Articles | Volume 16, issue 8
https://doi.org/10.5194/essd-16-3795-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3795-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Bing Li
Key Research Institute of Yellow River Civilization and Sustainable Development & Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou 450046, China
Department of Geography, University of Hong Kong, Hong Kong SAR 999077, China
Department of Geography, University of Hong Kong, Hong Kong SAR 999077, China
Guanpeng Dong
Key Research Institute of Yellow River Civilization and Sustainable Development & Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou 450046, China
Xiaobang Liu
The 27th Research Institute of the China Electronics Technology Group Corporation, Zhengzhou 450047, China
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Yufang Zhang
School of Software, Northwestern Polytechnical University, Xi'an 710072, China
Related authors
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025, https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Short summary
This study addresses the challenge of how clouds affect the Earth's energy balance, which is vital for understanding climate change. We developed a new method to create long-term cloud radiative kernels to improve the accuracy of measurements of sunlight reaching the surface, which significantly reduces errors. Findings suggest that prior estimates of cloud cooling effects may have been overstated, emphasizing the need for better strategies to manage climate change impacts in the Arctic.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Preprint under review for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Fan Yang, Guanpeng Dong, Xiaoyu Meng, Richard A. Houghton, Yang Gao, Fanneng He, Meijiao Li, Wenjin Li, Zhihao Liu, Xudong Zhai, Pengfei Wu, Hongjuan Zhang, Qinqin Mao, Yuanzhi Yao, and Chao Yue
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-36, https://doi.org/10.5194/essd-2025-36, 2025
Preprint under review for ESSD
Short summary
Short summary
We used a millennial dataset of land-use change in China, combined with comprehensive soil and vegetation carbon density datasets, to quantify China’s annual carbon emissions resulting from land-use change between 1000 and 2019 using a bookkeeping model. The annual carbon emission flux provides a robust historical baseline for assessing terrestrial ecosystem carbon budgets at national and provincial scales, both in the present and future.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Aires, F., Prigent, C., and Rossow, W. B.: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions, J. Geophys. Res.-Atmos., 109, 313–331, https://doi.org/10.1029/2003JD003527, 2004.
Auger, M., Morrow, R., Kestenare, E., Sallee, J. B., and Cowley, R.: Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability, Nat. Commun., 12, 514, https://doi.org/10.1038/s41467-020-20781-1, 2021.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2, 2001.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003.
Bastiaanssen, W. G., Menenti, M., Feddes, R., and Holtslag, A.: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol., 212, 198–212, 1998.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001.
Cao, B., Liu, Q., Du, Y., Roujean, J.-L., Gastellu-Etchegorry, J.-P., Trigo, I. F., Zhan, W., Yu, Y., Cheng, J., Jacob, F., Lagouarde, J.-P., Bian, Z., Li, H., Hu, T., and Xiao, Q.: A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives, Remote Sens. Environ., 232, 111304, https://doi.org/10.1016/j.rse.2019.111304, 2019.
Chen, B., Huang, B., and Xu, B.: Comparison of Spatiotemporal Fusion Models: A Review, Remote Sens., 7, 1798–1835, https://doi.org/10.3390/rs70201798, 2015.
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, California, USA, https://doi.org/10.1145/2939672.2939785, 785–794, 2016.
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data, Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, 2021.
Cheng, J. and Liang, S.: Estimating global land surface broadband thermal-infrared emissivity using advanced very high resolution radiometer optical data, Int. J. Digit. Earth, 6, 34–49, 2013.
Cheng, J. and Liang, S.: Global Estimates for High-Spatial-Resolution Clear-Sky Land Surface Upwelling Longwave Radiation From MODIS Data, IEEE T. Geosci. Remote, 54, 4115–4129, https://doi.org/10.1109/tgrs.2016.2537650, 2016.
Cheng, J., Liang, S., Wang, W., and Guo, Y.: An efficient hybrid method for estimating clear-sky surface downward longwave radiation from MODIS data, J. Geophys. Res.-Atmos., 122, 2616–2630, https://doi.org/10.1002/2016jd026250, 2017.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Duan, S.-B., Li, Z.-L., Wang, N., Wu, H., and Tang, B.-H.: Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data, Remote Sens. Environ., 124, 15–25, https://doi.org/10.1016/j.rse.2012.04.016, 2012.
