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Abstract. Land surface temperature (LST) serves as a crucial variable in characterizing climatological, agri-
cultural, ecological, and hydrological processes. Thermal infrared (TIR) remote sensing provides high temporal
and spatial resolutions for obtaining LST information. Nevertheless, TIR-based satellite LST products frequently
exhibit missing values due to cloud interference. Prior research on estimating all-weather instantaneous LST
has predominantly concentrated on regional or continental scales. This study involved generating a global all-
weather instantaneous and daily mean LST product spanning from 2000 to 2020 using XGBoost. Multisource
data, including Moderate-Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) observa-
tions, surface radiation products, and reanalysis data, were employed. Validation using an independent dataset
of 77 individual stations demonstrated the high accuracy of our products, yielding root mean squared errors
(RMSEs) of 2.787 K (instantaneous) and 2.175 K (daily). The RMSE for clear-sky conditions was 2.614 K for
the instantaneous product, which is slightly lower than the cloudy-sky RMSE of 2.931 K. Our instantaneous and
daily mean LST products exhibit higher accuracy compared to the MODIS official LST product (instantaneous
RMSE = 3.583 K; daily 3.105 K) and the land component of the fifth generation of the European ReAnalysis
(ERA5-Land) LST product (instantaneous RMSE= 4.048 K; daily 2.988 K). Significant improvements are ob-
served in our LST product, notably at high latitudes, compared to the official MODIS LST product. The LST
dataset from 2000 to 2020 at the monthly scale, the daily mean LST on the first day of 2010 can be freely down-
loaded from https://doi.org/10.5281/zenodo.4292068 (Li et al., 2024), and the complete product will be available
at https://glass-product.bnu.edu.cn/ (last access: 22 August 2024).

1 Introduction

Land surface temperature (LST) is the skin temperature of
the Earth’s surface and one of the crucial parameters in the
surface energy balance and the hydrothermal cycle (Tomlin-
son et al., 2011; Bastiaanssen et al., 1998). LST retrieval
from in situ measurements or satellites are widely used in
many scientific fields (Kappas and Phan, 2018), such as cli-
mate change (Weng, 2009; Auger et al., 2021), urban heat

islands (Zhou et al., 2018), drought monitoring (Wan et
al., 2010), longwave radiation estimation (Cheng and Liang,
2016), evapotranspiration (Kalma et al., 2008), soil moisture
estimation (Zhang et al., 2015), and air temperature estima-
tion (Rao et al., 2019; Shen et al., 2020; Chen et al., 2021).
High-precision measurements of LST aid in the recording
of the long-term global temperature trends; thus, the Inter-
national Geosphere–Biosphere Programme (IGBP) lists it as
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one of its priority parameters (Townshend et al., 2007). Ow-
ing to the complex and rapid variation in temporal and spatial
scales, in situ measurements cannot provide regional LST or
capture the spatial variation in LST. Remote sensing has be-
come the only way to obtain LST with high spatial and tem-
poral resolution on regional to global scales (Li et al., 2013).

Over the past few decades, substantial advancements have
been made in the LST retrieval from remote sensing satel-
lites. The retrieval of satellite LST products is predominantly
accomplished using thermal infrared (TIR) remote sensing
data (Li et al., 2013). These LST products typically exhibit
a notable spatial resolution, which is exemplified by the Vis-
ible Infrared Imaging Radiometer Suite (VIIRS) boasting a
resolution of 750 m, the Advanced Very High Resolution Ra-
diometer (AVHRR) having a resolution of 0.05° (J. Ma et
al., 2020; J. Li et al., 2023a), and the Moderate-Resolution
Imaging Spectroradiometer (MODIS) satellite sporting a res-
olution of 1 km (Wan and Li, 1997; Wan, 2014). Neverthe-
less, due to the constrained penetration capability of ther-
mal radiation, TIR data are exclusively applicable to observ-
ing LST under clear-sky conditions. Global average annual
cloud coverage has been reported to exceed 70 % (Mercury
et al., 2012). The lack of data has significantly constrained
the application of LST products. Consequently, all-weather
LST estimation is one of the difficulties in need of an urgent
solution.

Besides data gaps due to cloud contamination, extending
the temporal scale of LST poses a significant challenge in
retrieving LST remote sensing products, requiring urgent at-
tention. LST, a dynamic physical attribute, exhibits tempo-
ral variation. However, satellite-derived LST captures only
instantaneous observations at specific times and angles. In-
stead of focusing solely on instantaneous LST, certain re-
searchers emphasize the importance of daily, monthly, or
yearly average LST to track the impact of increasing LST
on glaciers, ice sheets, and vegetation within the Earth’s
ecosystem (Lawrimore et al., 2011). Currently, for MODIS
LST products, there exist daily instantaneous L2 products,
daily gridded instantaneous L3 products, and 8 d synthetic
products (Wan, 2014). Nevertheless, there’s an absence of
L4 products encompassing daily mean, monthly, and annual
LST data. Hence, estimating the daily mean LST based on
limited MODIS observations holds significant importance.
Acquiring the daily mean LST allows for the estimation
of monthly or annual mean LST, which is crucial for pro-
longed monitoring across diverse research domains like cli-
mate change, agriculture, and drought studies.

