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Abstract. Landslide inventories play a vital role in assessing susceptibility, hazards, and risks and are essential
for developing resilience strategies in mountainous areas. This importance is amplified in the context of cli-
mate change as existing inventories might not adequately reflect changing stability conditions. In May 2023, the
Emilia-Romagna region of Italy was hit by two major rainfall events, leading to widespread flooding and the trig-
gering of thousands of landslides. Predominantly, these were shallow debris slides and debris flows, occurring on
slopes previously deemed to be stable based on historical data, with no prior landslides recorded. Our team sup-
ported the Civil Protection Agency through field surveys and mapping efforts to pinpoint and record these land-
slides, prioritizing areas critical to immediate public safety and focusing on thorough mapping for future recov-
ery planning. The outcome is a detailed map of all landslides induced by these events, manually identified using
high-resolution aerial photography (0.2 m pixel resolution; four bands – RGB and near-infrared (NIR)) and cate-
gorized with the help of a 3D viewer. This comprehensive landslide inventory, comprising 80997 landslide poly-
gons, has been made openly accessible to the scientific community (https://doi.org/10.5281/zenodo.13742643,
Pizziolo et al., 2024).

1 Introduction

Landslide inventories are crucial for susceptibility, hazard,
and risk assessments and management (Soeters and Van
Westen, 1996; Fell et al., 2008; Galli et al., 2008; Coromi-
nas et al., 2014). In Europe, landslide inventories are com-
piled on a national to a regional basis (Van Den Eeck-
haut and Hervás, 2012) and can be supported by advanced
landslide recognition and monitoring techniques (Guzzetti
et al., 2012; Jaboyedoff et al., 2012; Amatya et al., 2021;
Catani, 2021; Bhuyan et al., 2023). Landslide inventories
should be as complete and spatially accurate as possible,
and, also, they should consistently distinguish and classify
different landslide types. These factors are important for im-

proving frequency–area analyses (Malamud et al., 2004) and
for obtaining reliable statistically based landslide susceptibil-
ity maps thanks to complete input data (Steger et al., 2017;
Gaidzik and Ramírez-Herrera, 2021) and disjunct analysis of
landslide types (Zêzere, 2002).

Generally, inventories of large-scale landslides are quite
complete due to the landslides’ geomorphic features that re-
main evident long after their occurrence and the fact that
they can have slow movements detectable by remote sens-
ing (Bertolini et al., 2017; Rosi et al., 2018; Luetzenburg et
al., 2022; Ardizzone et al., 2023). On the contrary, regional
or national inventories might not include a complete record
of past shallow rainfall-induced landslides unless they were
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mapped soon after occurrence, i.e., before becoming hardly
recognizable due to vegetation growth, rill erosion, or land
cultivation (Guzzetti et al., 2004; Crozier, 2005; Cardinali et
al., 2006; Zieher et al., 2016; Hao et al., 2020, Santangelo et
al., 2023; Pittau et al., 2024). Therefore, it is crucial that ex-
isting national and regional landslide inventories be updated
following each significant rainfall event to gather data that
not only prove to be essential but also enhance the systematic
application of landslide susceptibility maps in land use plan-
ning (Fell et al., 2008). This is a challenging and important
task as the incidence of shallow rainfall-induced landslides is
likely to increase in Europe due to climate change (Gariano
and Guzzetti, 2016; Handwerger et al., 2022; Auflič et al.,
2023).

In the Emilia-Romagna region (northern Italy), land use
planning and land use restrictions are based on an inventory
map of landslides at 1 : 10000 scale (Bertolini et al., 2005)
and on a catalogue of thousands of records referring to the
activation or reactivation of landslides in the past (Piacentini
et al., 2018). These documents are updated after every occur-
rence or reactivation of large-scale landslides and after multi-
ple occurrences of shallow rainfall-induced landslides. In re-
cent years, updates have been necessary to include hundreds
of debris flows triggered during the rainstorm events that hit
Parma Province in September 2014 (Corsini et al., 2017) and
Piacenza Province in October 2015 (Scorpio et al., 2018; Ci-
ccarese et al., 2020). In May 2023, the entire southern sector
of Emilia-Romagna (from the provinces of Rimini to Reggio
Emilia) has been hit by two consecutive exceptional rainfall
events that triggered thousands of first-failure landslides. Fer-
rario and Livio (2024) provided an initial screening of these
landslides through visual inspection of Planet satellite im-
ages (3 m resolution) and limited field surveys, while Notti et
al. (2024) utilized an unsupervised identification method on
Sentinel-2 images (10 m resolution). Both inventories were
quickly compiled soon after the emergency, utilizing satellite
imagery with resolutions that are relatively low considering
the small size of the landslides from May 2023. Indeed, many
of these landslides were so small that they were challenging
to detect even at a 3 m resolution. Additionally, landslides
were not classified or categorized by type of movement or
material. Consequently, these two datasets were not intended
to achieve – nor did they achieve – the level of completeness,
consistency, and accuracy required for updating the official
landslide inventory.

In this paper, we present the landslide inventory dataset
of the May 2023 Emilia-Romagna events which has
been designated as the reference map by the Emilia-
Romagna region and the Po River Authority for the
“Special Plan for interventions against situations of hy-
drogeological instability” (Piano Speciale Dissesto Idro-
geologico – Eventi di Maggio 2023, https://www.adbpo.
it/piano-speciale-dissesto-idrogeologico/, last access: 10
March 2025) (approved in a preliminary version in April
2024) to aid the Commission for Reconstruction in imple-

menting the recovery phase. This spatial dataset is based
on expert-based identification, mapping, and classification of
landslides in high-resolution aerial images taken shortly after
the second event (0.2 m resolution, RGB, and near-infrared).
Particular attention has been given to the consistency of land-
slide type classification, which required the development and
application of an algorithm for data harmonization across ar-
eas surveyed by different operators.

