doi.org/10.5194/acp-13-6165-2013, 2013
M. Ardyna, M. Babin, M. Gosselin, E. Devred, S. Bélanger, A. Matsuoka, and J.-É. Tremblay
Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, https://doi.org/10.5194/bg-10-4383-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
G. Song, H. Xie, S. Bélanger, E. Leymarie, and M. Babin
Biogeosciences, 10, 3731–3748, https://doi.org/10.5194/bg-10-3731-2013, https://doi.org/10.5194/bg-10-3731-2013, 2013
G. Zibordi, F. Mélin, J.-F. Berthon, and E. Canuti
Ocean Sci., 9, 521–533, https://doi.org/10.5194/os-9-521-2013, https://doi.org/10.5194/os-9-521-2013, 2013
M. R. Wernand, A. Hommersom, and H. J. van der Woerd
Ocean Sci., 9, 477–487, https://doi.org/10.5194/os-9-477-2013, https://doi.org/10.5194/os-9-477-2013, 2013
A. Forest, M. Babin, L. Stemmann, M. Picheral, M. Sampei, L. Fortier, Y. Gratton, S. Bélanger, E. Devred, J. Sahlin, D. Doxaran, F. Joux, E. Ortega-Retuerta, J. Martín, W. H. Jeffrey, B. Gasser, and J. Carlos Miquel
Biogeosciences, 10, 2833–2866, https://doi.org/10.5194/bg-10-2833-2013, https://doi.org/10.5194/bg-10-2833-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
C. Guinet, X. Xing, E. Walker, P. Monestiez, S. Marchand, B. Picard, T. Jaud, M. Authier, C. Cotté, A. C. Dragon, E. Diamond, D. Antoine, P. Lovell, S. Blain, F. D'Ortenzio, and H. Claustre
Earth Syst. Sci. Data, 5, 15–29, https://doi.org/10.5194/essd-5-15-2013, https://doi.org/10.5194/essd-5-15-2013, 2013
E. Montes, M. A. Altabet, F. E. Muller-Karger, M. I. Scranton, R. C. Thunell, C. Benitez-Nelson, L. Lorenzoni, and Y. M. Astor
Biogeosciences, 10, 267–279, https://doi.org/10.5194/bg-10-267-2013, https://doi.org/10.5194/bg-10-267-2013, 2013
Related subject area
Biological oceanography
Microbial plankton occurrence database in the North American Arctic region: synthesis of recent diversity of potentially toxic and/or harmful algae
A 45-year hydrological and planktonic time series in the South Bight of the North Sea
AIGD-PFT: the first AI-driven global daily gap-free 4 km phytoplankton functional type data product from 1998 to 2023
Bivalve monitoring over French coasts: multi-decadal records of carbon and nitrogen elemental and isotopic ratios (δ13C, δ15N and C:N) as ecological indicators of global change
A Comprehensive Global Mapping of Offshore Lighting
Early-life dispersal traits of coastal fishes: an extensive database combining observations and growth models
An update of data compilation on the biological response to ocean acidification and overview of the OA-ICC data portal
A hyperspectral and multi-angular synthetic dataset for algorithm development in waters of varying trophic levels and optical complexity
A compilation of surface inherent optical properties and phytoplankton pigment concentrations from the Atlantic Meridional Transect
First release of the Pelagic Size Structure database: global datasets of marine size spectra obtained from plankton imaging devices
Global biogeography of N2-fixing microbes: nifH amplicon database and analytics workflow
Metazoan zooplankton in the Bay of Biscay: a 16-year record of individual sizes and abundances obtained using the ZooScan and ZooCAM imaging systems
PANABIO: a point-referenced PAN-Arctic data collection of benthic BIOtas
The Western Channel Observatory: a century of physical, chemical and biological data compiled from pelagic and benthic habitats in the western English Channel
A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks
A new global oceanic multi-model net primary productivity data product
MAREL Carnot data and metadata from the Coriolis data center
Bio-optical properties of the cyanobacterium Nodularia spumigena
An atlas of seabed biodiversity for Aotearoa New Zealand
A synthetic optical database generated by radiative transfer simulations in support of studies in ocean optics and optical remote sensing of the global ocean
The Coastal Surveillance Through Observation of Ocean Color (COASTℓOOC) dataset
HIPPO environmental monitoring: impact of phytoplankton dynamics on water column chemistry and the sclerochronology of the king scallop (Pecten maximus) as a biogenic archive for past primary production reconstructions
AlgaeTraits: a trait database for (European) seaweeds
How to learn more about hydrological conditions and phytoplankton dynamics and diversity in the eastern English Channel and the Southern Bight of the North Sea: the Suivi Régional des Nutriments data set (1992–2021)
Deepwater red shrimp fishery in the eastern–central Mediterranean Sea: AIS-observed monthly fishing effort and frequency over 4 years
Global dataset on seagrass meadow structure, biomass and production
The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom
A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5
Application of a new net primary production methodology: a daily to annual-scale data set for the North Sea, derived from autonomous underwater gliders and satellite Earth observation
The COSMUS expedition: seafloor images and acoustic bathymetric data from the PS124 expedition to the southern Weddell Sea, Antarctica
Primary productivity measurements in the Ross Sea, Antarctica: a regional synthesis
Patos Lagoon estuary and adjacent marine coastal biodiversity long-term data
Weight-to-weight conversion factors for benthic macrofauna: recent measurements from the Baltic and the North seas
The Plankton Lifeform Extraction Tool: a digital tool to increase the discoverability and usability of plankton time-series data
Collection and analysis of a global marine phytoplankton primary-production dataset