As for filling LST gaps under cloudy-sky conditions, re-
searchers have explored various methods (Z. L. Li et al.,
2023). One type of approach is based on space–time in-
formation, such as interpolation and fusion methods (Pede
and Mountrakis, 2018). Interpolation methods usually utilize
temporally or spatially proximate clear-sky pixel information
to fill in the pixels under cloudy-sky conditions. Neverthe-
less, the efficacy of the interpolation method is contingent

on the accessibility of clear-sky pixels. The reconstruction
outcomes prove less satisfactory in instances of extensive
missing regions or prolonged periods of cloud cover (Metz
et al., 2014; Zhang et al., 2018, 2022). In recent years, spa-
tiotemporal fusion methods have been explored for obtain-
ing all-weather LST (Chen et al., 2015; Long et al., 2020;
Wu et al., 2021). The essence of spatiotemporal fusion for
LST involves deriving high-spatial-resolution LST at time
t0 from its counterpart with coarse spatial resolution at the
identical time instance, achieved through the application of a
scale conversion factor (Long et al., 2020; Wu et al., 2021).
Due to the algorithm’s complexity, fusion methods are com-
monly evaluated within limited geographical scopes, with
their applicability constrained when extended to larger areas.
Furthermore, both interpolation and spatiotemporal fusion
methods hinge on information derived from clear-sky pixels,
yielding reconstructed theoretical clear-sky LST rather than
the real cloudy-sky LST. In order to obtain the actual LST
under cloudy-sky conditions, one type of approach considers
the physical processes of the surface energy balance (SEB).
Jin and Dickinson (2000) introduced a method utilizing SEB
to account for the effect of changes in solar radiation on LST
during cloudy conditions. This approach corrects clear-sky
LST using the SEB equation to derive actual cloudy-sky LST.
Over time, the SEB-based method has been refined for geo-
stationary satellites (Jia et al., 2022; Zhang et al., 2024; Liu
et al., 2023) and MODIS data (Yu et al., 2014; Zeng et al.,
2018; Jia et al., 2021). However, widespread application is
limited due to gaps in data coverage and the necessity of me-
teorological SEB parameters (e.g., air temperature and wind
speed), which make obtaining accurate data on a large scale
challenging.

Apart from the mentioned methods for LST retrieval un-
der cloudy-sky conditions, alternative approaches utilize all-
weather data like microwave data, reanalysis data, or model
simulations to derive the cloudy-sky information. Passive mi-
crowave (PMW) data are less affected by cloud contamina-
tion, providing a possibility for all-weather LST estimations
(Duan et al., 2017b; Holmes et al., 2009). However, the ex-
isting microwave observations usually have coarse resolu-
tions (e.g., the Advanced Microwave Scanning Radiometer
for EOS, AMSR-E, with 25 km). Since the land surface mi-
crowave emissivity is sensitive to land surface characteristics
and difficult to measure, the accuracy of the PMW LST data
is relatively lower than that of TIR LST (McFarland et al.,
1990). In addition, PMW data basically have swath gaps, es-
pecially at low latitudes, which makes it difficult to obtain
full-coverage LST data (Holmes et al., 2009; Zhou et al.,
2015). Thus, LST retrieval from PMW data cannot satisfy
the requirements of high precision and refined applications.
Some scholars have explored the possibility of combining
PMW and TIR data to estimate the all-weather LST. These
methods perform well on regional or national scales (Xu and
Cheng, 2021; Duan et al., 2017b; Zhang et al., 2020; Wu et
al., 2022). However, owing to the availability of PMW data
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and the complexity of algorithms, it is difficult to achieve
long-term production on a global scale.

In comparison, reanalysis data can provide another way
for all-weather LST estimation, with all-weather observa-
tions and long-term and seamless characteristics. After up-
dating of reanalysis and modeled data, spatial resolution and
accuracy are improved (Muñoz-Sabater et al., 2021). Several
studies, which were well implemented on the regional scale,
have attempted to utilize reanalysis data combined with TIR
(Long et al., 2020; Zhang et al., 2021; Tang et al., 2024) and
PMW data (Zhang et al., 2020; Zhou et al., 2022) to ob-
tain the all-weather LST. In recent years, researchers have
a growing interest in the estimation of global all-weather
LST. Shiff et al. (2021) integrated modeled temperature data
to supplement missing values in MODIS LST using Google
Earth Engine (GEE). Nevertheless, the proposed approach
solely addressed missing pixels, potentially introducing bor-
der effects. Globally, continuous spatiotemporal LST data at
a resolution of 0.05° have been generated, rectifying recon-
structed missing data under cloudy-sky conditions using re-
analysis data (Yu et al., 2022). Additionally, global seamless
8 d and monthly average LST data featuring a 30 arcsec reso-
lution were created by integrating reanalysis data (Yao et al.,
2023). These studies confirm the potential of reanalysis data
for estimating the all-weather LST, yet there remains ample
room for exploration at a spatiotemporal scale of 1 km d−1.

Regarding daily mean LST, researchers have investigated
acquiring it from polar-orbiting satellites. Specifically, they
have employed MODIS instantaneous LSTs to estimate the
daily mean LST (Williamson et al., 2014; Xing et al., 2021).
The maximum–minimum method determined the daily mean
LST by averaging its maximum and minimum values, ex-
hibiting a strong correlation with the surface air temperature
(Williamson et al., 2014). Despite its relatively low accuracy,
it presents a straightforward means of estimating daily mean
LST using the limited observations from polar-orbiting satel-
lites. Another approach involves the diurnal temperature cy-
cle (DTC), which employs various nonlinear models based
on heat conduction and energy balance equations (Inamdar
et al., 2008; Duan et al., 2012; Sun and Pinker, 2005; Aires et
al., 2004) and is capable of retrieving daily mean LST. How-
ever, the DTC method requires specific satellite observation
counts within a daily cycle, which is an existing challenge
for all-weather daily mean LST retrieval and especially for
polar-orbiting satellites. Hong et al. (2021) proposed a frame-
work which combines the annual temperature cycle (ATC)
and DTC to retrieve the all-weather daily mean LST at a
spatial resolution of 0.5°× 0.5° (Hong et al., 2022). Xing
et al. (2021) utilized global in situ measurements and multi-
ple linear regression to enhance the MODIS daily mean LST
model accuracy under clear-sky conditions. Then, J.-H. Li et
al. (2023b) integrated pre-2000 polar-orbiting satellite data
to improve the global daily mean LST model. Most methods
mentioned are applicable exclusively under clear-sky condi-
tions, and all-weather estimation remains a challenge. Be-

sides, the sine or cosine assumed in the DTC and the multiple
linear regression equations may not necessarily fit the rela-
tionship between instantaneous observations and daily mean
value. Thus, more appropriate relational models need to be
constructed. The main limitation of MODIS daily mean LST
estimation has been its restricted observations. Swath-type
MODIS data can provide more observations, which poten-
tially improves the accuracy, but few researchers have at-
tempted. Obtaining the all-weather daily mean LST from
polar-orbiting satellite observations (e.g., MODIS), particu-
larly on a global scale with a 1 km spatial resolution, still
remains a significant challenge.