2 The May 2023 Emilia-Romagna event

The Emilia-Romagna region is located in northern Italy and
stretches from the Apennine Mountains to the Po River Val-
ley and eastward to the Adriatic Sea (Fig. 1a). It is one of
Italy’s most economically prosperous regions, with a strong
industrial base in automotive, machinery, food processing,
and ceramics. The Po River Valley plays a vital role in agri-
culture, while the eastern coastline is a hub for both domestic
and international tourism. By contrast, the Apennine Moun-
tains present a more subdued economic landscape. The eco-
nomic activity and population in these mountains have de-
clined since the 1960s, and now there is a focus on agro-
tourism, ecotourism, and niche markets. Regional initiatives
are underway to foster economic growth in these mountain-
ous areas.

In May 2023, the Emilia-Romagna region was struck
by two exceptional rainfall events. The first, from 1 to 3
May, delivered approximately 200 mm of rain over a span
of 48 h. Only 2 weeks later, on 16–17 May, a second event
matched this intensity, with rainfall totals reaching 200–
250 mm within another 48 h window. The recurrence interval
for a single 2 d event was estimated to exceed 100–300 years,
but the combined effect of these two closely timed events
far surpassed 500 years (Brath et al., 2023). Both events im-
pacted roughly the same area in the eastern part of the region
(Fig. 1).

These rainfall events led to extensive flooding across the
Po Plain and triggered thousands of landslides in the Apen-
nines. The total damages have been estimated to surpass
EUR 9 billion, affecting roads, railways, buildings, and cul-
tural heritage sites, along with the destruction of bridges,
power facilities, and communication lines. Additionally,
agricultural fields, farming operations, and cultivated slopes
saw significant disruption over an area of about 1000 km2. A
total of 15 people lost their lives due to the flooding, and 2
lost their lives due to landslides.

The Emilia-Romagna region and the Italian government
promptly responded to the event, mobilizing all necessary re-
sources. The primary focus was on the Po Plain area, which is
densely populated and houses the majority of industrial and
agricultural activities. Consequently, the severe issues caused
by landslides in the mountainous regions were initially over-
looked. Over time, the significance of these issues became
apparent, but even a year after the disaster, the situation re-
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Figure 1. (a) Overview map of the Emilia-Romagna region (Italy), illustrating elevation and cumulative rainfall isohyets from the period of
1–17 May 2023. (b) Detailed view of the area most impacted by the event, featuring the geological units referenced in Table 1.

mained critical. The impact of landslides in the Apennines
has been especially severe due to the local economy’s vul-
nerability, the extensive damages to infrastructure, and the
significant land loss, all of which have slowed and compli-
cated the recovery process.

We assisted local and national agencies and working
groups in addressing the problems caused by landslides. The
initial 2 weeks following the event were primarily focused
on field surveys and rapid assessment of the most critical
situations that demanded immediate actions to ensure pub-

lic safety. Subsequently, our efforts shifted towards landslide
mapping. In a first stage, it was crucial to identify the roads
and buildings affected by landslides to coordinate emergency
interventions and to perform an initial damage assessment.
Afterward, we completed the landslide inventory to develop
a comprehensive map detailing all landslides triggered by the
event across the area. This map has been officially designated
as the landslide map for the May 2023 event by the Po River
Authority and the Emilia-Romagna region, and it is currently
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being used by the Commission for Reconstruction in imple-
menting the recovery phase.

3 Methods

This section describes the methodology used to develop the
landslide inventory for the May 2023 event. It covers the
classification of lithological units, the identification and map-
ping of landslides, their classification, and the quality control
and data harmonization procedures implemented.

3.1 Lithological-unit classification

In the study area, bedrock geology significantly influences
the morphology of the slopes; the mechanical properties of
the weathered soil layer’ the vegetation cover; and, conse-
quently, the proneness to slope instability. As a matter of
fact, these factors played a crucial role in the behavior of the
slopes during the May 2023 event, controlling the type and
density of landslides. Consequently, bedrock geology is an
essential base layer of our landslide inventory.

The geological map of the Emilia-Romagna region, cre-
ated by the regional Geological Survey at a 1 : 10000 scale
(AGSS-RER, 1986), includes more than 600 geological for-
mations. These formations are distinguished by unique fea-
tures that signify variations in depositional environments,
composition, or geological age. The variety and detail of
these formations illustrate the region’s complex geological
history and the precision employed in the map’s creation.

For our inventory, we categorized all geological forma-
tions into eight distinct units, as depicted in Fig. 1b and de-
tailed in Table 1. These units were delineated by merging
lithological characteristics with their respective structural do-
mains, recognizing that the same rock type can display vary-
ing structural and mechanical properties depending on its
location within the orogenic sequence. For example, flysch
rocks within the Ligurian domain (unit 5) are generally more
fractured, less resistant, and prone to deep-seated landslides
compared to those in the Tuscan–Umbrian domain (unit 7)
due to the extensive tectonic stress they endured in the accre-
tionary wedge.

The eight units identified were further divided into two
broad categories: fine-grained rock masses (units 1 to 3)
and coarse-grained rocks (units 4 to 8). This categoriza-
tion aids in the preliminary differentiation of the types
of weathered-soil covers these rocks produce, which expe-
rienced widespread landslides during May 2023. Coarse-
grained rocks typically produce granular soils composed of
sand, gravel, and cobbles, with smaller amounts of silt and
clay, aligning with the “debris” category in the Cruden and
Varnes (1996) classification. In contrast, fine-grained rocks
lead to the formation of fine soils predominantly made up of
silt and clay, fitting the “earth” classification. These two cat-
egories, debris and earth, are utilized to classify landslides
that occurred on soil-covered slopes.

3.2 Landslide identification and mapping

Landslide identification and mapping were conducted by
means of photo-interpretation of high-resolution aerial im-
ages. These images were captured using a Leica DMC III
sensor aboard a Cessna 402C aircraft, flying at approxi-
mately 4700 m a.s.l. The images, taken shortly after the sec-
ond rainfall on 23 May 2023, have a 0.2 m resolution and
include four bands: RGB and near-infrared.

