Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-1055-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1055-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
RER2023: the landslide inventory dataset of the May 2023 Emilia-Romagna meteorological event
Matteo Berti
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Marco Pizziolo
Regione Emilia-Romagna, Area Geologia, Suoli e Sismica, Bologna, Italy
Michele Scaroni
Regione Emilia-Romagna, Area Geologia, Suoli e Sismica, Bologna, Italy
Mauro Generali
Regione Emilia-Romagna, Area Geologia, Suoli e Sismica, Bologna, Italy
Vincenzo Critelli
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Marco Mulas
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Melissa Tondo
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Francesco Lelli
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Cecilia Fabbiani
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Francesco Ronchetti
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Giuseppe Ciccarese
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Nicola Dal Seno
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Elena Ioriatti
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Rodolfo Rani
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Alessandro Zuccarini
Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
Tommaso Simonelli
Autorità di Bacino Distrettuale del Fiume Po, Parma, Italy
Alessandro Corsini
CORRESPONDING AUTHOR
Department of Chemical and Geological Sciences, University of Modena and Reggio-Emilia, Modena, Italy
Related authors
Elena Ioriatti, Mauro Reguzzoni, Edoardo Reguzzoni, Andreas Schimmel, Luca Beretta, Massimo Ceriani, and Matteo Berti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3478, https://doi.org/10.5194/egusphere-2025-3478, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
A new method is proposed to define rainfall thresholds for debris flows and increased stream activity. Developed in an Alpine catchment, it relies on monitoring data and suits early warning in data-scarce settings, with few recorded debris-flow events. The method performs well and explores sensitivity to rain gauge location and the criteria used to define rainfall events.
Elena Ioriatti, Mauro Reguzzoni, Edoardo Reguzzoni, Andreas Schimmel, Luca Beretta, Massimo Ceriani, and Matteo Berti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3478, https://doi.org/10.5194/egusphere-2025-3478, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
A new method is proposed to define rainfall thresholds for debris flows and increased stream activity. Developed in an Alpine catchment, it relies on monitoring data and suits early warning in data-scarce settings, with few recorded debris-flow events. The method performs well and explores sensitivity to rain gauge location and the criteria used to define rainfall events.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Cited articles
AGSS-RER (Area Geologia, Suoli e Sismica, Regione Emilia-Romagna): Carta Geologica dell'Appennino emiliano-romagnolo, scala 1:10.000, https://geoportale.regione.emilia-romagna.it/ (last access: 3 March 2025), 1986.
Amatya, P., Kirschbaum, D., Stanley, T., and Tanyas, H.: Landslide mapping using object-based image analysis and open source tools, Eng. Geol., 282, 106000, https://doi.org/10.1016/j.enggeo.2021.106000, 2021.
Ardizzone, F., Bucci, F., Cardinali, M., Fiorucci, F., Pisano, L., Santangelo, M., and Zumpano, V.: Geomorphological landslide inventory map of the Daunia Apennines, southern Italy, Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, 2023.
Auflič, M. J., Bezak, N., Šegina, E., Frantar, P., Gariano, S. L., Medved, A., and Peternel, T.: Climate change increases the number of landslides at the juncture of the Alpine, Pannonian and Mediterranean regions, Sci. Rep., 13, 23085, https://doi.org/10.1038/s41598-023-50314-x, 2023.
Berti, M. and Simoni, A.: Field evidence of pore pressure diffusion in clayey soils prone to landsliding, J. Geophys. Res., 115, F03031, https://doi.org/10.1029/2009JF001463, 2010.
Berti, M. and Simoni, A.: Observation and analysis of near-surface pore pressure measurements in clay shales slopes, Hydrol. Process., 26, 2187–2205, 2012.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, A., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Bertolini, G., Guida M., and Pizziolo, M.: Landslides in Emilia-Romagna region (Italy): strategies for hazard assessment and risk management, Landslides, 2, 302–312, https://doi.org/10.1007/s10346-005-0020-1, 2005.
Bertolini, G., Corsini, A., and Tellini, C.: Fingerprints of Large-Scale Landslides in the Landscape of the Emilia Apennines, in: Landscapes and Landforms of Italy. World Geomorphological Landscapes, edited by: Soldati, M. and Marchetti, M., 215–224, Springer, Cham, https://doi.org/10.1007/978-3-319-26194-2_18, 2017.
Bhuyan, K., Tanyaş, H., Nava, L. Puliero, S., Meena, S. R., Floris, M., van Westen, C., and Catani, F.: Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data, Sci. Rep., 13, 162, https://doi.org/10.1038/s41598-022-27352-y, 2023.