The ADRIREEF database: a comprehensive collection of natural/artificial reefs and wrecks in the Adriatic Sea
Diets of the Barents Sea cod (Gadus morhua) from the 1930s to 2018
A global viral oceanography database (gVOD)
PhytoBase: A global synthesis of open-ocean phytoplankton occurrences
A long-term (1965–2015) ecological marine database from the LTER-Italy Northern Adriatic Sea site: plankton and oceanographic observations
An interactive atlas for marine biodiversity conservation in the Coral Triangle
A synthetic satellite dataset of the spatio-temporal distributions of Emiliania huxleyi blooms and their impacts on Arctic and sub-Arctic marine environments (1998–2016)
A 40-year global data set of visible-channel remote-sensing reflectances and coccolithophore bloom occurrence derived from the Advanced Very High Resolution Radiometer catalogue
Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set
Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications
KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016
A trait database for marine copepods
Global ocean particulate organic carbon flux merged with satellite parameters
Data compilation on the biological response to ocean acidification: an update
CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters
Nicolas Schiffrine, Fatma Dhifallah, Kaven Dionne, Michel Poulin, Sylvie Lessard, André Rochon, and Michel Gosselin
Earth Syst. Sci. Data, 16, 5681–5701, https://doi.org/10.5194/essd-16-5681-2024, https://doi.org/10.5194/essd-16-5681-2024, 2024
Short summary
Short summary
Growing concern arises in the Arctic Ocean as toxic and harmful phytoplankton emerge due to climate change. The potential surge in these occurrences threatens both human health and the Arctic ecosystem. Our ongoing research yields insights into spatial patterns and biodiversity, challenging the belief that the Arctic is unsuitable for toxic and harmful algal events. This work underscores the need to comprehend and address the ecological impact of these emerging species in the Arctic environment.
David Devreker, Guillaume Wacquet, and Alain Lefebvre
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-479, https://doi.org/10.5194/essd-2024-479, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This article presents a 45-year data series (1978–2023) acquired in the South Bight of the North Sea. It provides an overview of the main statistical characteristics of the time series (hydrological parameters and plankton species), including long-term trends and shifts analysis. The aim of this paper is to make this valuable dataset available to help decipher the local and global influence of anthropogenic activities in a world increasingly affected by climate change.
Yuan Zhang, Fang Shen, Renhu Li, Mengyu Li, Zhaoxin Li, Songyu Chen, and Xuerong Sun
Earth Syst. Sci. Data, 16, 4793–4816, https://doi.org/10.5194/essd-16-4793-2024, https://doi.org/10.5194/essd-16-4793-2024, 2024
Short summary
Short summary
This work describes AIGD-PFT, the first AI-driven global daily gap-free 4 km phytoplankton functional type (PFT) product from 1998 to 2023. AIGD-PFT enhances the accuracy and spatiotemporal coverage quantification of eight major PFTs (i.e. diatoms, dinoflagellates, haptophytes, pelagophytes, cryptophytes, green algae, prokaryotes, and Prochlorococcus).
Camilla Liénart, Alan Fournioux, Andrius Garbaras, Hugues Blanchet, Nicolas Briant, Stanislas F. Dubois, Aline Gangnery, Anne Grouhel Pellouin, Pauline Le Monier, Arnaud Lheureux, Xavier de Montaudouin, and Nicolas Savoye
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-364, https://doi.org/10.5194/essd-2024-364, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Bivalves such as mussels and oysters reflect the quality of the environment by filtering ambient water. We measured carbon and nitrogen chemical composition in bivalves tissues from 33 sites along French coastlines sampled since the 80’s. Thanks to such time-series, this dataset allow to track how marine species record changing climate, physical-chemical environment and organic matter cycles, and provide precious information on coastal ecosystems response to global change.
Christopher D. Elvidge, Tilottama Ghosh, Namrata Chatterjee, Mikhail Zhizhin, Paul C. Sutton, and Morgan Bazilian
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-342, https://doi.org/10.5194/essd-2024-342, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a comprehensive global map of offshore lighting structures. The data are derived from low light imaging data collected nightly by the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) day / night band (DNB). The form of the structures only becomes apparent when data from one or more years are accumulated. Identifiable structures include fishing grounds, platforms, gas flares, anchorages, and transportation routes.
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Yan Yang, Patrick Brockmann, Carolina Galdino, Uwe Schindler, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 3771–3780, https://doi.org/10.5194/essd-16-3771-2024, https://doi.org/10.5194/essd-16-3771-2024, 2024
Short summary
Short summary
Studies investigating the effects of ocean acidification on marine organisms and communities have been steadily increasing. To facilitate data comparison, a data compilation hosted by the PANGAEA Data Publisher was initiated in 2008 and is updated on a regular basis. By November 2023, a total of 1501 datasets (~25 million data points) from 1554 papers have been archived. To filter and access relevant biological response data from this compilation, a user-friendly portal was launched in 2018.