The mapping process was organized as follows. The total
area was segmented based on the administrative boundaries
of the municipalities. These sections were then distributed
among three institutions: the University of Bologna, the Uni-
versity of Modena and Reggio Emilia, and the Geological
Survey of the Emilia-Romagna Region. Each institution as-
signed 4 mappers, with a total of 12 individuals being in-
volved in the effort. Landslide detection was conducted in
GIS environment by comparing pre- and post-event images
with an on-screen zoom of approximately 1 : 1000 (Fig. 2a
and b). Once a landslide was spotted, further inspection was
conducted using near-infrared (NIR) and normalized differ-
ence vegetation index (NDVI) images (Fig. 2c and d) and
supplemented by a 3D viewer featuring high-resolution im-
ages overlaid on a 30 m DEM (Copernicus GLO-30, ESA,
2024; Fig. 2e). Viewing the slope from different angles en-
hanced the delineation of the affected area and the interpre-
tation of the type of movement. Following this analysis, each
landslide was classified into the specified classes described
in the next section. The digital mapping of the landslide
polygon was then executed at scales ranging from 1 : 800 to
1 : 200, depending on the landslide’s size, ensuring precise
tracing of the affected perimeter. In this final stage, the re-
gional topographic map at 1 : 10000 scale was utilized to fur-
ther verify alignment with the existing topography (Fig. 2f).
While the delineation of the landslides was carried out at a
large scale for precise mapping of the boundaries, the final
inventory is designed to be appropriate for consultation at a
scale of 1 : 2000.

Overall, the process of identifying landslides was fairly
objective. Each landslide cleared vegetation, uncovered dis-
tinct patches of bare soil or bedrock, and led to deposits of
loose material. The post-event images, taken only 10 d after
the second rainfall, clearly displayed these geomorpholog-
ical markers, eliminating any ambiguity in recognizing the
landslides from the event. Additionally, most of the land-
slides were new occurrences, not present in the pre-event
images; even in case of re-activations, it was straightfor-
ward to identify the newly affected areas. This gives us
confidence that our dataset exclusively contains landslides
from the May 2023 event. It is important to emphasize the
distinct nature of this dataset. The existing landslide map
of the Emilia-Romagna region (https://geoportale.regione.
emilia-romagna.it/, last access: 3 March 2025) encompasses
all landslides identified in the region via photo interpretation,
historical data, and field surveys. This map provides a com-
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Table 1. Classification of the geological formations in the Emilia-Romagna region into eight units based on their lithological composition and
geological structural domains. Units 1 to 3 consist mainly of fine-grained rocks, while units 4 to 8 are primarily composed of coarse-grained
rocks.

Unit ID Lithology Domain Structural position Geological age

1 Clays, silty clays, and marly clays Padano–
Adriatic

Outer foredeep Pliocene to Pleistocene

2 Marls and marly clays Epiligurian Wedge-top basins Oligocene to Miocene

3 Clay shales, clay breccias, tectonized
clays, olistostromes

Ligurian Accretionary wedge Cretaceous to Eocene

4 Massive rocks: basalts, serpentines,
limestones, arenites

Ligurian,
Epiligurian

Accretionary wedge
Wedge-top basins

Cretaceous to Miocene

5 Flysch rocks made of rhythmic
alternations of sandstones,
limestones, pelites, and shales

Ligurian,
Epiligurian

Accretionary wedge
Wedge-top basins

Cretaceous to Eocene

6 Weakly cemented sandstones and
conglomerates

Padano–
Adriatic

Outer foredeep Pliocene to Pleistocene

7 Flysch rocks made of rhythmic
alternations of sandstones and pelites

Tuscan–
Umbrian

Inner foredeep Miocene

8 Weakly cemented sandstones with
interbedded pelitic layers

Padano–
Adriatic

Outer foredeep Pliocene to Pleistocene

Figure 2. Example of manually identifying and mapping landslides. (a) Pre-event image (AGEA aerial photos, April–July 2020, 0.2 m reso-
lution), (b) post-event image (23 May 2023, 0.2 m resolution), (c) near-infrared (NIR) images derived from post-event images, (d) normalized
difference vegetation index (NDVI) images derived from post-event images (dark colors signify absence of vegetation), (e) 3D visualization
of post-event images, (f) landslide map manually created using (a) to (e) and aligned with the pre-event topographic map at a 1 : 10000 scale.
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prehensive overview of landslide activity across a broad geo-
logical time frame, accounting for various climatic, seismic,
and morphological conditions. In contrast, our dataset specif-
ically captures the landslide response to a single critical me-
teorological event. Additionally, the criteria used to distin-
guish different types of landslides are specifically designed
for this scenario, as explained in the subsequent section (see
Sect. 3.3).

While identifying the landslides was straightforward,
defining their exact boundaries was more subjective. Many
landslides became fluidized upon failure, with the distal de-
bris spreading among trees without removing vegetation,
thus complicating the mapping of the deposit (Fig. 3a).
Moreover, several slopes experienced complete removal of
soil cover by adjoining shallow failures, blurring the distinc-
tion between individual slides (Fig. 3b). In these cases, we
chose to interpret the landslide boundaries rather than just
tracing the visible debris edges. For fluidized slides, the poly-
gons were adjusted by connecting visible debris patches to
include areas obscured by vegetation. For coalescent slides,
we attempted to map each individual slide by identifying dis-
tinctive arcuate shapes along the detachment scarps that sig-
nified separate failures. Although this approach introduced
some subjectivity into the manual mapping process, it was
necessary to create a dataset suitable for analyzing the mor-
phometric features of the landslides.

The manual mapping process was demanding and labor-
intensive. Initially, we focused on mapping landslides in
the areas most severely impacted by the event, particularly
around roads and urban centers. This priority was set to align
with the Civil Protection Agency’s needs to identify dam-
ages during the emergency response. This initial phase of
mapping, which produced several “damage maps” for the af-
fected municipalities, spanned the first 2 months following
the disaster. Subsequently, the landslide inventory was ex-
panded to cover the entire area over the following months.
The complete process took approximately 6 months to fin-
ish.