Recently, machine learning and deep learning techniques
have gained significant traction in remote sensing due to their
superior model-fitting capabilities (Ma et al., 2019; Yuan et
al., 2020). Scholars have investigated LST retrieval using dif-
ferent learning techniques across various satellite platforms
(Mao et al., 2018; Li et al., 2021; Ma et al., 2024). How-
ever, the majority of these methods utilized clear-sky pix-
els as the true value to construct the model, possibly fail-
ing to capture the relationship under cloudy-sky conditions.
Additionally, learning methods have not yet been applied in
the estimation of the daily mean LST. Our former research
has estimated the all-weather LST from MODIS data using a
random forest (RF) algorithm over the conterminous United
States (Li et al., 2021). Considering the urgency of obtain-
ing the all-weather LST on a global scale and expanding the
daily mean timescale, this study refined our previously devel-
oped algorithm for an all-weather instantaneous LST product
and developed a new method for a daily mean LST prod-
uct on a global scale. The improvements over our previous
study include (1) more sufficient information (MODIS top-
of-atmosphere (TOA) information was taken into account),
(2) expanding the estimated LST timescale (a novel algo-
rithm was proposed to estimate both instantaneous and daily
mean LST), and (3) higher-efficiency algorithm and larger
region (the global all-weather LST products were generated).

The rest of the paper is organized as follows. Section 2
describes the data used in this paper. Section 3 provides a
summary of the proposed method. The results are presented
in Sect. 4. A discussion part is presented in Sect. 5. Section 6
is the data availability. Finally, Sect. 7 presents the conclu-
sions.

2 Data

In this study, the remote sensing data, reanalysis data, and in
situ measurements from 2002–2018 were used to construct
all-weather LST models. These data, spanning 2000 to 2020,
along with the developed models were used to generate the
instantaneous and daily mean LST products. In situ measure-
ments validated the accuracy of the proposed algorithm and
the generated products. The data used are described in detail
in the sections that follow.
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2.1 Remotely sensed and reanalysis data

The remote sensing data and reanalysis data used in this
study are summarized in Table 1. Among them, remote
sensing data are mainly from official MODIS products and
the Global LAnd Surface Satellite (GLASS) product suite.
MOD021KM and MYD021KM are MODIS TOA observa-
tional datasets. The shortwave bands (B1–B7 and B19) and
longwave bands (B27–B36) were selected as model inputs.
Geolocation information was obtained from MODIS geolo-
cation data (MOD03 and MYD03). The coordinates from
MODIS geolocation data were used to match up with prod-
ucts and in situ measurements, while height, solar zenith an-
gle, solar azimuth angle, view zenith angle, and view az-
imuth angle were used as the model inputs. MODIS LST
(MOD11L2/MYD11L2) was used for the comparison and
identification of cloudy-sky conditions. The GLASS product
suite includes at least 12 land surface variables, which have
high spatial resolutions (1 km and 0.05°), long-term temporal
coverage (1981–present), spatial continuity, and high quality
(Liang et al., 2021, 2013). In this study, we used the follow-
ing four products from the GLASS product suite: broadband
emissivity (BBE), broadband albedo (albedo), downward so-
lar radiation (DSR), and surface downwelling longwave ra-
diation (LWDN). The BBE product was used to obtain in
situ LST (Cheng and Liang, 2013). The albedo was used as
the model input to describe surface characteristics (Qu et al.,
2014; Q. Liu et al., 2013; Qu et al., 2016). Because LST is
affected by both solar radiation and surface longwave radia-
tion, DSR and LWDN were also used in the model construc-
tion (Cheng et al., 2017; Zhang et al., 2019).

In recent years, an enhanced global dataset for the land
component of the fifth generation of the European ReAnaly-
sis (ERA5-Land) product has been in development (Muñoz-
Sabater et al., 2021; Hersbach et al., 2020). ERA5-Land de-
scribes a consistent long-term evolution of water and en-
ergy cycles over land. It was generated through global high-
resolution numerical integrations of the European Centre for
Medium-Range Weather Forecasts (ECMWF) land surface
model driven by the downscaled meteorological forcing from
the ERA5 climate reanalysis. Compared with the previous
ERA-Interim (80 km) and ERA (31 km) products, ERA5-
Land has a higher spatial resolution (9 km) and temporal res-
olution (1 h). Because ERA5-Land LST includes worldwide
and all-weather data, it was used in the model construction as
the background value and also for comparison. ERA5-Land
LST is hereafter referred to as ERA LST.

2.2 In situ measurements

To obtain in situ LSTs, we collected upwelling and down-
welling longwave radiation measurements from 315 sites
with different land cover types and geolocations on a global
scale. Both instantaneous and daily mean in situ LSTs were
retrieved from in situ measurements. As shown in Fig. 1,

ground measurements from 238 stations were used to de-
velop the proposed model (blue circles), whereas the mea-
surements from the remaining 77 stations (red circles) were
selected as part of an independent validation dataset to evalu-
ate the performance of the trained model. The collection sites
were mainly taken from eight observation networks, which
are described in the following paragraphs.