Jaime Pitarch and Vittorio Ernesto Brando
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-295, https://doi.org/10.5194/essd-2024-295, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This research presents a comprehensive synthetic dataset in the optical domain, created thanks to a large mining of available bio-optical data. Utilizing the Hydrolight radiative transfer model, the dataset provides detailed light fields from ultraviolet to visible light, aiding in the development of satellite algorithms. The dataset will significantly enhance research on light behavior in water and supporting future hyperspectral missions. It has been made publicly available on Zenodo.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-267, https://doi.org/10.5194/essd-2024-267, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009–2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and the other pigments. The dataset will be useful to researchers in ocean optics, remote-sensing, ecology, and biogeochemistry.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Michael Morando, Jonathan Magasin, Shunyan Cheung, Matthew M. Mills, Jonathan P. Zehr, and Kendra A. Turk-Kubo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-163, https://doi.org/10.5194/essd-2024-163, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Nitrogen is crucial in ocean food webs, but only some microbes can fix N2 gas into a bioavailable form. Most are known only by their nifH gene sequence. We created a software workflow for nifH data and ran it on 865 ocean samples, producing a database that captures the global diversity of N2-fixing marine microbes and the environmental factors that influence them. The workflow and DB can standardize analyses on past and future nifH datasets to enable insights into marine microbial communities.
Nina Grandremy, Paul Bourriau, Edwin Daché, Marie-Madeleine Danielou, Mathieu Doray, Christine Dupuy, Bertrand Forest, Laetitia Jalabert, Martin Huret, Sophie Le Mestre, Antoine Nowaczyk, Pierre Petitgas, Philippe Pineau, Justin Rouxel, Morgan Tardivel, and Jean-Baptiste Romagnan
Earth Syst. Sci. Data, 16, 1265–1282, https://doi.org/10.5194/essd-16-1265-2024, https://doi.org/10.5194/essd-16-1265-2024, 2024
Short summary
Short summary
We present two space- and time-resolved zooplankton datasets originating from samples collected in the Bay of Biscay in spring over the 2004–2019 period and imaged with the interoperable imaging systems ZooScan and ZooCAM. These datasets are suited for long-term size-based or combined size- and taxonomy-based ecological studies of zooplankton. The set of sorted images are provided along with a set of morphological descriptors that are useful when machine learning is applied to plankton studies.
Dieter Piepenburg, Thomas Brey, Katharina Teschke, Jennifer Dannheim, Paul Kloss, Marianne Rehage, Miriam L. S. Hansen, and Casper Kraan
Earth Syst. Sci. Data, 16, 1177–1184, https://doi.org/10.5194/essd-16-1177-2024, https://doi.org/10.5194/essd-16-1177-2024, 2024
Short summary
Short summary
Research on ecological footprints of climate change and human impacts in Arctic seas is still hampered by problems in accessing sound data, which is unevenly distributed among regions and faunal groups. To address this issue, we present the PAN-Arctic data collection of benthic BIOtas (PANABIO). It provides open access to valuable biodiversity information by integrating data from various sources and of various formats and offers versatile exploration tools for data filtering and mapping.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed
Earth Syst. Sci. Data, 15, 5281–5300, https://doi.org/10.5194/essd-15-5281-2023, https://doi.org/10.5194/essd-15-5281-2023, 2023
Short summary
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Tumelo Moalusi
Earth Syst. Sci. Data, 15, 4829–4848, https://doi.org/10.5194/essd-15-4829-2023, https://doi.org/10.5194/essd-15-4829-2023, 2023
Short summary
Short summary
Oceanic productivity has been highlighted as an important environmental indicator of climate change in comparison to other existing metrics. However, the availability of these data to assess trends and trajectories is plagued with issues, such as application to only a single satellite reducing the time period for assessment. We have applied multiple algorithms to the longest ocean colour record to provide a record for assessing climate-change-driven trends.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Fabrice Stephenson, Tom Brough, Drew Lohrer, Daniel Leduc, Shane Geange, Owen Anderson, David Bowden, Malcolm R. Clark, Niki Davey, Enrique Pardo, Dennis P. Gordon, Brittany Finucci, Michelle Kelly, Diana Macpherson, Lisa McCartain, Sadie Mills, Kate Neill, Wendy Nelson, Rachael Peart, Matthew H. Pinkerton, Geoffrey B. Read, Jodie Robertson, Ashley Rowden, Kareen Schnabel, Andrew Stewart, Carl Struthers, Leigh Tait, Di Tracey, Shaun Weston, and Carolyn Lundquist
Earth Syst. Sci. Data, 15, 3931–3939, https://doi.org/10.5194/essd-15-3931-2023, https://doi.org/10.5194/essd-15-3931-2023, 2023
Short summary
Short summary
Understanding the distribution of species that live at the seafloor is critical to the management of the marine environment but is lacking in many areas. Here, we showcase an atlas of seafloor biodiversity that describes the distribution of approximately 600 organisms throughout New Zealand’s vast marine realm. Each layer in the open-access atlas has been evaluated by leading experts and provides a key resource for the sustainable use of New Zealand's marine environment.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Sofie Vranken, Marine Robuchon, Stefanie Dekeyzer, Ignacio Bárbara, Inka Bartsch, Aurélie Blanfuné, Charles-François Boudouresque, Wim Decock, Christophe Destombe, Bruno de Reviers, Pilar Díaz-Tapia, Anne Herbst, Romain Julliard, Rolf Karez, Priit Kersen, Stacy A. Krueger-Hadfield, Ralph Kuhlenkamp, Akira F. Peters, Viviana Peña, Cristina Piñeiro-Corbeira, Fabio Rindi, Florence Rousseau, Jan Rueness, Hendrik Schubert, Kjersti Sjøtun, Marta Sansón, Dan Smale, Thierry Thibaut, Myriam Valero, Leen Vandepitte, Bart Vanhoorne, Alba Vergés, Marc Verlaque, Christophe Vieira, Line Le Gall, Frederik Leliaert, and Olivier De Clerck
Earth Syst. Sci. Data, 15, 2711–2754, https://doi.org/10.5194/essd-15-2711-2023, https://doi.org/10.5194/essd-15-2711-2023, 2023
Short summary
Short summary
We present AlgaeTraits, a high-quality seaweed trait database. The data are structured within the framework of WoRMS and are supported by an expert editor community. With 45 175 trait records for 21 prioritised biological and ecological traits, and a taxonomic coverage of 1 745 European species, AlgaeTraits significantly advances previous efforts to provide standardised seaweed trait data. AlgaeTraits will serve as a foundation for future research on diversity and evolution of seaweeds.