3.3 Landslide classification

Right from the start of our work, the classification of land-
slides triggered by the event was identified as a crucial task.
We utilized the well-known Cruden and Varnes (1996) clas-
sification system, which categorizes landslides based on two
primary criteria: the type of movement and the type of ma-
terial. Most of the landslides from the May 2023 event were
categorized either as debris slides, where mixed granular ma-
terial moves along a plane of weakness as a relatively coher-
ent mass, or as debris flows, where the material moves in
a fluid-like manner over greater distances. However, we en-
countered challenges in further distinguishing between vari-
ous types of debris slides and debris flows, a differentiation
not addressed by the standard classification.

Figures 4 and 5 illustrate the problem. According to the
Cruden and Varnes (1996) classification, all the landslides
depicted in Fig. 4 can be classified as debris flows. Yet, clear
differences are apparent between the upper (a1–3) and the
lower three (b1–3). The latter are typical debris flows that
start on a steep slope and stop as the slope decreases; the
former, while starting similarly on steep slopes, demonstrate
extensive propagation and complete fluidization of the de-
posit as they travel much further. None of these cases involve
a well-defined channel; thus, the classification proposed by
Hungr et al. (2014) that distinguished channelized-debris
avalanches flows from unchannelized-debris avalanches does
not apply here. A similar challenge presents itself with de-
bris slides (Fig. 5). Current classifications fail to distinguish
between slides of different degrees of mobility, a distinction
that is clearly visible in the field. In fact, some slides exhib-
ited high mobility, completely clearing the vegetation (upper
pictures, a1–3), while others show low mobility, indicated by
minimal vegetation damage (lower pictures, b1–3). Under-
standing the conditions that lead to these diverse behaviors is
crucial for hazard assessment and necessitates differentiating
these phenomena.

An additional classification challenge involves rock-block
slides. These landslides impacted the homoclinal slopes of
the Marnoso-Arenacea Formation (unit 7 in Fig. 1b) and
manifested as massive, translational rock-slab slides along
bedding planes. While classifying these landslides poses no
issues, it was necessary to distinguish between rock slides
based on their degree of evolution. Some experienced move-
ments ranging from several meters to tens of meters, signal-
ing paroxysmal failures (Fig. 6a1–a3), whereas others shifted
merely a few centimeters, indicative of incipient, undevel-
oped failures (Fig. 6b1–b3). The latter represent highly dan-
gerous zones prone to potential collapse and thus required
special attention.

These classification challenges were extensively discussed
by our team. We ultimately decided to adhere to the Cruden
and Varnes (1996) classification system to define the primary
types of landslides. These include debris slides (DSs), de-
bris flows (DFs), and rock-block slides (RSs) in the coarse-
grained units (Fig. 1b), along with earth slides (ESs) and
earth flows (EFs) in the fine-grained units. Then, we intro-
duced the informal subclasses of high-mobility debris slides
(DS1), low-mobility debris slides (DS2), long-runout debris
flows (DF1), limited-runout debris flows (DF2), fully devel-
oped rock slides (RS1), and incipient rock slides (RS2) to
capture the varied behaviors observed in the field. Subclasses
were not assigned to earth slides (ESs) and earth flows (EFs)
because landslides in areas with fine-grained soils were sig-
nificantly less frequent and had milder impacts. This varia-
tion in response is likely tied to the distinct hydrological be-
haviors of fine-grained soils within the study area. Previous
studies, which include statistical analyses of critical rainfall
(Rossi et al., 2012; Berti et al., 2012) and field monitoring of
unstable slopes (Berti et al., 2010; Berti and Simoni, 2012),
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Figure 3. Examples of uncertain landslide boundary delineations. (a) Debris slides interspersed among trees without clearing the vegetation,
(b) multiple coalescent debris slides segmented into individual slides.

Figure 4. Representative images of the two distinct types of debris flows caused by the May 2023 event.

indicate that these clay-rich soils are more prone to failure
during extended periods of rainfall rather than during brief,
intense downpours that generally cause surface runoff and
flooding.

3.4 Quality control

To ensure the consistency of the results, an experienced ge-
ologist conducted a comprehensive review of the entire area
after the completion of the manual mapping. This critical re-
view focused on several key aspects to verify that all mappers

adopted the same standards of detail and accuracy that were
established at the start of the work. Guided by a 1× 1 km
grid, the reviewer assessed the following: (i) any missed
landslides, (ii) the precision in outlining landslide bound-
aries, (iii) the consistency in interpreting vegetated areas,
(iv) the adherence to the established classification criteria,
and (v) the accurate segmentation of individual slide events.

The findings from this review were summarized in a re-
port sent to the 12 mappers. The report ranked the need for
revisions in each municipality from “small” to “high” and in-
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Figure 5. Representative images of the two distinct types of debris slides caused by the May 2023 event.

Figure 6. Representative images of the two distinct types of rock-block slides caused by the May 2023 event.
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cluded a detailed explanation of the necessary adjustments,
along with screenshots highlighting the errors detected. Each
mapper was then tasked with revising their section of the
manual inventory based on this feedback. This review and
revision phase lasted approximately 2 months.

Following these adjustments, the landslide map was sig-
nificantly improved. Although some variations persisted in
the resolution of digitization and in interpreting boundaries
obscured by vegetation, the primary discrepancies were ef-
fectively addressed and resolved. The only remaining issue
was the variation in landslide classification among mappers,
which was evident when comparing the inventory maps of
different municipalities. To address this, we developed the
automatic procedure detailed in the next section.