AmeriFlux (https://ameriflux.lbl.gov/, last access: 22 Au-
gust 2024) is a network of stations that continuously mea-
sures ecosystem carbon dioxide, water, energy fluxes, and
related environmental variables using eddy covariance tech-
niques (Baldocchi, 2003). The network was launched in 1996
and was established to connect research at field sites repre-
senting major climate and ecological biomes. The network
has more than 260 past and present flux towers, and sites
with longwave radiation measurements were selected. These
sites are distributed across North, Central, and South Amer-
ica. The observation interval of these sites was 0.5 h.

FLUXNET (https://fluxnet.org/, last access: 22 Au-
gust 2024) is a global network of micrometeorological tower
sites that uses eddy covariance methods to measure car-
bon dioxide, water vapor, and energy fluxes (Baldocchi et
al., 2001). It has more than 500 flux towers worldwide that
operate on a long-term basis. The overarching goal of the
FLUXNET data collection is to provide information for the
validation of remote sensing products, such as net primary
productivity and energy fluxes. Sites with longwave radia-
tion records were used in this study. The observation interval
of the sites was 0.5 h.

The Baseline Surface Radiation Network (BSRN; https:
//bsrn.awi.de/, last access: 22 August 2024) is a project of
the Data and Analysis Panel of the Global Energy and Water
Exchanges (GEWEX) under the umbrella of the World Cli-
mate Research Programme (WCRP) (Ohmura et al., 1998).
The purpose of this network is to provide validation mate-
rials for satellite radiometry and climate models. It further
aims to detect long-term variations in the radiation field at
the Earth’s surface, which play a vital role in climate change
(Driemel et al., 2018). The stations (currently 74 in total, of
which 58 are active) are distributed in contrasting climatic
zones, covering a latitude range from 80° N to 90° S. The re-
quired longwave radiation measurements were obtained with
high accuracy and at a high time resolution (1–3 min).

AsiaFlux (https://www.asiaflux.net/, last access: 22 Au-
gust 2024) is a scientific community with the aim of develop-
ing collaborative research and datasets on carbon, water, and
energy cycles in key Asian ecosystems. AsiaFlux has grown
from beings a small network in 1999 to a multi-national sci-
ence community with more than 400 members from 28 coun-
tries (Yamamoto, 2005). Currently, there are 109 flux towers
in Asia, and more sites are underway. The biomes covered
in AsiaFlux range from rainforests near the Equator to tun-
dras in the Arctic and Antarctic and from wetlands near the
sea level to grasslands at high altitudes, such as the Tibetan
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Table 1. Summary of remote sensing and reanalysis data.

Product Variable Resolution
(temporal/spatial)

Temporal
coverage

Usage Link to data

MOD021KM/MYD021KM TOA reflectance,
brightness temperature

Instantaneous/1 km 2000–present for
MODIS Terra/
2002–present for
MODIS Aqua

Model inputs https://earthdata.nasa.gov/ (last
access: 22 August 2024)

MOD03/ MYD03 Latitude, longitude,
height

Instantaneous/1 km Model inputs/
match

MOD11L2/ MYD11L2 LST Instantaneous/1 km Comparison

GLASS BBE 8 d/1 km 2000–2022 Calculate
in situ LSTs

http://glass.umd.edu/ (last
access: 22 August 2024)
or
https://glass-product.bnu.
edu.cn/ (last access: 22 Au-
gust 2024)

GLASS Albedo 8 d/1 km 2000–2022 Model inputs

GLASS DSR Daily/0.05° 2000–2022 Model inputs

GLASS LWDN Instantaneous/1 km 2000–2020 Model inputs

ERA5-Land LST 1 h/9 km 1981–present Model inputs https://cds.climate.copernicus.
eu/ (last access: 22 Au-
gust 2024)

Figure 1. Spatial distribution of the selected sites on a global scale. Land use cover types of 2018 (background color shading) were from the
MODIS land use cover product MCD12C1. The sites used for model training are shown in blue circles while the separated validation sites
are shown in red circles.

Plateau. Most sites have a time resolution of 0.5 h, while
15 min and 1 h are used for individual sites.

The Atmospheric Radiation Measurement (ARM; https:
//www.arm.gov/, last access: 22 August 2024) program, sup-
ported by the US Department of Energy, is a project for
atmospheric measurement and modeling. The purpose of

the project was to detect processes that affect atmospheric
radiation and describe these processes in climate models
(Stokes and Schwartz, 1994). The quantities measured at
these stations included longwave and shortwave radiation,
cloud properties, water vapor, other radiation-related quan-
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tities, and meteorological variables. These sites had the high
temporal resolution of 1 min.

The Ice and Climate group at the Institute for Marine and
Atmospheric Research of Utrecht University (UU/IMAU,
https://www.projects.science.uu.nl/iceclimate/, last access:
22 August 2024) has deployed several automatic weather sta-
tions (AWSs) on different glaciers around the world (Antarc-
tica, Greenland, Alps, Norway, Iceland, and Svalbard) and in
different climate regimes. The stations were designed to op-
erate on a long-term basis and measure meteorological and
radiation variables in remote regions under harsh weather
conditions. The main purpose of these stations is to detect
the energy balance in these regions in view of climate change
and sea-level variation. The stations from the IMAU project
have time resolutions of 1 and 2 h.

Denmark launched the Programme for Monitoring of the
Greenland Ice Sheet (PROMICE; https://www.promice.dk/,
last access: 22 August 2024) to detect variations in the mass
balance of the Greenland ice sheet. Several weather stations
were established on the ice sheet to provide filed data for
modeling and validation. The weather stations were equipped
with CNR1 or CNR4 instruments to measure radiation data
with a time resolution of 10 min.

The National Tibetan Plateau Data Center (TPDC; http:
//data.tpdc.ac.cn, last access: 22 August 2024) has integrated
and released various scientific data from the Qinghai–Tibet
Plateau and surrounding regions. Integrated data resources
include the atmosphere, cryosphere, hydrosphere, and energy
balance. Among these data sources, there are various pub-
lished ground measurements. We selected several stations in
the Heihe Basin (Liu et al., 2018), Haihe Basin (S. M. Liu
et al., 2013), and Qinghai–Tibet Plateau (Y. Ma et al., 2020).
The time resolutions of these stations were 10 min, 30 min,
and 1 h, respectively.