Alain Lefebvre and David Devreker
Earth Syst. Sci. Data, 15, 1077–1092, https://doi.org/10.5194/essd-15-1077-2023, https://doi.org/10.5194/essd-15-1077-2023, 2023
Short summary
Short summary
The Suivi Regional des Nutriments (SRN) data set includes long-term time series on marine phytoplankton and physicochemical measures in the eastern English Channel and the Southern Bight of the North Sea. These data sets should be useful for comparing contrasted coastal marine ecosystems to further knowledge about the direct and indirect effects of human pressures and environmental changes on ecosystem structure and function, including eutrophication and harmful algal bloom issues.
Jacopo Pulcinella, Enrico Nicola Armelloni, Carmen Ferrà, Giuseppe Scarcella, and Anna Nora Tassetti
Earth Syst. Sci. Data, 15, 809–820, https://doi.org/10.5194/essd-15-809-2023, https://doi.org/10.5194/essd-15-809-2023, 2023
Short summary
Short summary
Deep-sea fishery in the Mediterranean Sea was historically driven by the commercial profitability of deepwater red shrimps. Understanding spatiotemporal dynamics of fishing is key to comprehensively evaluate the status of these resources and prevent stock collapse. The observed monthly fishing effort and frequency dataset released by the automatic identification system (AIS) may help researchers as well as those involved in fishery management and in the update of existing management plans.
Simone Strydom, Roisin McCallum, Anna Lafratta, Chanelle L. Webster, Caitlyn M. O'Dea, Nicole E. Said, Natasha Dunham, Karina Inostroza, Cristian Salinas, Samuel Billinghurst, Charlie M. Phelps, Connor Campbell, Connor Gorham, Rachele Bernasconi, Anna M. Frouws, Axel Werner, Federico Vitelli, Viena Puigcorbé, Alexandra D'Cruz, Kathryn M. McMahon, Jack Robinson, Megan J. Huggett, Sian McNamara, Glenn A. Hyndes, and Oscar Serrano
Earth Syst. Sci. Data, 15, 511–519, https://doi.org/10.5194/essd-15-511-2023, https://doi.org/10.5194/essd-15-511-2023, 2023
Short summary
Short summary
Seagrasses are important underwater plants that provide valuable ecosystem services to humans, including mitigating climate change. Understanding the natural history of seagrass meadows across different types of environments is crucial to conserving seagrasses in the global ocean. This dataset contains data extracted from peer-reviewed publications and highlights which seagrasses have been studied and in which locations and is useful for pointing out which need further investigation.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022, https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide minus that lost through respiration. This time series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Autun Purser, Laura Hehemann, Lilian Boehringer, Ellen Werner, Santiago E. A. Pineda-Metz, Lucie Vignes, Axel Nordhausen, Moritz Holtappels, and Frank Wenzhoefer
Earth Syst. Sci. Data, 14, 3635–3648, https://doi.org/10.5194/essd-14-3635-2022, https://doi.org/10.5194/essd-14-3635-2022, 2022
Short summary
Short summary
Within this paper we present the seafloor images, maps and acoustic camera data collected by a towed underwater research platform deployed in 20 locations across the eastern Weddell Sea, Antarctica, during the PS124 COSMUS expedition with the research icebreaker RV Polarstern in 2021. The 20 deployments highlight the great variability in seafloor structure and faunal communities present. Of key interest was the discovery of the largest fish nesting colony discovered globally to date.
Walker O. Smith Jr.
Earth Syst. Sci. Data, 14, 2737–2747, https://doi.org/10.5194/essd-14-2737-2022, https://doi.org/10.5194/essd-14-2737-2022, 2022
Short summary
Short summary
The rate of photosynthesis of marine phytoplankton – primary productivity – is typically measured by quantifying the rate of radioisotope incorporation. However, generally such measurements are not collected by one individual through time and so are difficult to compare due to methodological differences. A data set compiled by one investigator over more than 20 years in the Ross Sea demonstrates the importance of the region as a "hot spot" for growth and synthesis.
Valéria M. Lemos, Marianna Lanari, Margareth Copertino, Eduardo R. Secchi, Paulo Cesar O. V. de Abreu, José H. Muelbert, Alexandre M. Garcia, Felipe C. Dumont, Erik Muxagata, João P. Vieira, André Colling, and Clarisse Odebrecht
Earth Syst. Sci. Data, 14, 1015–1041, https://doi.org/10.5194/essd-14-1015-2022, https://doi.org/10.5194/essd-14-1015-2022, 2022
Short summary
Short summary
The Patos Lagoon estuary and adjacent marine coast (PLEA) has been a site of the Brazilian Long-Term Ecological Research (LTER) program since 1998. LTER-PLEA contributes information about the biota composition, distribution and abundance, and estuarine ecological processes. The LTER-PLEA database (8 datasets containing 6972 sampling events and records of 275 species) represents one of the most robust and longest databases of biological diversity in an estuarine coastal system of South America.