3.5 Data harmonization

As mentioned earlier, the criteria for landslide classification
were extensively discussed among us. We collectively exam-
ined and analyzed approximately 50 complex cases of land-
slides with uncertain classifications, particularly those that
straddle the categories of slides and flows and incipient rock-
block slides. This was done to synchronize the understanding
among mappers and to promote a consistent approach to clas-
sifying these phenomena. These preparatory efforts resulted
in a substantial homogeneity in the classification of rock-
block slide phenomena. However, notable variations were
still evident in the final map between different types of debris
slides and flows, which were influenced by the subjectivity of
the mappers. Some determined the classification based on the
landslide’s shape, while others determined the classification
on the presence of flow-like features in the deposition area,
and yet others made this determination based on the texture
of the debris within the landslide polygon. On the other hand,
such a distinction is inherently subjective due to the gradual
transition between slides and flows, making it challenging to
establish a clear-cut boundary or to define strict classification
rules. The same issue arose with classifying landslides based
on their degree of mobility. While it was evident that many
landslides exhibited complete fluidization and high mobility,
significant discrepancies persisted in how the mappers cate-
gorized these events.

To address this issue, we implemented the automated pro-
cedure depicted in the flowchart of Fig. 7. This procedure
utilizes standardized criteria to ensure uniform classification
of landslides throughout the area and to correct inevitable er-
rors in such a large dataset. The automated procedure was
applied to all landslides except for rock-block slides, which
have distinctive features that all mappers clearly and consis-
tently recognized. Four key steps were identified to achieve
a consistent classification of material type, movement type,
degree of mobilization of debris slides, and degree of flu-
idization of debris flows.

3.5.1 Material type (debris or earth)

The initial step was verifying the classification of material
types. As previously mentioned, landslides on soil-covered
slopes were divided into debris and earth categories accord-
ing to the Cruden and Varnes (1996) classification. In our
study area, this classification is clearly defined by the un-
derlying bedrock geology; debris is derived from coarse-
grained rock units, and earth is derived from fine-grained
units (Fig. 1b).

All mappers employed this classification system, refer-
encing the geological map of the Emilia-Romagna region
at a 1 : 10000 scale, which provided an objective and stan-
dardized framework for classifying material types. However,
manual mapping led to inconsistencies due to human er-
ror and subjective judgments, particularly when categoriz-
ing landslides spanning multiple material types. To address
these issues, we overlaid landslide polygons on the litholog-
ical map (Fig. 1b) and classified each landslide as either de-
bris or earth based on its polygon’s centroid location. This
classification was achieved through a simple spatial join be-
tween the landslide data and the lithological map within the
GIS environment.

3.5.2 Type of movement (slide or flow)

To standardize the distinction between slides and flows, we
employed a standard convolutional neural network (CNN)
specifically designed to recognize the distinct shapes of
slides and flows. The CNN was trained with data from the
municipality of Casola Valsenio. This area was chosen due
to its highly accurate manual mapping and because it served
as the initial training ground for the mappers, where classifi-
cation challenges were collaboratively discussed.

The CNN features an input layer, two convolutional lay-
ers (each with batch normalization and ReLU activation),
and subsequent maximum-pooling layers to reduce image di-
mensions and enhance feature extraction. The input layers
process 300× 300 pixel black-and-white images of individ-
ual landslides, with landslide areas marked in white. These
features are then categorized into slide or flow through a
fully connected layer, followed by a softmax layer that de-
termines the class probability. To enhance the model’s abil-
ity to generalize, we implemented various data augmenta-
tion techniques, including random horizontal reflections, ro-
tations ranging from−90 to 90°, scaling from 80 % to 120 %
of the original size, and translations up to 10 pixels.

The network was trained using a randomly selected half
of the 4156 debris slides and 1115 debris flows identified in
Casola Valsenio, while the other half was utilized to fine-
tune the network’s hyperparameters and to test and assess
the model’s performance. These evaluations showed that the
CNN effectively replicates expert classifications of slides and
flows. Utilizing the Adam optimizer with an initial learn-
ing rate of 0.001 over 100 epochs, the CNN reaches an F1
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Figure 7. Flowchart depicting the process used to ensure data quality and to standardize the classification of manually mapped landslides.

score of 0.80 on the testing dataset, indicating robust accu-
racy in terms of both precision and recall. Figure 8 displays
the confusion matrix obtained for the testing dataset, along-
side a selection of landslide images that were correctly and
incorrectly classified by the neural network. Of course, as is
clearly evident when looking at the false-positive and false-
negative cases, the CNN cannot overcome the inherent am-
biguity in classifying landslides that fall between slides and
flows, particularly those that are only partially fluidized and
whose polygon shapes are neither distinctly sub-circular nor
clearly elongated. However, by implementing the network
across all the polygons, we ensure that the classification cri-
teria agreed upon in Casola Valsenio are consistently applied
throughout the entire area.

3.5.3 Degree of mobility of debris slides

Debris slides were classified by mappers into two categories
based on their apparent mobility (Fig. 5). The class DS1,
indicating high-mobility slides, was assigned to slides that
showed extensive internal disruption and complete removal
of vegetation. The class DS2, denoting low-mobility slides,
was assigned to slides with minimal internal deformation
and little impact on vegetation. While mappers collectively
agreed on these criteria for classifying debris slides, discrep-
ancies arose due to variations in personal judgment.

To standardize this assessment, we evaluated the mobil-
ity of debris slides by examining the remaining vegetation

cover after movement. The green-leaf index (GLI) was used
to quantify the amount of green vegetation within a landslide
polygon:

GLI=
(2 · green− red− blue)
(2 · green+ red+ blue)

. (1)

Here, green, red, and blue denote the reflectance values from
the respective color bands. The GLI ranges between −1 and
1, with higher values indicating a denser presence of green
leaves.

To identify a suitable GLI threshold for distinguishing
the two classes, we analyzed the frequency distribution of
GLI values for DS1 and DS2 in the Casola Valsenio dataset.
As shown in Fig. 9, a distinct separation is observed in the
higher categories: 99 % of the 4144 high-mobility debris
slides (DS1) have GLI values under 0.08, indicating that they
are primarily bare soils with minimal or no vegetation. In
contrast, 34 % of the 125 low-mobility slides (DS2) exceed
this threshold, suggesting the presence of vegetation. Such
a threshold therefore allows for an effective classification of
DS1, but it risks misclassification of DS2.