Some stations from various flux networks overlapped,
and we curated observations with extended time series and
enhanced the time resolution. Attaining high model accu-
racy necessitates superior in situ measurements, which re-
quires rigorous quality assessment. Initially, adjacent stations
that potentially cause interference were removed alongside
the manual elimination of anomalous observations and dis-
continuous measurements. Subsequently, the collection sites
were strategically dispersed globally. Figure 2 depicts a his-
togram illustrating the distribution of land cover types and
climate zones across the sites. Each land cover type was ac-
counted for, and additional sites encompassing waterbodies
were incorporated to estimate LST for inland water. The sta-
tions were dispersed across five distinct climate zones, with
a higher concentration in temperate and continental climates.
What is also important is that we meticulously gathered data
from numerous high-latitude stations within a polar climate
to address substantial estimation uncertainties in the area.

3 Methods

The study’s comprehensive framework is depicted in Fig. 3.
Initially, the in situ LST and remote sensing data underwent
preprocessing and pairing. Subsequently, the data pairs were
randomly divided into two segments: one for model train-
ing and validation, while the other served as an independent
dataset for model evaluation. The XGBoost algorithm was
employed to sequentially develop models for instantaneous
and daily mean LST while also conducting parameter tun-
ing. The estimated all-weather instantaneous LST served as
an input for the daily mean LST model. Ultimately, the op-
timal models underwent separate evaluation and comparison
with alternative products.

3.1 Data preprocessing

3.1.1 In situ instantaneous LST

The in situ LST in this study was calculated from surface
broadband emissivity and in situ upwelling and downwelling
longwave radiation according to Stefan–Boltzmann’s law as
follows:

TS =

(
Fup− (1− ε)Fdn

σε

) 1
4
, (1)

where TS represents the in situ LST, Fup is the upwelling
longwave radiation, Fdn is the downwelling longwave radia-
tion, ε is surface broadband emissivity, and σ is the Stefan–
Boltzmann constant (5.67× 10−8 W m−2 K−4).

Surface broadband emissivity was acquired from the
GLASS BBE product through nearest-neighbor interpolation
to derive daily values. Fup and Fdn were derived from in situ
measurements. Due to varying observation intervals across
different networks, spanning from 1 min to 1 h, a linear in-
terpolation method was applied to determine the in situ LST
corresponding to the MODIS satellite observation time.

3.1.2 Daily mean LST

To construct a daily mean LST model, the in situ daily mean
LST and ERA daily mean LST are required. Once the instan-
taneous LST from in situ measurements was obtained, the
daily mean in situ LST was calculated according to Eq. (2).
The ERA daily mean LST was obtained using Eq. (3).

LSTDS =
1
n

n∑
i=1

LST(i)IS (2)

LSTDE =
1

24

24∑
i=1

LST(i)IE (3)

LSTDS and LSTDE represent the daily mean in situ LST and
ERA daily mean LST, respectively, and n is the count of the
in situ measurements per day. LSTIS and LSTIE are the in-
stantaneous in situ LST values calculated from Eq. (1) and
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Figure 2. Land cover types (a) and climate zones (b) of sites. The land surface type represented by the x axis in panel (a) refers to the legend
in Fig. 1.

Figure 3. Flowchart of the XGBoost algorithm for all-weather instantaneous and daily mean LST estimation.

ERA LST, respectively. If the in situ measurements were in-
complete in a day, the record for that day was not used.

One traditional daily mean LST method, which was re-
trieved from the official MODIS Aqua LST data for both
daytime and nighttime (Williamson et al., 2014), was used
for comparison. The retrieval equation can be expressed as
follows:

LSTDM = 0.5 ·LSTAD+ 0.5 ·LSTAN, (4)

where LSTDM represents the retrieval of the daily mean LST,
and LSTAD and LSTAN represent the daytime and nighttime
LSTs, respectively, from the official MODIS Aqua LST data.

3.1.3 Data normalization

Due to discrepancies in spatial and temporal resolutions
among the utilized products, preprocessing was conducted.

The albedo and BBE had an 8 d temporal resolution, and
the daily data were acquired through nearest-neighbor in-
terpolation. DSR and ERA LST were adjusted to a spa-
tial resolution of 1 km via the nearest-neighbor interpolation.
The ERA LST, with a temporal resolution of 1 h, was lin-
early interpolated to obtain the reanalysis LST at the satellite
observation time. Matching between in situ measurements
and satellite data was performed based on coordinates from
MOD03/MYD03 products.

3.2 Developing the estimation algorithm

Extreme gradient boosting (XGBoost) is an effective and
scalable gradient boosting implementation introduced by
Chen and Guestrin (2016). It amalgamates multiple classi-
fication and regression trees to create a robust learner. In re-
gression, the initial tree is constructed based on split features,
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which is then followed by the creation of subsequent trees to
capture residuals from the preceding ones. Additional trees
are iteratively generated until they meet the stopping crite-
ria. Notably, the regression trees within XGBoost are interre-
lated, progressively diminishing the residuals of predictions
with new trees. The ultimate prediction is derived by aggre-
gating scores from each tree.

In contrast to the RF method, which also employs deci-
sion trees (Breiman, 2001), XGBoost operates in parallel.
Its algorithm design incorporates column blocks for paral-
lel learning and cache-aware access and facilitates out-of-
core computation, substantially boosting computational ef-
ficiency. Owing to XGBoost’s notable efficiency and preci-
sion, many studies in remote sensing have adopted this al-
gorithm for regression tasks (Liu et al., 2021; Kim et al.,
2021; Zhang et al., 2023). In this research, XGBoost was
implemented using the scikit-learn package in Python. Ex-
periments were performed on a computer equipped with a
3.60 GHz CPU and 64 GB RAM, utilizing the same dataset
and features. Detailed hyperparameters are elucidated in
Sect. 3.3.