Mayya Gogina, Anja Zettler, and Michael L. Zettler
Earth Syst. Sci. Data, 14, 1–4, https://doi.org/10.5194/essd-14-1-2022, https://doi.org/10.5194/essd-14-1-2022, 2022
Short summary
Short summary
For the first time we publish a taxonomically detailed and robust dataset of biomass conversion factors for macro-zoobenthos, often required in many studies. Georeferenced raw data for 497 taxa empower the user to make the best selections for combining them with their own data, and aggregation can help to quantify natural variability and uncertainty and refine current ecological theory. Standardised measurements were done on material collected for over 2 decades in the Baltic and the North seas.
Clare Ostle, Kevin Paxman, Carolyn A. Graves, Mathew Arnold, Luis Felipe Artigas, Angus Atkinson, Anaïs Aubert, Malcolm Baptie, Beth Bear, Jacob Bedford, Michael Best, Eileen Bresnan, Rachel Brittain, Derek Broughton, Alexandre Budria, Kathryn Cook, Michelle Devlin, George Graham, Nick Halliday, Pierre Hélaouët, Marie Johansen, David G. Johns, Dan Lear, Margarita Machairopoulou, April McKinney, Adam Mellor, Alex Milligan, Sophie Pitois, Isabelle Rombouts, Cordula Scherer, Paul Tett, Claire Widdicombe, and Abigail McQuatters-Gollop
Earth Syst. Sci. Data, 13, 5617–5642, https://doi.org/10.5194/essd-13-5617-2021, https://doi.org/10.5194/essd-13-5617-2021, 2021
Short summary
Short summary
Plankton form the base of the marine food web and are sensitive indicators of environmental change. The Plankton Lifeform Extraction Tool brings together disparate plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called
lifeforms, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery.
Francesco Mattei and Michele Scardi
Earth Syst. Sci. Data, 13, 4967–4985, https://doi.org/10.5194/essd-13-4967-2021, https://doi.org/10.5194/essd-13-4967-2021, 2021
Short summary
Short summary
Data paucity hinders the understanding of natural processes such as phytoplankton production. Several studies stressed how the lack of data is the main constraint for modeling phytoplankton production. We created a global and ready-to-use dataset regarding phytoplankton production, collecting and processing data from several sources. We performed a general data analysis from a numerical and an ecological perspective. This dataset will help enhance the understanding of phytoplankton production.
Annalisa Minelli, Carmen Ferrà, Alessandra Spagnolo, Martina Scanu, Anna Nora Tassetti, Carla Rita Ferrari, Cristina Mazziotti, Silvia Pigozzi, Zrinka Jakl, Tena Šarčević, Miranda Šimac, Claudia Kruschel, Dubravko Pejdo, Enrico Barbone, Michele De Gioia, Diego Borme, Emiliano Gordini, Rocco Auriemma, Ivo Benzon, Đeni Vuković-Stanišić, Sandi Orlić, Vlado Frančić, Damir Zec, Ivana Orlić Kapović, Michela Soldati, Silvia Ulazzi, and Gianna Fabi
Earth Syst. Sci. Data, 13, 1905–1923, https://doi.org/10.5194/essd-13-1905-2021, https://doi.org/10.5194/essd-13-1905-2021, 2021
Short summary
Short summary
This data paper describes a dataset of natural and artificial reefs and wrecks in the Adriatic Sea collected, from a survey, in the frame of the ADRIREEF Interreg project. Information about the identification of the reef and its physical characteristics, surrounding area, and management actions/facilities has been collected in order to create a very detailed dataset, which has been harmonized and published in the SEANOE repository (https://doi.org/10.17882/74880).
Bryony L. Townhill, Rebecca E. Holt, Bjarte Bogstad, Joël M. Durant, John K. Pinnegar, Andrey V. Dolgov, Natalia A. Yaragina, Edda Johannesen, and Geir Ottersen
Earth Syst. Sci. Data, 13, 1361–1370, https://doi.org/10.5194/essd-13-1361-2021, https://doi.org/10.5194/essd-13-1361-2021, 2021
Short summary
Short summary
A dataset on the diet of Atlantic cod in the Barents Sea from the 1930s to 2018 has been compiled to produce one of the largest fish diet datasets available globally. A top predator, cod plays a key role in the food web. The data from Norway, the United Kingdom and Russia include data from 2.5 million fish. Diets have changed considerably from the start of the dataset in the 1930s. This dataset helps us understand how the environment and ecosystems are responding to a changing climate.
Le Xie, Wei Wei, Lanlan Cai, Xiaowei Chen, Yuhong Huang, Nianzhi Jiao, Rui Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 13, 1251–1271, https://doi.org/10.5194/essd-13-1251-2021, https://doi.org/10.5194/essd-13-1251-2021, 2021
Short summary
Short summary
Viruses play key roles in marine ecosystems by killing their hosts, maintaining diversity and recycling nutrients. In the global viral oceanography database (gVOD), 10 931 viral abundance data and 727 viral production data, along with host and other oceanographic parameters, were compiled. It identified viral data were undersampled in the southeast Pacific and Indian oceans. The gVOD can be used in marine viral ecology investigation and modeling of marine ecosystems and biogeochemical cycles.