The challenge in distinguishing the two classes stems from
the inherent subjectivity involved, especially when vegeta-
tion is only partially removed. Like the difficulty in differen-
tiating between slides and flows, no automated method can
fully address this issue. However, in our case, the occurrence
of DS2 is significantly less frequent than that of DS1. Con-
sequently, we have chosen to set a GLI threshold of 0.08,

Earth Syst. Sci. Data, 17, 1055–1074, 2025 https://doi.org/10.5194/essd-17-1055-2025



M. Berti et al.: RER2023 1065

Figure 8. Outcomes from the convolutional neural network model applied to differentiate slides from flows using the shape of the polygons.
The figure displays the confusion matrix for the testing dataset, which includes 50 % of the landslides manually mapped in the Casola
Valsenio municipality. TN denotes true negative, FN denotes false negative, and FP denotes false positive, TP denotes true positive. The
small polygons in each category represent example landslides that are correctly (TP, TN) or incorrectly (FP, FN) classified.

Figure 9. Comparison of the frequency distributions of the green-
leaf index for high-mobility debris slides (a) and low-mobility de-
bris slides (b) manually mapped in the municipality of Casola
Valsenio. The red line marks the optimal threshold distinguishing
the two landslide types.

acknowledging that this may lead to some misclassification
errors with DS2. This approach classifies nearly intact veg-

etation slides as low mobility (DS2) and those with partial
vegetation as high mobility (DS1). The resulting F1 score
is 0.86, and this threshold has proven to be stable whether
computed on a randomly selected subsample or a specific
segment of the Casola Valsenio area.

3.5.4 Degree of fluidization of debris flows

Debris flows were divided into two distinct classes to high-
light differences in fluidization and runout (Fig. 4). The DF1
category was used for long-runout debris flows, marked by
fluidized deposits spreading over relatively flat terrain. Con-
versely, DF2 was used for debris flows with more limited flu-
idization, typically confined to steep, forested slopes. Map-
pers used these criteria but also looked at factors such as the
size of the debris flow, the presence of a channel, or the loca-
tion of the initiation area. As a result, the manual classifica-
tion of DF1 and DF2 was notably inconsistent.

The classification problems are evident when attempting
to define an automatic standardization procedure. Both DF1
and DF2 exhibit elongated shapes and the absence of veg-
etation within the landslide areas. Consequently, previous
methods that rely on polygon shape or vegetation cover are
not applicable. One potential approach could involve using
the mean slope of the landslide area, which is generally
lower for DF1. However, this metric could introduce bias into
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the dataset, particularly when comparing the morphological
characteristics of the different landslides.

After experimenting with various factors and machine
learning techniques, we decided on a simple, reproducible
method. Using the Casola Valsenio dataset again, we deter-
mined that a reliable indicator of debris mobility is the per-
centage of the landslide area that extends over non-forested
slopes (NFSs). NFSs encompass all slopes lacking forest
cover, which, in most cases, are shrub and/or grassy areas,
areas with sparse or no vegetation, and agricultural lands.
Mappers typically classified debris flows that overrun these
areas as DF1. NFS is simply given by

NFS=
ANF

ATot
. (2)

Here, ANF is the landslide area on non-forested slopes, and
ATot is the total area of the landslide. ANF was detected by
overlapping the landslide polygon with the soil use coverage
SU2014 provided by the Emilia-Romagna region. This cov-
erage was derived from aerial images captured between May
and September 2014 using four bands at a 0.5 m resolution
and classified according to the Corine Land Cover directive.
All the slopes not categorized as 311 (broad-leaved forest),
312 (coniferous forest), or 313 (mixed forest) were identified
as non-forested.

In Casola Valsenio, a total of 1053 debris flows were
documented. Among these, 471 were notably fluid and mo-
bile (DF1), whereas the remaining 582 exhibited less mobil-
ity (DF2). The non-forested-slope (NFS) values varied dis-
tinctly between the two classes, with DF1 generally display-
ing higher NFS values (Fig. 10). An NFS threshold of 0.3 has
proven to be effective in distinguish between DF1 and DF2:
83 % of the DF1 category exceeds this threshold, whereas
82 % of the DF2 category falls below it. The corresponding
F1 score is 0.82, reflecting a high degree of accuracy.

The harmonization procedure described above resulted in
significant modifications to the initial manual classifications.
Approximately 50 % of the debris slides with limited mobil-
ity (DS2) were reclassified as debris slides with high mobil-
ity (DS1) due to either heavy or partial clearing of vegetation
cover by the movement. About 25 % of debris flows (DF1
and DF2) were reclassified as debris slides (DS1 or DS2)
due to the limited elongation of the deposit, and about 60 %
of earth flows (EFs) were reclassified as earth slides (ESs) for
the same reason. It is important to stress that the harmoniza-
tion process should not be viewed as an automatic classifica-
tion but rather as an effort to apply consistent classification
criteria across the entire area.

4 The landslide inventory dataset

The landslide inventory for the 2023 Emilia-Romagna event
includes 80997 landslide polygons, each categorized accord-
ing to the classification described in Sect. 3.2. The inventory

Figure 10. Comparison of debris flows with high fluidity (upper)
and low fluidity (lower) in the municipality of Casola Valsenio, an-
alyzed through the ratio of runout over non-forested slopes (NFSs).
The red line indicates the optimal threshold for distinguishing be-
tween the two types of landslides.

encompasses landslides triggered by the combined rainfall
events of 1–3 and 15–16 May 2023, without distinguishing
between the two events. Differentiation between the events
is feasible only in specific small areas where high-resolution
images were available after the first rainfall; however, this
distinction is not included in the current dataset.