3.3 Model development

The dataset for 2002–2018 was compiled on a global scale.
Samples from 238 sites were randomly chosen for model
training. The remaining samples from 77 sites were used as
an independent dataset for the model validation. The fea-
tures used to construct the instantaneous LST model in-
cluded MODIS TOA observations, ERA LST, DSR, LWDN,
albedo, and geolocation data. MODIS TOA observations
were used to describe the contributions of shortwave and
longwave radiation to the LST. Additionally, solar radiation
greatly changes influenced by clouds. Hence, DSR was used
to reflect the effect of solar radiation on the LST (Zeng et
al., 2018). Longwave radiation is less affected by the atmo-
sphere, has certain penetration, and has a close correlation
and interaction with the LST during the daytime and night-
time. In this study, LWDN was used to reflect the effect of
thermal infrared radiation on LST. LST is also influenced by
land cover types, and broadband albedo was used to repre-
sent land surface characteristics. In addition, geolocation in-
formation, such as solar angles, view angles, and height, also
affects LST retrieval from satellites. All the input variables
were all-weather conditions with high resolution. In addi-
tion, ERA LST can provide all-weather LST, but with coarse
resolution (0.1°). It was considered a background field and
provided an initial value for the model. After the instanta-
neous model was constructed, the daily mean model was de-
veloped. Research has confirmed linear or nonlinear relation-
ships between the daily mean LST and instantaneous LST
for polar-orbiting satellites (Xing et al., 2021; Duan et al.,
2014). Hence, the instantaneous retrieval of all-weather LST
data was used in the daily LST model. In addition, the ERA
daily LST rather than the ERA LST was used as the initial

value in the daily LST model. Except in the case of these
two variables, the inputs of the two models were the same.
Specifically, the daily mean LST was finally retrieved from
the average of multiple observations in 1 d.

Model tuning was performed to prevent the overfitting of
the models. Several hyperparameters in XGBoost needed to
be tuned, including the number of gradient boosted trees
(n_estimators), the maximum depth of trees (Max_depth),
the minimum sum of weights of all observations required
in a child (Min_child_weight), the minimum loss reduction
required to make a split (gamma), the fraction of observa-
tions that is to be random samples for each tree (subsample),
and the fraction of columns that is to be randomly sampled
for each tree (Colsample_bytree). Lambda and alpha rep-
resent the regularization of the weights in XGBoost, which
can improve the speed performance. A random search com-
bined with a grid search was used to tune the model. Table 2
presents the candidate values of the random search and the
final settings for the two LST models.

3.4 Evaluation approaches

In this study, validation of training and independent datasets
of separated ground measurements was used to evaluate the
instantaneous and daily mean LST models. The widely used
10-fold cross validation (10-CV) method was used to eval-
uate the stability of the models. Model performance was
then assessed for different weather conditions and observa-
tion times. In addition, time series of individual sites and spa-
tial distribution at regional and global scales were chosen to
further demonstrate the effectiveness of the developed mod-
els. Finally, the proposed framework and generated products
were compared with those of previous studies and products.

4 Results

4.1 Model training and validation

In general, 70 % of the dataset was used for the model train-
ing. The remaining dataset was used for model adjustment
and validation. Independent validation and 10-CV results
were used to evaluate the models. Figures 4 and 5 show the
accuracies of the instantaneous and daily mean LST models,
respectively. As seen in the scatter density plots, all the val-
idation results for both instantaneous and daily models are
close to the 1 : 1 line, with R2 values ranging from 0.974 to
0.990. The root mean squared errors (RMSEs) of the train-
ing and validation results were 2.413 and 2.787 K for the in-
stantaneous model, while they were 1.758 and 2.175 K for
the daily mean LST model. Both models showed high accu-
racy in model training and validation, with no obvious over-
fitting. The 10-CV method is also used to comprehensively
validate the models, and the results of both models are also
satisfactory, with RMSEs of 2.421 and 1.808 K for the in-
stantaneous and daily mean LST models, respectively. Over-
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Table 2. Candidate values and selected values of hyperparameters in XGBoost.

Hyperparameter Candidate values Selected values

(start, end, step) Instantaneous model Daily model

n_estimators 50, 401, 10 160 140
Max_depth 1, 10, 1 9 9
Min_child_weight 1, 10, 1 5 6
Gamma 0, 1, 0.1 0.8 0.5
Subsample 0.1, 1, 0.1 1 1
Colsample_bytree 0.1, 1, 0.1 0.8 0.8
Lambda 0.1, 2, 0.1 0.6 1.4
Alpha 0.1, 2, 0.1 1.6 1.19

all, the validations from the independent dataset and 10-CV
results show acceptable accuracy and robustness of the two
models. Both models are robust. The daily mean LST model
shows a higher accuracy than the instantaneous LST model.
This is probably because the daily mean LST is obtained by
averaging multiple observations in 1 d, which reduces the un-
certainty. In addition, some daily inputs (daily mean in situ
LST and ERA LST) used in the daily model have less uncer-
tainty than instantaneous observations.

In addition, we further verify the model performance un-
der different conditions using an independent dataset. Table 3
presents the validation results for different observation times
and satellites for the instantaneous model. The RMSEs are
3.03 and 2.67 K for daytime and nighttime data, respectively.
The accuracy of nighttime data is higher than that of daytime
data. This is probably because of the absence of differential
solar heating and higher spatial–temporal heterogeneity dur-
ing the daytime (Duan et al., 2019; Liu et al., 2023). In ad-
dition, the LST value during the daytime is higher than that
during nighttime, which results in a higher RMSE value. For
the validation of the MOD and MYD satellites, the RMSE of
MOD is nearest to that of MYD. We further verify the accu-
racy in the presence and absence of clouds; the density plots
are shown in Fig. 6. The accuracy under clear-sky conditions
was relatively higher, with an RMSE of 2.614 K, whereas
the RMSE is 2.931 K under cloudy-sky conditions. More ef-
fective observation information and higher accuracy of in-
puts under clear-sky conditions result in a higher accuracy
of clear-sky estimation. This phenomenon is also present
in other studies (Ma et al., 2024; Duan et al., 2023). Fur-
thermore, to explore whether clouds have an effect on daily
mean LST retrieval, we calculate the accuracy under differ-
ent cloud proportions, as shown in Table 3. The results show
that the RMSE values slightly increased as the proportion
of cloudy-sky observations increased. This demonstrates that
cloud contamination has a limited impact on the daily mean
LST estimation in the proposed method.