Duan, S.-B., Li, Z.-L., Tang, B.-H., Wu, H., Tang, R., Bi, Y., and Zhou, G.: Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data, Remote Sens., 6, 3247–3262, https://doi.org/10.3390/rs6043247, 2014.
Duan, S.-B., Li, Z.-L., Cheng, J., and Leng, P.: Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces, ISPRS J. Photogramm. Remote, 126, 1–10, https://doi.org/10.1016/j.isprsjprs.2017.02.003, 2017a.
Duan, S.-B., Li, Z.-L., and Leng, P.: A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data, Remote Sens. Environ., 195, 107–117, https://doi.org/10.1016/j.rse.2017.04.008, 2017b.
Duan, S. B., Li, Z. L., Li, H., Gottsche, F. M., Wu, H., Zhao, W., Leng, P., Zhang, X., and Coll, C.: Validation of Collection 6 MODIS land surface temperature product using in situ measurements, Remote Sens. Environ., 225, 16–29, https://doi.org/10.1016/j.rse.2019.02.020, 2019.
Duan, S.-B., Lian, Y., Zhao, E., Chen, H., Han, W., and Wu, Z.: A Novel Approach to All-Weather LST Estimation Using XGBoost Model and Multisource Data, IEEE T. Geosci. Remote, 61, 1–14, https://doi.org/10.1109/tgrs.2023.3324481, 2023.
Ermida, S. L., DaCamara, C. C., Trigo, I. F., Pires, A. C., Ghent, D., and Remedios, J.: Modelling directional effects on remotely sensed land surface temperature, Remote Sens. Environ., 190, 56–69, https://doi.org/10.1016/j.rse.2016.12.008, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Holmes, T. R. H., De Jeu, R. A. M., Owe, M., and Dolman, A. J.: Land surface temperature from Ka band (37 GHz) passive microwave observations, J. Geophys. Res., 114, D04113, https://doi.org/10.1029/2008jd010257, 2009.
Hong, F., Zhan, W., Göttsche, F.-M., Lai, J., Liu, Z., Hu, L., Fu, P., Huang, F., Li, J., Li, H., and Wu, H.: A simple yet robust framework to estimate accurate daily mean land surface temperature from thermal observations of tandem polar orbiters, Remote Sens. Environ., 264, 112612, https://doi.org/10.1016/j.rse.2021.112612, 2021.
Hong, F., Zhan, W., Göttsche, F.-M., Liu, Z., Dong, P., Fu, H., Huang, F., and Zhang, X.: A global dataset of spatiotemporally seamless daily mean land surface temperatures: generation, validation, and analysis, Earth Syst. Sci. Data, 14, 3091–3113, https://doi.org/10.5194/essd-14-3091-2022, 2022.
Inamdar, A. K., French, A., Hook, S., Vaughan, G., and Luckett, W.: Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States, J. Geophys. Res., 113, D07107, https://doi.org/10.1029/2007jd009048, 2008.
Jia, A., Ma, H., Liang, S., and Wang, D.: Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method, Remote Sens. Environ., 263, 112566, https://doi.org/10.1016/j.rse.2021.112566, 2021.
Jia, A., Liang, S., and Wang, D.: Generating a 2-km, all-sky, hourly land surface temperature product from Advanced Baseline Imager data, Remote Sens. Environ., 278, 113105, https://doi.org/10.1016/j.rse.2022.113105, 2022.
Jia, A., Liang, S., Wang, D., Ma, L., Wang, Z., and Xu, S.: Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data, Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, 2023.
Jin, M. and Dickinson, R. E.: A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances, J. Geophys. Res.-Atmos., 105, 27037–27047, https://doi.org/10.1029/2000jd900318, 2000.
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surv. Geophys., 29, 421–469, 2008.
Kappas, M. and Phan, T. N.: Application of MODIS land surface temperature data: a systematic literature review and analysis, J. Appl. Remote Sens., 12, 1, https://doi.org/10.1117/1.jrs.12.041501, 2018.
Kim, M., Brunner, D., and Kuhlmann, G.: Importance of satellite observations for high-resolution mapping of near-surface NO2 by machine learning, Remote Sens. Environ., 264, 112573, https://doi.org/10.1016/j.rse.2021.112573, 2021.
Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., and Rennie, J.: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3, J. Geophys. Res., 116, D19121, https://doi.org/10.1029/2011jd016187, 2011.
Li, B. and Liang, S.: All-weather 1km land surface temperature at global scale from 2000–2020 from MODIS data, GLASS [data set], https://glass-product.bnu.edu.cn/dload.html (last access: 22 August 2024), 2024.
Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., and He, T.: Estimation of all-sky 1 km land surface temperature over the conterminous United States, Remote Sens. Environ., 266, 112707, https://doi.org/10.1016/j.rse.2021.112707, 2021.
Li, B., Liang, S., Ma, H., Liu, X., He, T., and Zhang, Y.: All-weather 1 km land surface temperature at global scale from 2000–2020 from MODIS data, Zenodo [data set], https://doi.org/10.5281/zenodo.4292068, 2024.
Li, J.-H., Li, Z.-L., Liu, X., and Duan, S.-B.: A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021, Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023, 2023a.
Li, J.-H., Li, Z.-L., Liu, X., Duan, S.-B., Si, M., Shang, G., and Zhang, X.: A generalized method for retrieving global daily mean land surface temperature from polar-orbiting thermal infrared sensor instantaneous observations, Int. J. Remote Sens., 1–22, https://doi.org/10.1080/01431161.2023.2225229, 2023b.
Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Li, X., Chen, J., He, C., Li, X., Yu, L., Clinton, N., and Zhu, Z.: Mapping global urban boundaries from the global artificial impervious area (GAIA) data, Environ. Res. Lett., 15, 094044, https://doi.org/10.1088/1748-9326/ab9be3, 2020.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and Sobrino, J. A.: Satellite-derived land surface temperature: Current status and perspectives, Remote Sens. Environ., 131, 14–37, https://doi.org/10.1016/j.rse.2012.12.008, 2013.
Li, Z. L., Wu, H., Duan, S. B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B. H., Yan, G., and Zhou, C.: Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications, Rev. Geophys., 61, e2022RG000777, https://doi.org/10.1029/2022rg000777, 2023.
Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., Zhang, X., Liu, Q., Cheng, J., Tang, H., Qu, Y., Bo, Y., Qu, Y., Ren, H., Yu, K., and Townshend, J.: A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies, Int. J. Digit. Earth, 6, 5–33, https://doi.org/10.1080/17538947.2013.805262, 2013.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., and Zhou, J.: The Global Land Surface Satellite (GLASS) Product Suite, B. Am. Meteorol. Soc., 102, E323–E337, https://doi.org/10.1175/bams-d-18-0341.1, 2021.
Liu, Q., Wang, L., Qu, Y., Liu, N., Liu, S., Tang, H., and Liang, S.: Preliminary evaluation of the long-term GLASS albedo product, Int. J. Digit. Earth, 6, 69–95, https://doi.org/10.1080/17538947.2013.804601, 2013.
Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., and Ren, Z.: The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China, Vadose Zone J., 17, 180072, https://doi.org/10.2136/vzj2018.04.0072, 2018.
Liu, S. M., Xu, Z. W., Zhu, Z. L., Jia, Z. Z., and Zhu, M. J.: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China, J. Hydrol., 487, 24–38, https://doi.org/10.1016/j.jhydrol.2013.02.025, 2013.
Liu, W., Cheng, J., and Wang, Q.: Estimating Hourly All-Weather Land Surface Temperature From FY-4A/AGRI Imagery Using the Surface Energy Balance Theory, IEEE T. Geosci. Remote, 61, 1–18, https://doi.org/10.1109/tgrs.2023.3254211, 2023.
Liu, X., Liang, S., Li, B., Ma, H., and He, T.: Mapping 30 m Fractional Forest Cover over China's Three-North Region from Landsat-8 Data Using Ensemble Machine Learning Methods, Remote Sens., 13, 2592, https://doi.org/10.3390/rs13132592, 2021.
Liu, Y., Ackerman, S. A., Maddux, B. C., Key, J. R., and Frey, R. A.: Errors in Cloud Detection over the Arctic Using a Satellite Imager and Implications for Observing Feedback Mechanisms, J. Climate, 23, 1894–1907, https://doi.org/10.1175/2009jcli3386.1, 2010.
Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F., Zeng, C., Meng, X., and Shi, C.: Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach, Remote Sens. Environ., 246, 111863, https://doi.org/10.1016/j.rse.2020.111863, 2020.
Ma, J., Zhou, J., Göttsche, F.-M., Liang, S., Wang, S., and Li, M.: A global long-term (1981–2000) land surface temperature product for NOAA AVHRR, Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, 2020.
Ma, J., Shen, H., Jiang, M., Lin, L., Meng, C., Zeng, C., Li, H., and Wu, P.: A mechanism-guided machine learning method for mapping gapless land surface temperature, Remote Sens. Environ., 303, 114001, https://doi.org/10.1016/j.rse.2024.114001, 2024.
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., and Johnson, B. A.: Deep learning in remote sensing applications: A meta-analysis and review, ISPRS J. Photogramm. Remote Sens., 152, 166–177, https://doi.org/10.1016/j.isprsjprs.2019.04.015, 2019.
Ma, Y., Hu, Z., Xie, Z., Ma, W., Wang, B., Chen, X., Li, M., Zhong, L., Sun, F., Gu, L., Han, C., Zhang, L., Liu, X., Ding, Z., Sun, G., Wang, S., Wang, Y., and Wang, Z.: A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau, Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, 2020.
Mao, K., Zuo, Z., Shen, X., Xu, T., Gao, C., and Liu, G.: Retrieval of Land-surface Temperature from AMSR2 Data Using a Deep Dynamic Learning Neural Network, Chin. Geogr. Sci., 28, 1–11, https://doi.org/10.1007/s11769-018-0930-1, 2018.
McFarland, M. J., Miller, R. L., and Neale, C. M. U.: Land surface temperature derived from the SSM/I passive microwave brightness temperatures, IEEE T. Geosci. Remote, 28, 839–845, https://doi.org/10.1109/36.58971, 1990.
Mercury, M., Green, R., Hook, S., Oaida, B., Wu, W., Gunderson, A., and Chodas, M.: Global cloud cover for assessment of optical satellite observation opportunities: A HyspIRI case study, Remote Sens. Environ., 126, 62–71, https://doi.org/10.1016/j.rse.2012.08.007, 2012.
Metz, M., Rocchini, D., and Neteler, M.: Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail, Remote Sens., 6, 3822–3840, https://doi.org/10.3390/rs6053822, 2014.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Ohmura, A., Gilgen, H., Hegner, H., Müller, G., Wild, M., Dutton, E. G., Forgan, B., Fröhlich, C., Philipona, R., Heimo, A., König-Langlo, G., McArthur, B., Pinker, R., Whitlock, C. H., and Dehne, K.: Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research, B. Am. Meteorol. Soc., 79, 2115–2136, https://doi.org/10.1175/1520-0477(1998)079<2115:bsrnbw>2.0.co;2, 1998.
Østby, T. I., Schuler, T. V., and Westermann, S.: Severe cloud contamination of MODIS Land Surface Temperatures over an Arctic ice cap, Svalbard, Remote Sens. Environ., 142, 95–102, https://doi.org/10.1016/j.rse.2013.11.005, 2014.
Pede, T. and Mountrakis, G.: An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States, ISPRS J. Photogramm. Remote Sens., 142, 137–150, https://doi.org/10.1016/j.isprsjprs.2018.06.003, 2018.
Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., and Liu, S.: Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo From MODIS Data, IEEE T. Geosci. Remote, 52, 907–919, https://doi.org/10.1109/tgrs.2013.2245670, 2014.
Qu, Y., Liang, S., Liu, Q., Li, X., Feng, Y., and Liu, S.: Estimating Arctic sea-ice shortwave albedo from MODIS data, Remote Sens. Environ., 186, 32–46, https://doi.org/10.1016/j.rse.2016.08.015, 2016.
Rao, Y., Liang, S., Wang, D., Yu, Y., Song, Z., Zhou, Y., Shen, M., and Xu, B.: Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau, Remote Sens. Environ., 234, 111462, https://doi.org/10.1016/j.rse.2019.111462, 2019.
Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., and Zhang, L.: Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data, Remote Sens. Environ., 240, 111692, https://doi.org/10.1016/j.rse.2020.111692, 2020.