Figure 11 provides an overview of the inventory, show-
ing landslide points (Fig. 11a) and a kernel density map
(Fig. 11b). Notably there is a strong, though not perfect, cor-
relation between cumulative rainfall and landslide density.
In the eastern part of the region, known as Romagna, the
300 mm rainfall isohyet roughly outlines the area where land-
slide density exceeds 40 landslides per square kilometer. In
contrast, the western part of the region, known as Emilia, has
a landslide density below 40 landslides per square kilometer
despite receiving the same amount of rainfall. This difference
can be attributed to the distinct geological settings of the two
areas. As shown in Fig. 1b, the Romagna region is primar-
ily characterized by a Miocene flysch (Marnoso-Arenacea
Formation, unit 7), which results in steep slopes and coarse-
grained weathered soil. Meanwhile, the Emilia region has a
more complex geological setting, including extensive areas
of fine-grained rocks that responded less intensely to these
rainfall events.

In the Romagna region, landslide density reached an im-
pressive level of over 250 landslides per square kilometer.
The zone most heavily affected, with more than 40 landslides
per square kilometer, stretches across roughly 800 km2 and
covers the outer sector of the Marnoso-Arenacea Formation
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Figure 11. (a) Map showing the distribution of the 80 997 landslides triggered by the May 2023 event in the Emilia-Romagna region,
manually mapped and represented as individual points. (b) Density map calculated as the number of landslides per square kilometer.

(red area in Fig. 12). About 64 % of the landslides occurred
within this zone. The landslide index, which is the ratio of
landslide area to total area, reaches 20 %–25 % in this area.
These figures are particularly significant considering the fact
that they represent the percentage of the area destabilized
during a single episode.

A deeper examination of the harmonized inventory under-
scores the occurrence and main features of various landslide
types, providing insights into their spatial distribution and

contributing factors. Figures 13 and 14 display several sta-
tistical details about the count, dimensions, and slope angles
of these landslides. The results from these diagrams are dis-
cussed below, enhanced with additional observations from
manual mapping and field surveys.

Debris slides (DSs) represent 66 % of all landslides by
number and 49 % by area, marking them as the most com-
mon type triggered by the event (Fig. 13). These landslides
were generally small to very small (area of less than 1000 m2,
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Figure 12. Detail of the Romagna area showing two classes of landslide density (between 10 and 40 landslides per square kilometer and
more than 40 landslides per square kilometer), with the eight lithological units in background.

Figure 13. Pie charts showing the percentage of landslide types by number (a) and by area (b).

Fig. 14) and typically occurred on steep slopes with in-
clines exceeding 25–30°. In the region, many of these slopes
are covered with forests as they are unsuitable for farming;
hence, while root reinforcement and rainwater interception
by the tree canopies exist, they were insufficient to prevent
these failures. Approximately 94 % of the slides were fast-
moving and became liquefied after traveling a short distance
(DS1). A minor fraction (6 %) moved as a coherent mass,
showing considerably less internal disruption (DS2). Slides
with high mobility caused extensive damage to roads, build-
ings, and infrastructure and transported large amounts of de-
bris and wood into rivers. Conversely, low-mobility slides

predominantly occurred on milder slopes and near roadways.
These slides might indicate early-stage slides that had not
fully developed, secondary failures behind landslide head-
scarps, or slides involving rotational movements.

Debris flows (DFs) are the second most frequent type
of landslide, constituting 15 % of the total count and 29 %
by area (Fig. 13). DFs were consistently initiated by debris
slides on slopes that are generally steeper than 25–30°. Cur-
rently, it remains difficult to ascertain why some debris slides
transformed into debris flows while others did not. However,
it is evident that the predominant failure mechanism during
the May 2023 event was shallow sliding of the weathered soil
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Figure 14. Frequency histograms depicting size of various landslide types. The classes labeled at the top of each chart (VSM denotes very
small, SM denotes small, and MED denotes medium) correspond to the size classification proposed by McColl and Cook (2024).

cover. Together, debris flows and slides represent 81 % of the
landslides cataloged in the inventory. After the initial fail-
ure, debris flows generally traveled without following prede-
fined channels and cleared the vegetation, forming straight,
elongated rectangular shapes. About 50 % of these flows had
relatively limited run-outs halting along steep slopes (DF2),
while the rest displayed significantly higher mobility, spread-
ing extensively across gentle slopes due to complete fluidiza-
tion of the material (DF1). A notable feature of the debris
flows triggered during the event, especially DF1, was their
relatively low destructive power. In many cases, these flows
approached buildings and roads without causing substantial
damage and spread over grassy fields without harming the
vegetation. The limited damage caused by these flows can be
linked to their composition, primarily liquefied sand and silt
without large cobbles or boulders. This composition enabled
them to flow downslope as a dense slurry without a destruc-
tive bouldery front. The typical dimensions of debris flows
range from very small to medium (Fig. 14).

Rock-block slides (RSs) constitute less than 2 % by num-
ber and 5 % by area of all landslides (Fig. 13), but they
left the most profound impression on the public and media.
These landslides occurred on homoclinal slopes within the
Marnoso-Arenacea Formation (lithological unit 7) and devel-
oped as planar slides along bedding planes that aligned with

the slope. The thickness of the displaced rock mass varied
from about 2 to over 30 m, and several slides extended over
areas larger than 10 ha. Compared to debris flows and debris
slides, rock-block slides affected more gentle slopes, typi-
cally less than 15°, and were bigger in size (class medium,
Fig. 14). Their large volume and high velocity and the fact
that they occurred on sloping lands that were heavily ur-
banized and farmed made these landslides a major concern
during the event. All rock slides initially traveled as coher-
ent rock blocks, moving translationally for several to tens of
meters. However, some slides disintegrated during their mo-
tion, transforming into rapid flows of debris and fragmented
rock. This disintegration typically occurred when the dis-
placed blocks tumbled down an existing scarp or struck a
lateral slope, causing the material to break apart. These frag-
mented rock-block slides were highly mobile and covered
long distances.