Table 3. Validation for different observation times, satellites, and
weather conditions of the instantaneous LST model and the pro-
portion of cloudy-sky MODIS observations of the daily mean LST
model.

Group R2 RMSE Bias
[K] [K]

Instantaneous LST model Daytime 0.960 2.99 0.30
Nighttime 0.980 2.61 0.05
MOD 0.980 2.80 0.19
MYD 0.980 2.82 0.17

Daily mean LST model 0–30 0.980 2.01 −0.07
(proportion of cloudy 30–60 0.980 2.14 −0.16
MODIS observations in %) 60–100 0.980 2.26 −0.04

4.2 Validation and assessment

4.2.1 Evaluation across individual sites

The validation of the instantaneous and daily mean LST for
individual sites is shown in Fig. 7. The darker the color of
the circles, the higher the level of error. RMSEs range from
1.16 to 4.90 K for instantaneous LST and 0.89 to 3.96 K for
daily mean LST. The corresponding histograms show that the
accuracy of nearly 75 % of sites is below 3 K and 2.5 K for
instantaneous and daily mean LST, respectively. Stations dis-
tributed throughout the continental United States with inten-
sive LST monitoring generally have higher accuracy. High
accuracy is also observed at stations in Alaska and Green-
land, whereas a relatively lower accuracy is observed in the
Antarctic. In Europe, most stations perform well, with the
exception of some stations in the east. The stations in Asia
are relatively discrete, with relatively lower accuracy for in-
dividual sites in western China, which is probably due to the
high elevation and complex terrain (Jia et al., 2023). In ad-
dition, several stations distributed in Australia, Africa, and
South America also perform well in both models. In general,
the results indicate a satisfactory predictive ability of both in-
stantaneous and daily mean LST models at most individual
sites.
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Figure 4. The (a) training, (b) independent validation, and (c) 10-CV results of the instantaneous LST model.

Figure 5. The (a) training, (b) independent validation, and (c) 10-CV results of the daily mean LST model.

4.2.2 Evaluation across land cover types and elevation

LST is closely related to land cover types. The validation re-
sults for different land cover types are presented in Table 4.
The results indicated that the data had high accuracies for
most land cover types. For instantaneous LST, the RMSEs
of most vegetation types were below 3 K, except for shrub-
lands, which had an RMSE of 3.04 K. Among the vegetation
types, cropland had an outstanding RMSE of 2.55 K. The ac-
curacies of vegetation types for daily mean LST were higher
than those of instantaneous LST, with RMSEs of approxi-
mately 2 K, except for shrublands, which had an RMSE of
2.55 K. The accuracy in waterbodies was also satisfactory,
with RMSEs of 2.43 and 2.04 K for instantaneous and daily
mean LSTs, respectively. For both models, the accuracy of
instantaneous and daily mean LSTs in snow/ice with RM-
SEs of 2.94 and 2.35 K, respectively, were notably improved
compared with that found in our previous study (Li et al.,
2021). This is probably due to the higher number of samples
from high latitudes, which improved the model robustness in
snow/ice. However, the accuracy for urban and barren areas
was relatively low. This is likely due to the high heterogene-
ity of urban areas, high albedo, and low specific heat capacity
of barren land (Duan et al., 2017a). In general, for different

land cover types, the daily mean model showed higher accu-
racy than the instantaneous model, and both models had ac-
ceptable accuracy. In addition, we summarized the accuracy
of the different elevation ranges in Table 5. The results indi-
cate that elevation has an impact on LST retrieval accuracy.
The relatively poor accuracy at high elevations is probably
due to the harsh natural environment and complex terrain,
which was also reflected in another study (Zhao et al., 2019).

4.2.3 Comparison with other products

Official MODIS and ERA LST data were used for compar-
ison with our LST products. Figure 8 presents the accura-
cies of ERA LST (RMSE= 4.048 K) and official MODIS
LST (RMSE= 3.583 K), both of which were lower than
the accuracy of the estimated LST proposed in this study
(RMSE= 2.787 K; Fig. 4b). Furthermore, we noted that
the official MODIS LST data had several abnormal points
(Fig. 8b). The polar regions (Antarctica and the Arctic Pole)
were verified separately from the other regions, as shown
in Fig. 9. The results indicate that the majority of outliers
were from stations located in Antarctica and the Arctic Pole
(Fig. 9b), which is probably because of cloud contamination.
Owing to the spectral similarities between the ice and snow,
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Figure 6. Validation under (a) cloudy-sky conditions and (b) clear-sky conditions.

Figure 7. Validation of individual sites for instantaneous LST (a), daily mean LST (c) and their corresponding histograms (b, d).

the misjudgment of clouds leads to cloud top temperatures
rather than LSTs (Østby et al., 2014; Liu et al., 2010). In
contrast, the proposed method was unaffected by cloud con-
tamination (Fig. 9a).

The ERA daily mean LST from Eq. (3) and official
MODIS LST from Eq. (4) were used for comparison
(Fig. 10). The ERA daily LST had an acceptable accuracy,
with an RMSE of 2.988 K. The RMSE of the daily mean of-
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Table 4. Validation of instantaneous and daily mean LST models for various land cover types.