Damiano Righetti, Meike Vogt, Niklaus E. Zimmermann, Michael D. Guiry, and Nicolas Gruber
Earth Syst. Sci. Data, 12, 907–933, https://doi.org/10.5194/essd-12-907-2020, https://doi.org/10.5194/essd-12-907-2020, 2020
Short summary
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Francesco Acri, Mauro Bastianini, Fabrizio Bernardi Aubry, Elisa Camatti, Alfredo Boldrin, Caterina Bergami, Daniele Cassin, Amelia De Lazzari, Stefania Finotto, Annalisa Minelli, Alessandro Oggioni, Marco Pansera, Alessandro Sarretta, Giorgio Socal, and Alessandra Pugnetti
Earth Syst. Sci. Data, 12, 215–230, https://doi.org/10.5194/essd-12-215-2020, https://doi.org/10.5194/essd-12-215-2020, 2020
Short summary
Short summary
The present paper describes a database containing observations for 21 parameters of abiotic, phytoplankton, and zooplankton data collected in the northern Adriatic Sea region (Italy) from 1965 to 2015. Due to the long temporal coverage, the majority of parameters changed collection and analysis method over time. These variations are reported in the database and detailed in the paper.
Irawan Asaad, Carolyn J. Lundquist, Mark V. Erdmann, and Mark J. Costello
Earth Syst. Sci. Data, 11, 163–174, https://doi.org/10.5194/essd-11-163-2019, https://doi.org/10.5194/essd-11-163-2019, 2019
Short summary
Short summary
This atlas is a compendium of geospatial online and open-access data describing biodiversity conservation in the Coral Triangle of the Indo-Pacific biogeographic realm. It consists of three sets of interlinked digital maps: (1) biodiversity features; (2) areas of importance for biodiversity conservation; and (3) recommended priorities for Marine Protected Area (MPA) Network Expansion. These maps provide the most comprehensive biodiversity datasets available to date for the region.
Dmitry Kondrik, Eduard Kazakov, and Dmitry Pozdnyakov
Earth Syst. Sci. Data, 11, 119–128, https://doi.org/10.5194/essd-11-119-2019, https://doi.org/10.5194/essd-11-119-2019, 2019
Short summary
Short summary
This paper presents a description of the original database of blooms of the calcifying phytoplankton in sub-Arctic and Arctic seas, their spatio-temporal features and associated environmental influences. This type of phytoplankton is efficient in decreasing the ability of the ocean to intake external carbon dioxide and hence amplifies the greenhouse effect. The published database can be used by a large community of users involved in studies of both aquatic ecology and carbon cycles.
Benjamin Roger Loveday and Timothy Smyth
Earth Syst. Sci. Data, 10, 2043–2054, https://doi.org/10.5194/essd-10-2043-2018, https://doi.org/10.5194/essd-10-2043-2018, 2018
Short summary
Short summary
A 40-year data set of ocean reflectance is derived from an atmospherically corrected climate quality record of top-of-atmosphere signals taken from the satellite-based AVHRR sensor. The data set provides a unique view of visible changes in the global ocean over timescales where climatic effects are demonstrable and spans coverage gaps left by more traditional satellite ocean colour sensors. It is particularly relevant to monitoring bright plankton blooms, such as coccolithophores.
Heather A. Bouman, Trevor Platt, Martina Doblin, Francisco G. Figueiras, Kristinn Gudmundsson, Hafsteinn G. Gudfinnsson, Bangqin Huang, Anna Hickman, Michael Hiscock, Thomas Jackson, Vivian A. Lutz, Frédéric Mélin, Francisco Rey, Pierre Pepin, Valeria Segura, Gavin H. Tilstone, Virginie van Dongen-Vogels, and Shubha Sathyendranath
Earth Syst. Sci. Data, 10, 251–266, https://doi.org/10.5194/essd-10-251-2018, https://doi.org/10.5194/essd-10-251-2018, 2018
Short summary
Short summary
The photosynthetic response of marine phytoplankton to available irradiance is a central part of satellite-based models of ocean productivity. This study brings together data from a variety of oceanographic campaigns to examine how the parameters of photosynthesis–irradiance response curves vary over the global ocean. This global synthesis reveals biogeographic, latitudinal and depth-dependent patterns in the photosynthetic properties of natural phytoplankton assemblages.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Angus Atkinson, Simeon L. Hill, Evgeny A. Pakhomov, Volker Siegel, Ricardo Anadon, Sanae Chiba, Kendra L. Daly, Rod Downie, Sophie Fielding, Peter Fretwell, Laura Gerrish, Graham W. Hosie, Mark J. Jessopp, So Kawaguchi, Bjørn A. Krafft, Valerie Loeb, Jun Nishikawa, Helen J. Peat, Christian S. Reiss, Robin M. Ross, Langdon B. Quetin, Katrin Schmidt, Deborah K. Steinberg, Roshni C. Subramaniam, Geraint A. Tarling, and Peter Ward
Earth Syst. Sci. Data, 9, 193–210, https://doi.org/10.5194/essd-9-193-2017, https://doi.org/10.5194/essd-9-193-2017, 2017
Short summary
Short summary
KRILLBASE is a data rescue and compilation project to improve the availability of information on two key Southern Ocean zooplankton: Antarctic krill and salps. We provide a circumpolar database that combines 15 194 scientific net hauls (1926 to 2016) from 10 countries. These data provide a resource for analysing the distribution and abundance of krill and salps throughout the Southern Ocean to support ecological and biogeochemical research as well as fisheries management and conservation.