Earth slides and earth flows accounted for 12 % and 5 % of
the total number of landslides and 7 % and 10 % of the total
area affected, respectively (Fig. 13). These landslides pre-
dominantly occurred within fine-grained units, specifically
the Pliocene clays (unit 1) and Cretaceous clay shales (unit
3), as illustrated in Fig. 1b. These regions generally experi-
enced fewer landslides, with less severe impacts compared
to areas dominated by coarse-grained rocks in the southern
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parts. The distinct patterns of landslides in areas with coarse-
and fine-grained lithological units are clearly illustrated in
the sample maps of Fig. 15. While landslides are commonly
found on steep slopes in both cases, the coarse-grained units
also show that even gentle slopes are impacted by extensive
long-runout debris flows (DF1 in Fig. 15a) and rock-block
slides (RS1). Conversely, in the fine-grained units (Fig. 15b),
earth flows and earth slides are primarily concentrated in the
badlands areas, with gentle slopes remaining largely unaf-
fected. Moreover, in Emilia-Romagna, it is typical for earth
slides and especially for earth flows to occur repeatedly at the
same locations as re-activations of dormant landslides. This
recurring pattern was evident during the May 2023 event,
with most landslides appearing as re-activations of previ-
ously known landslides, which were already familiar to the
local communities. In contrast, nearly all the landslides in the
coarse-grained units – including debris slides, debris flows,
and rock-block slides – represented first-time failures and oc-
curred unexpectedly on slopes previously free of documented
landslides.

5 Limitations and future updates

The landslide inventory was carried out with great care un-
der the constraints imposed by the emergency situation and
ongoing recovery efforts. Utilizing high-resolution 0.2 m im-
agery and an automated harmonization process facilitated a
detailed and consistent record across the region. However, as
is typical with any expert-driven inventory, errors and incon-
sistencies are unavoidable.

Missed landslides, or false negatives, are likely to occur
in shadowed areas like river gorges or steep slopes, as well
as in forested areas where landslides have occurred without
clearing the vegetation. Additionally, landslides with min-
imal ground displacement, although clearly visible on-site,
may not be discernible in aerial images and thus may remain
undetected. False positives – areas mistakenly identified as
landslides – are also possible but are expected to be fewer.
These may include anthropogenic debris accumulations, ex-
cavation activities, or plowed fields that alter the soil surface
in a manner similar to landslides or landslides that happened
after the pre-event images from the period of April–July 2020
but before the May 2023 event. Nevertheless, we estimate
that the combined total of missed or incorrectly identified
landslides might constitute less than 1 % of the total inven-
tory.

The primary limitation of the inventory likely lies in the
accuracy of the landslide boundaries. Not all mappers across
the area had sufficient time to delineate the landslide poly-
gons with high-resolution detail, resulting in some bound-
aries appearing jagged and imprecise upon closer inspection.
The data quality procedures brought this issue to light, but re-
drawing all the rough-edged polygons would be excessively
time-consuming. Given that the locations of these landslides

are accurate, we chose to publish and make available the in-
ventory in its current state and defer any refinements to future
updated versions that, besides refining polygons, will also in-
corporate changes recommended by local authorities, which
are currently being considered. In April 2024, the Emilia-
Romagna region shared the landslide inventory with all mu-
nicipalities affected by the event, requesting feedback on any
overlooked landslides. This information is now being gath-
ered, and a first update is scheduled for completion by the
end of 2025. Initial feedback primarily concerns small land-
slides that caused damage to private or public properties but
were not detected in aerial photographs due to minimal dis-
placement. These new landslides will be included in version
2 of the inventory, which will be available in the same Zen-
odo repository.

6 Data availability

The landslide inventory is freely accessible in the Zenodo
repository (https://doi.org/10.5281/zenodo.13742643, Pizzi-
olo et al., 2024). The dataset is available as an ESRI (Envi-
ronmental Systems Research Institute) shapefile and is com-
patible with GIS software. The shapefile encompasses sev-
eral attributes: polygon ID (IDC), landslide type as manually
classified by the operator (ClassMan), geological unit of the
polygon’s centroid (Lito), green-leaf index (GLI), percentage
of deposit over non-forested slopes (NFS), and landslide type
after applying the harmonization algorithm (ClassNew).

7 Concluding remarks

The dataset of the May 2023 Emilia-Romagna event encom-
passes more than 80 000 rainfall-induced landslides (mostly
first-failure) distributed over an area of more 6000 km2, with
density reaching as high as 200 landslides per square kilome-
ter. Despite some inherent limitations and potential areas for
improvement in the dataset, we believe that our landslide in-
ventory offers significant value to the scientific community
and to the involved institutions for several reasons.

Firstly, it documents the response of a large area to an
exceptional meteorological event, likely linked to ongoing
climate change. This can support the scientific community
in proving that multiple occurrences of rainfall-related land-
slides are likely to become more frequent in the coming years
and can make decision-makers more aware of the fact that
even slopes that have been unaffected by landslides in the
past cannot be considered to be free of risk for the future.

Secondly, the Emilia-Romagna region’s relatively
straightforward geological framework makes it ideal for
conducting geospatial analyses of landslide susceptibility
and for proving that these analyses can be adopted to support
land use planning in addition to landslide inventories.
Actually, the Emilia-Romagna region’s geoportal provides
free access to an extensive range of spatial data, including
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Figure 15. Example images from the landslide inventory showing two representative areas of coarse-grained units (a) and of fine-grained
units (b). DS1 denotes debris slides with high mobility, DS2 denotes debris slides with low mobility, DF1 denotes debris flow with high
fluidity, DF2 denotes debris flow with low fluidity, RS1 denotes fully developed rock-block slides, RS2 denotes incipient rock-block slides,
ES denotes earth slide, and EF denotes earth flow.

DEMs, lithology, land use, and rainfall data, all of which can
be integrated into our landslide map to test both traditional
and machine-learning-based predictive tools.

Thirdly, the predominance of shallow planar failures in
this event provides an excellent case for testing physically
based slope stability models and for highlighting the rele-
vance of such types of landslides in the study area so as to
promote a much more careful evaluation of the possible im-

pact of such phenomena on existing infrastructure networks
and for designing new assets.

In conclusion, we warmly invite interested colleagues to
contact us with any questions and/or specific needs or to ini-
tiate a collaborative research effort that could transform a
tragic event into an opportunity to enhance our understanding
of landslide risk assessment.
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Supplement. The supplement related to this article is available
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