Shiff, S., Helman, D., and Lensky, I. M.: Worldwide continuous gap-filled MODIS land surface temperature dataset, Sci. Data, 8, 74, https://doi.org/10.1038/s41597-021-00861-7, 2021.
Stokes, G. M. and Schwartz, S. E.: The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed, B. Am. Meteorol. Soc., 75, 1201–1221, https://doi.org/10.1175/1520-0477(1994)075<1201:tarmpp>2.0.co;2, 1994.
Sun, D. and Pinker, R. T.: Implementation of GOES-based land surface temperature diurnal cycle to AVHRR, Int. J. Remote Sens., 26, 3975–3984, https://doi.org/10.1080/01431160500117634, 2005.
Tang, W., Zhou, J., Ma, J., Wang, Z., Ding, L., Zhang, X., and Zhang, X.: TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022), Earth Syst. Sci. Data, 16, 387–419, https://doi.org/10.5194/essd-16-387-2024, 2024.
Tomlinson, C. J., Chapman, L., Thornes, J. E., and Baker, C.: Remote sensing land surface temperature for meteorology and climatology: a review, Meteorol. Appl., 18, 296–306, https://doi.org/10.1002/met.287, 2011.
Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. P., Cihlar, J., Teillet, P., Sadowski, F., and Ruttenberg, S.: The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme, Int. J. Remote Sens., 15, 3417–3441, https://doi.org/10.1080/01431169408954338, 2007.
Wan, Z.: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, Remote Sens. Environ., 140, 36–45, https://doi.org/10.1016/j.rse.2013.08.027, 2014.
Wan, Z. and Li, Z.-L.: A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE T. Geosci. Remote, 35, 980–996, 1997.
Wan, Z., Wang, P., and Li, X.: Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA, Int. J. Remote Sens., 25, 61–72, https://doi.org/10.1080/0143116031000115328, 2010.
Weng, Q.: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends, ISPRS J. Photogramm. Remote Sens., 64, 335–344, https://doi.org/10.1016/j.isprsjprs.2009.03.007, 2009.
Williamson, S., Hik, D., Gamon, J., Kavanaugh, J., and Flowers, G.: Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment, Remote Sens., 6, 946–963, https://doi.org/10.3390/rs6020946, 2014.
Wu, P., Yin, Z., Zeng, C., Duan, S.-B., Gottsche, F.-M., Ma, X., Li, X., Yang, H., and Shen, H.: Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A review of reconstruction and spatiotemporal fusion techniques, IEEE Geosci. Remote Sens. Mag., 9, 112–137, https://doi.org/10.1109/mgrs.2021.3050782, 2021.
Wu, P., Su, Y., Duan, S.-B., Li, X., Yang, H., Zeng, C., Ma, X., Wu, Y., and Shen, H.: A two-step deep learning framework for mapping gapless all-weather land surface temperature using thermal infrared and passive microwave data, Remote Sens. Environ., 277, 113070, https://doi.org/10.1016/j.rse.2022.113070, 2022.
Xing, Z., Li, Z.-L., Duan, S.-B., Liu, X., Zheng, X., Leng, P., Gao, M., Zhang, X., and Shang, G.: Estimation of daily mean land surface temperature at global scale using pairs of daytime and nighttime MODIS instantaneous observations, ISPRS J. Photogramm. Remote Sens., 178, 51–67, https://doi.org/10.1016/j.isprsjprs.2021.05.017, 2021.
Xu, S. and Cheng, J.: A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering, Remote Sens. Environ., 254, 112256, https://doi.org/10.1016/j.rse.2020.112256, 2021.
Yamamoto, S.: Findings through the AsiaFlux network and a view toward the future, J. Geogr. Sci., 15, 142, https://doi.org/10.1360/gs050203, 2005.
Yao, R., Wang, L., Huang, X., Cao, Q., Wei, J., He, P., Wang, S., and Wang, L.: Global seamless and high-resolution temperature dataset (GSHTD), 2001–2020, Remote Sens. Environ., 286, 113422, https://doi.org/10.1016/j.rse.2022.113422, 2023.