Philipp Brun, Mark R. Payne, and Thomas Kiørboe
Earth Syst. Sci. Data, 9, 99–113, https://doi.org/10.5194/essd-9-99-2017, https://doi.org/10.5194/essd-9-99-2017, 2017
Short summary
Short summary
We compiled data to understand the organization of marine zooplankton based on their fundamental traits, such as body size or growth rate, rather than based on species names. Zooplankton, and in particular the dominant crustacean copepods, are central to marine food webs and the carbon cycle. The data include 14 traits and thousands of copepod species and may be used for comparisons between species or communities and ultimately to inspire better large-scale models of planktonic ecosystems.
Colleen B. Mouw, Audrey Barnett, Galen A. McKinley, Lucas Gloege, and Darren Pilcher
Earth Syst. Sci. Data, 8, 531–541, https://doi.org/10.5194/essd-8-531-2016, https://doi.org/10.5194/essd-8-531-2016, 2016
Short summary
Short summary
Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. By providing merged coincident satellite imagery products, the dataset can be used to link phytoplankton surface process with POC flux. Due to rapid remineralization within the first 500 m of the water column, shallow observations from 234Th supplement the more extensive sediment trap record.
Y. Yang, L. Hansson, and J.-P. Gattuso
Earth Syst. Sci. Data, 8, 79–87, https://doi.org/10.5194/essd-8-79-2016, https://doi.org/10.5194/essd-8-79-2016, 2016
Short summary
Short summary
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation was initiated in 2008 and is updated on a regular basis. By January 2015, a total of 581 data sets (over 4,000,000 data points) from 539 papers had been archived.
B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann
Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, https://doi.org/10.5194/essd-7-319-2015, 2015
Short summary
Short summary
The CoastColour Round Robin (CCRR) project (European Space Agency) was designed to set up the first database for remote-sensing algorithm testing and accuracy assessment of water quality parameter retrieval in coastal waters, from satellite imagery. This paper analyses the CCRR database, which includes in situ bio-geochemical and optical measurements in various water types, match-up reflectance products from the MEdium Resolution Imaging Spectrometer (MERIS), and radiative transfer simulations.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, available at: https://catalog.data.gov/dataset/etopo1-1-arc-minute-global-relief-model/resource/9e53be26-60cb-4139-b70c-51a2c4561bbb (last access: 3 June 2016), 2009.
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production: 2. Estimation at global scale from satellite (CZCS) chlorophyll, Global Biogeochem. Cy., 10, 57–70, 1996.
Antoine, D., Chami, M., Claustre, H., D'Ortenzio, F., Morel, A., Bécu, G., Gentili, B., Louis, F., Ras, J., Roussier, E., Scott, A. J., Tailliez, D., Hooker, S. B.,Guevel, P., Desté, J.-F., Dempsey, C., and Adams, D.: BOUSSOLE : a joint CNRS-INSU, ESA, CNES and NASA Ocean Color Calibration And Validation Activity. NASA Technical memorandum No. 2006-214147, 61 pp., available at: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070028812.pdf (last access: 3 June 2016), 2006.
Antoine, D., Guevel, P., Desté, J.-F., Bécu, G., Louis, F., Scott, A., and Bardey, P.: The “BOUSSOLE” Buoy – A New Transparent-to-Swell Taut Mooring Dedicated to Marine Optics: Design, Tests, and Performance at Sea. J. Atmos. Oceanic Technol., 25, 968–989, 2008.
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, 2006.
Barker, K.: In-situ Measurement Protocols. Part A: Apparent Optical Properties, Issue 2.0, Doc. no: CO-SCI-ARG-TN-0008, ARGANS Ltd., p. 126, available at: http://mermaid.acri.fr/dataproto/CO-SCI-ARG-TN-0008_In-situ_Measurement_Protocols-AOPs_Issue2_Mar2013.pdf (last access: 3 June 2016), 2013a.
Barker, K.: In-situ Measurement Protocols. Part B: Inherent Optical Properties and in-water constituents, Issue 1.0, Doc. no: CO-SCI-ARG-TN-0008, ARGANS Ltd., p. 39, available at: http://mermaid.acri.fr/dataproto/CO-SCI-ARG-TN-0008_In-situ_Measurement_Protocols-IOPs-Constituents_Issue1_Mar2013.pdf (last access: 3 June 2016), 2013b.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size sctructure of algal populations, J. Geophys. Res., 109, C11010, https://doi.org/10.1029/2004JC002419, 2004.
Clark, D. K., Yarborough, M. A., Feinholz, M. E., Flora, S., Broenkow, W., Kim, Y. S., Johnson, B. C., Brown, S. W., Yuen, M., and Mueller, J. L.: MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Colour Sensors: Measurements and Data Analysis Protocols, in: Ocean Optics Protocols for Satellite Ocean Colour Sensor Validation, edited by: Muller, J. L., Fargion, G., and McClain, C., NASA Technical Memo. 2003-211621/Rev4, Vol. VI, 3–34, NASA/GSFC, Greenbelt, MD, USA, 2003.