Brath, A., Casagli, N., Marani, M., Mercogliano, P., and Motta, R.: Rapporto della Commissione tecnico-scientifica istituita con deliberazione della Giunta Regionale n. 984/2023 e determinazione dirigenziale 14641/2023, al fine di analizzare gli eventi meteorologici estremi del mese di maggio 2023, Technical Report, Regione Emilia-Romagna, 147 pp., https://www.regione.emilia-romagna.it/alluvione/rapporto-della-commissione-tecnico-scientifica (last access: 3 March 2025), 2023.
Cardinali, M., Galli, M., Guzzetti, F., Ardizzone, F., Reichenbach, P., and Bartoccini, P.: Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment, Nat. Hazards Earth Syst. Sci., 6, 237–260, https://doi.org/10.5194/nhess-6-237-2006, 2006.
Catani, F.: Landslide detection by deep learning of non-nadiral and crowdsourced optical images, Landslides, 18, 1025–1044, https://doi.org/10.1007/s10346-020-01513-4, 2021.
Ciccarese, G., Mulas, M., Alberoni, P. P., Truffelli, G., and Corsini, A.: Debris flows rainfall thresholds in the Apennines of Emilia-Romagna (Italy) derived by the analysis of recent severe rainstorms events and regional meteorological data, Geomorphology, 358, 107097, https://doi.org/10.1016/j.geomorph.2020.107097, 2020.
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., and Smith, J.: Recommendations for the quantitative analysis of landslide risk, B. Eng. Geol. Environ., 73, 209–263, https://doi.org/10.1007/s10064-013-0538-8, 2014.
Corsini, A., Ciccarese, G., Diena, M., Alberoni, P. P., and Amorati, R.: Debris flows in Val Parma and Val Baganza (Northern Apennines) during the 13 october 2014 alluvial event in Parma province (Italy), Italian Journal of Engineering Geology and Environment, Special issue V National Congress of AIGA (Cagliari, Italy), 35/2015, 29–38, https://doi.org/10.4408/IJEGE.2017-01.S-03, 2017.
Crozier, M.: Multiple-occurrence regional landslide events in New Zealand: hazard management issues, Landslides, 2, 247–256, https://doi.org/10.1007/s10346-005-0019-7, 2005.
Cruden, D. M. and Varnes, D. J.: Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247, 36–75, https://doi.org/10.17226/11057, 1996
ESA (European Space Agency): Copernicus Global Digital Elevation Model, distributed by: OpenTopography, https://doi.org/10.5069/G9028PQB, 2024.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Eng. Geol., 102, 85–98, https://doi.org/10.1016/j.enggeo.2008.03.022, 2008.
Ferrario, M. F. and Livio, F.: Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023, Remote Sens., 16, 122, https://doi.org/10.3390/rs16010122, 2024.
Gaidzik, K. and Ramírez-Herrera, M. T.: The importance of input data on landslide susceptibility mapping, Sci. Rep., 11, 19334, https://doi.org/10.1038/s41598-021-98830-y, 2021.
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.: Comparing landslide inventory maps, Geomorphology, 94, 268–289, https://doi.org/10.1016/j.geomorph.2006.09.023, 2008.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P.: Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy, Eng. Geol., 73, 229–245, https://doi.org/10.1016/j.enggeo.2004.01.006, 2004.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K. T.: Landslide inventory maps: New tools for an old problem, Earth-Sci. Rev., 112, 42–66, https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Handwerger, A. L., Fielding, E. J., Sangha, S. S., and Bekaert, D. P. S.: Landslide Sensitivity and Response to Precipitation Changes in Wet and Dry Climates, Geophys. Res. Lett., 49, 1–12, https://doi.org/10.1029/2022GL099499, 2022.
Hao, L., Rajaneesh A., van Westen, C., Sajinkumar K. S., Martha, T. R., Jaiswal, P., and McAdoo, B. G.: Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis, Earth Syst. Sci. Data, 12, 2899–2918, https://doi.org/10.5194/essd-12-2899-2020, 2020.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
Jaboyedoff, M., Oppikofer, T., Abellan, A., and Pedrazzini, A.: Use of LIDAR in landslide investigations: A review, Nat. Hazards, 61, 5–28, https://doi.org/10.1007/s11069-010-9634-2, 2012.
Luetzenburg, G., Svennevig, K., Bjørk, A. A., Keiding, M., and Kroon, A.: A national landslide inventory for Denmark, Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, 2022.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.: Landslide inventories and their statistical properties, Earth Surf. Processes, 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
McColl, S. T. and Cook, S. J.: A universal size classification system for landslides, Landslides, 21, 111–120, https://doi.org/10.1007/s10346-023-02131-6, 2024
Notti, D., Cignetti, M., Godone, D., Cardone, D., and Giordan, D.: The unsuPervised shAllow laNdslide rapiD mApping: PANDA method applied to severe rainfalls in northeastern appenine (Italy), Int. J. Appl. Earth Obs., 129, 103806, https://doi.org/10.1016/j.jag.2024.103806, 2024.