Yu, P., Zhao, T., Shi, J., Ran, Y., Jia, L., Ji, D., and Xue, H.: Global spatiotemporally continuous MODIS land surface temperature dataset, Sci. Data, 9, 143, https://doi.org/10.1038/s41597-022-01214-8, 2022.
Yu, W., Ma, M., Wang, X., and Tan, J.: Estimating the land-surface temperature of pixels covered by clouds in MODIS products, J. Appl. Remote Sens., 8, 083525, https://doi.org/10.1117/1.jrs.8.083525, 2014.
Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J., Gao, J., and Zhang, L.: Deep learning in environmental remote sensing: Achievements and challenges, Remote Sens. Environ., 241, 111716, https://doi.org/10.1016/j.rse.2020.111716, 2020.
Zeng, C., Long, D., Shen, H., Wu, P., Cui, Y., and Hong, Y.: A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud, ISPRS J. Photogramm. Remote Sens., 141, 30–45, https://doi.org/10.1016/j.isprsjprs.2018.04.005, 2018.
Zhang, D., Tang, R., Tang, B.-H., Wu, H., and Li, Z.-L.: A Simple Method for Soil Moisture Determination From LST–VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data, IEEE J. Sel. Top. Appl. Earth Obs., 8, 638–648, https://doi.org/10.1109/jstars.2014.2371135, 2015.
Zhang, H., Tang, B.-H., and Li, Z.-L.: A practical two-step framework for all-sky land surface temperature estimation, Remote Sens. Environ., 303, 113991, https://doi.org/10.1016/j.rse.2024.113991, 2024.
Zhang, Q., Yuan, Q., Zeng, C., Li, X., and Wei, Y.: Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network, IEEE T. Geosci. Remote, 56, 4274–4288, https://doi.org/10.1109/tgrs.2018.2810208, 2018.
Zhang, T., Zhou, Y., Zhu, Z., Li, X., and Asrar, G. R.: A global seamless 1 km resolution daily land surface temperature dataset (2003–2020), Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, 2022.
Zhang, X., Wang, D., Liu, Q., Yao, Y., Jia, K., He, T., Jiang, B., Wei, Y., Ma, H., and Zhao, X.: An operational approach for generating the global land surface downward shortwave radiation product from MODIS data, IEEE T. Geosci. Remote, 57, 4636–4650, 2019.
Zhang, X., Zhou, J., Liang, S., Chai, L., Wang, D., and Liu, J.: Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data, ISPRS J. Photogramm. Remote Sens., 167, 321–344, https://doi.org/10.1016/j.isprsjprs.2020.07.014, 2020.
Zhang, X., Zhou, J., Liang, S., and Wang, D.: A practical reanalysis data and thermal infrared remote sensing data merging (RTM) method for reconstruction of a 1-km all-weather land surface temperature, Remote Sens. Environ., 260, 112437, https://doi.org/10.1016/j.rse.2021.112437, 2021.
Zhang, Y., Liang, S., Ma, H., He, T., Wang, Q., Li, B., Xu, J., Zhang, G., Liu, X., and Xiong, C.: Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning, Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, 2023.
Zhao, W., Duan, S.-B., Li, A., and Yin, G.: A practical method for reducing terrain effect on land surface temperature using random forest regression, Remote Sens. Environ., 221, 635–649, https://doi.org/10.1016/j.rse.2018.12.008, 2019.
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., and Sobrino, J.: Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives, Remote Sens., 11, 48, https://doi.org/10.3390/rs11010048, 2018.
Zhou, J., Dai, F., Zhang, X., Zhao, S., and Li, M.: Developing a temporally land cover-based look-up table (TL-LUT) method for estimating land surface temperature based on AMSR-E data over the Chinese landmass, Int. J. Appl. Earth Obs. Geoinf., 34, 35–50, https://doi.org/10.1016/j.jag.2014.07.001, 2015.
Zhou, S., Cheng, J., and Shi, J.: A Physical-Based Framework for Estimating the Hourly All-Weather Land Surface Temperature by Synchronizing Geostationary Satellite Observations and Land Surface Model Simulations, IEEE T. Geosci. Remote, 60, 1–22, https://doi.org/10.1109/tgrs.2022.3222563, 2022.
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
This study describes 1 km all-weather instantaneous and daily mean land surface temperature...
Altmetrics
Final-revised paper
Preprint