Dandonneau, Y. and Niang, A.: Assemblages of phytoplankton pigments along a shipping line through the North Atlantic and Tropical Pacific, Prog. Oceanogr., 73, 127–144, 2007.
Gordon, H. R. and Clark, D. K.: Clear water radiances for atmospheric correction of coastal zone color scanner imagery, Appl. Optics, 20, 4175–4180, 1981.
Gregg, W. W. and Carder, K. L.: A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnol. Oceanogr., 35, 1657–1675, 1990.
IOCCG: Report 5: Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, in: Reports of the International Ocean-Colour Coordinating Group, edited by: Lee, Z.-P., No. 5. vol. 5, IOCCG, 2006, Dartmouth, Canada, p. 126, 2006.
IOCCG: Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology, in: Reports of the International Ocean-Colour Coordinating Group, edited by: Platt, T., Hoepffner, N., Stuart, V., and Brown, C., No. 7, IOCCG, Dartmouth, Canada, 2008.
Karl, D. M. and Michaels, A. F.: The Hawaiian Ocean Time-series (HOT) and Bermuda Atlantic Time-series Study (BATS) – Preface, Deep-Sea Res. II, 43, 127–128, 1996.
Morel, A. and Gentilli, B.: Diffuse Reflectance of Oceanic Waters. 3. Implications of Bidirectionality for the Remote-Sensing Problem, Appl. Optics, 35, 4850–4862, 1996.
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res., 106, 7163–7180, 2001.
Morel, A., Antoine, D., and Gentilli, B.: Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function, Appl. Optics, 41, 6289–6306, 2002.
Nechad, B., Ruddick, K., Schroeder, T., Oubelkheir, K., Blondeau-Patissier, D., Cherukuru, N., Brando, V., Dekker, A., Clementson, L., Banks, A. C., Maritorena, S., Werdell, P. J., Sá, C., Brotas, V., Caballero de Frutos, I., Ahn, Y.-H., Salama, S., Tilstone, G., Martinez-Vicente, V., Foley, D., McKibben, M., Nahorniak, J., Peterson, T., Siliò-Calzada, A., Röttgers, R., Lee, Z., Peters, M., and Brockmann, C.: CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, 2015.
Pope, R. and Fry, E.: Absorption spectrum (380–700 nm) of pure waters: II. Integrating cavity measurements, Appl. Optics, 36, 8710–8723, 1997.
Robinson, C., Poulton, A. J., Holligan, P. M., Baker, A. R., Forster, G., Gist, N., Jickells, T. D., Malin G., Upstill-Goddard, R., Williams, R. G., Woodward, E. M. S., and Zubkov, M. V.: The Atlantic Meridional Transect (AMT) Programme: a contextual view 1995–2005, Deep-Sea Res. II, 53, 1485–1515, https://doi.org/10.1016/j.dsr2.2006.05.015, 2006.
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P. C., and Mandel, H.: The solar spectral irradiance from 200 nnm to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions, Sol. Phys., 214, 1–22, 2003.
Tiwari, S. P. and Shanmugam, P.: An optical model for deriving the spectral particulate backscattering coefficients in oceanic waters, Ocean Sci., 9, 987–1001, 2013.
Trees, C. C., Kennicutt II, M. C., and Brooks, J. M.: Errors associated with the standard fluorimetric determination of chlorophylls and phaeopigments, Mar. Chem., 17, 1–12, 1985.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Besiktepe, S., Brando, V., Canuti, E., Chavez, F. P., Claustre, H., Crout, R., Frouin, R., García-Soto, C., Gibb, S., Gould, R., Hooker, S., Kahru, M., Klein, H., Kratzer, S., Loisel, H., McKee, D,. Mitchell, G., Moisan, T., Muller-Karger, F. E., O'Dowd, L., Ondrusek, M., Poulton, A. J., Repecaud, M., Smyth, T. J., Sosik, H., Twardowski, M. S., Voss, K., Werdell, P. J., Wernand, M. R., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour satellite applications, https://doi.org/10.1594/PANGAEA.854832, 2015.
Werdell, P. J. and Bailey, S. W.: An improved bio-optical data set for ocean color algorithm development and satellite data product validation, Remote Sens. Environ., 98, 122–140, 2005.
Werdell, P. J., Bailey, S., Fargion, G., Pietras, C., Knobelspiesse, K., Feldman, G., and McClain, C.: Unique data repository facilitates ocean color satellite validation, EOS Transactions AGU, 84, 377–387, 2003.
Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater: Effect of Salinity, Opt. Express, 17, 5698–5710, 2009.
Zibordi, G., Holben, B. N., Hooker, S. B., Mélin, F., Berthon, J.-F., Slutsker, I., Giles, D., Vandemark, D., Feng, H., Rutledge, K., Schuster, G., and Al Mandoos, A.: A network for standardized ocean color validation measurements, EOS Trans. Am. Geophys. Union, 87, 293–297, 2006.
Zibordi, G., Holben, B. N., Slutsker, I., Giles, D., D'Alimonte, D., Mélin, F., Berthon, J.-F., Vandemark, D., Feng, H., Schuster, G., Fabbri, B. E., Kaitala, S., and Seppälä, J.: AERONET-OC: A network for the validation of ocean color primary radiometric products, J. Atmos. Ocean. Tech., 26, 1634–1651, 2009.
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite...
Altmetrics
Final-revised paper
Preprint