Piacentini, D., Troiani, F., Daniele, G., and Pizziolo, M.: Historical geospatial database for landslide analysis: the Catalogue of Landslide OCcurrences in the Emilia-Romagna Region (CLOCkER), Landslides, 15, 811–822, https://doi.org/10.1007/s10346-018-0962-8, 2018.
Pittau, S., Rossi, M., Llena, M., and Brardinoni, F.: Evaluating historical, basin-wide landslide activity in a context of land abandonment and climate change: Effects of landslide visibility and temporal resolution, Geomorphology, 452, 109122, https://doi.org/10.1016/j.geomorph.2024.109122, 2024.
Pizziolo, M., Berti, M., Scaroni, M., Generali, M., Critelli, V., Mulas, M., Tondo, M., Lelli, F., Fabbiani, C., Ronchetti, F., Ciccarese, G., Dal Seno, N., Ioriatti, E., Rani, R., Zuccarini, A., Simonelli, T., and Corsini, A.: RER2023: the landslide inventory dataset of the May 2023 Emilia-Romagna event – Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.13742643, 2024.
Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A, Catani, F., and Casagli, N.: The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution, Landslides, 15, 5–19, https://doi.org/10.1007/s10346-017-0861-4, 2018.
Rossi, F., Witt, A., Guzzetti, F., Malamud, B. D., and Peruccacci, S.: Analysis of historical landslide time series in the Emilia-Romagna region, northern Italy, Earth Surf. Processes, 35, 1123–1137, https://doi.org/10.1002/esp.1858, 2012.
Santangelo, M., Althuwaynee, O., Alvioli, M., Ardizzone F., Bianchi C., Brunetti M.T., Bucci, F.,Cardinali, M., Donnini, M., Esposito, G., Gariano, S. L., Grita, S., Marchesini, I., Melillo, M., Peruccacci, S., Salvati, P., Yazdani, M., and Fiorucci F.: Inventory of landslides triggered by an extreme rainfall event in Marche-Umbria, Italy, on 15 September 2022, Sci Data, 10, 1–11, https://doi.org/10.1038/s41597-023-02336-3, 2023.
Scorpio, V., Crema, S., Marra, F., Righini, M., Ciccarese, G., Borga, M., Cavalli, M., Corsini, A., Marchi, L., Surian, N., and Comiti, F.: Basin-scale analysis of the geomorphic effectiveness of flash floods: a study in the northern Apennines (Italy), Sci. Total Environ., 640–641, 337–351, https://doi.org/10.1016/j.scitotenv.2018.05.252, 2018.
Soeters, R. and Van Westen, C. J.: Slope Instability Recognition, Analysis and Zonation. Landslide Types and Processes, Transportation Research Board, edited by: Turner, A. K. and Schuster, R. L., National Research Council, National Academy Press, Washington DC, https://doi.org/10.17226/11057, 1996
Steger, S., Brenning, A., Bell, R., and Glade, T.: The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements, Landslides, 14, 1767–1781, https://doi.org/10.1007/s10346-017-0820-0, 2017.
Van Den Eeckhaut, M. and Hervás, J.: State of the art of national landslide databases in Europe and their potential for assessing susceptibility, hazard and risk, Geomorphology, 139–140, 545–558, https://doi.org/10.1016/j.geomorph.2011.12.006, 2012.
Zêzere, J. L.: Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal), Nat. Hazards Earth Syst. Sci., 2, 73–82, https://doi.org/10.5194/nhess-2-73-2002, 2002.
Zieher, T., Perzl, F., Rössel, M., Rutzinger, M., Meißl, G., Markart, G., and Geitner, C.: A multi-annual landslide inventory for the assessment of shallow landslide susceptibility – Two test cases in Vorarlberg, Austria, Geomorphology, 259, 40–54, https://doi.org/10.1016/j.geomorph.2016.02.008, 2016.
Short summary
In May 2023, Emilia-Romagna, Italy, experienced heavy rainfall that led to severe flooding and initiated thousands of landslides on slopes thought to be stable. Collaborating with the Civil Protection Agency, our team created a detailed map documenting 80,997 affected areas. This comprehensive dataset is crucial for research on climate change and assists in planning and risk management by demonstrating how climate change can alter our understanding of landslide susceptibility.
In May 2023, Emilia-Romagna, Italy, experienced heavy rainfall that led to severe flooding and...
Altmetrics
Final-revised paper
Preprint