Instantaneous LST model Daily mean LST model

R2 RMSE [K] Bias [K] R2 RMSE [K] Bias [K]

Forest 0.941 2.82 0.11 0.960 2.08 −0.11
Shrublands 0.980 3.04 −1.05 0.980 2.55 −0.85
Savannas 0.960 2.74 0.12 0.980 2.13 0.24
Grassland 0.960 2.65 0.12 0.960 2.02 0.06
Wetland 0.980 2.87 −0.86 0.980 2.19 −0.35
Cropland 0.960 2.55 −0.05 0.960 2.22 0.06
Urban 0.774 3.76 0.4 0.883 2.51 −0.44
Snow 0.941 2.94 0.77 0.960 2.35 0.69
Barren 0.941 3.80 0.95 0.960 3.53 0.85
Water 0.960 2.43 −0.34 0.980 2.04 −0.22

Table 5. Validation of the instantaneous and daily mean LST models for different elevations.

Instantaneous LST Daily mean LST

Elevation [m] R2 RMSE [K] Bias [K] R2 RMSE [K] Bias [K]

< 500 0.960 2.63 −0.06 0.980 2.14 0.12
500–1000 0.980 2.85 0.60 0.980 2.16 −0.35
1000–2000 0.980 3.25 0.39 0.980 2.29 −0.41
> 2000 0.941 3.79 −0.83 0.941 2.74 1.23

ficial MODIS LST was 3.105 K. The accuracy of the MODIS
official LST was relatively lower compared to what was re-
ported in a previous study. This may be due to the large un-
certainty in the official MODIS LST in polar regions. When
removing the observations in polar regions, the accuracy im-
proved, with an RMSE of 2.799 K, similar to the result in pre-
vious studies (Williamson et al., 2014; Xing et al., 2021). The
proposed method in this study has a higher accuracy than the
daily mean LST from ERA and official MODIS LST, with
an RMSE of 2.175 K on the global scale (Fig. 5b). Moreover,
the daily mean LST obtained from official MODIS LST is
only suitable under clear-sky conditions, whereas the daily
mean LST obtained in this study is suitable for all-weather
conditions.

4.3 Spatiotemporal performance

To further evaluate the temporal performance of the esti-
mated LST, four in situ LST measurements from differ-
ent latitudes in 2010 were evaluated. Initially, instantaneous
LST was examined separately for daytime and nighttime and
MODIS LST was provided for comparison (Fig. 11). The
RMSE values of estimated instantaneous LST were of com-
parable accuracy to the MODIS LST. The nighttime LST
points were more concentrated than the daytime LST. The
estimated LST curves are in good agreement with the in situ
LST and MODIS LST curves but are more continuous than
the curve of MODIS LST. Discontinuities observed at high-

latitude stations (latitude 79.835, longitude −25.166) were
due to polar day and night phenomena. The daily mean LST
was also examined using in situ LST measurements (Fig. 12).
The daily mean LST retrieved from MODIS official LST was
used for comparison. The results indicated higher accuracy
and better consistency compared to instantaneous LST. The
estimated daily LST also depicted more complete curves than
the daily mean LST from MODIS LST and captured the sea-
sonal variation trends. The results demonstrate that both esti-
mated instantaneous LST and daily mean LST can correctly
reflect the temporal variations in LST.

To further evaluate the spatial performance of the proposed
methods, regional distributions and global maps were com-
pared. Figures 13 and 14 present the spatial details of the
estimated instantaneous LST and daily mean LST from tiles
H10V04, H23V04, and H24V05. One of the grids, H24V05,
is located on the Tibetan Plateau and contains mountainous
terrain. The instantaneous and daily mean LSTs from ERA
LST and MODIS LST were used for comparison. MODIS
LST had missing values caused by cloud contaminants for
both instantaneous and daily mean LST, while our method
achieved spatially continuous estimation. In addition, the es-
timated LSTs had spatial patterns similar to those of MODIS
LST under clear-sky conditions. Compared with the ERA
LST, which was used as the model input, our results showed
more spatial details and corrected the underestimation in
some regions. In particular, the results for H24V05 reflect
that the estimated LST has mountainous details. This demon-
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Figure 8. Density plots of (a) ERA LST and (b) MODIS clear-sky LST.

Figure 9. Density plots of estimated instantaneous clear-sky LST (a, c) and MODIS LST (b, d) in polar regions (first row) and other regions
(second row).

strates that our approach applies to mountainous regions with
high heterogeneity. The spatial details of the daily mean LST
show similar conclusions (Fig. 14). However, there may exist
boundary effects in some complex terrains, which is proba-
bly due to the introduction of ERA data with coarse resolu-
tion. Overall, for both instantaneous and daily mean LSTs,
the proposed methods executed the spatially contiguous LST
and depicted the spatial LST details and variations.

The urban heat island effect is one of the main applica-
tions of LST data. To further assess the spatial details of the
estimated all-weather LST and the potential of urban heat
island applications, we selected four cities in different re-
gions around the globe and demonstrated the estimated LST
in conjunction with the boundary of urban regions extracted
using global artificial impervious area data (Li et al., 2020),
as shown in Fig. 15. The figure shows that the built-up ar-
eas of four cities present higher LSTs than the periphery, and

https://doi.org/10.5194/essd-16-3795-2024 Earth Syst. Sci. Data, 16, 3795–3819, 2024



3808 B. Li et al.: Generation of global 1 km temperature from MODIS data

Figure 10. Density plots of (a) ERA daily mean LST, (b) official MODIS daily mean LST, and (c) official MODIS daily mean LST except
polar regions.

confirms that our estimated all-weather LSTs can capture the
urban heat island phenomenon and present relevant details.

In addition, Figs. 16 and 17 show the estimated instanta-
neous and daily mean LST on the global scale on days 90 and
270 of 2010. The instantaneous and daily mean LST from
MODIS LST are shown for comparison. The estimated in-
stantaneous and daily LSTs had similar spatial patterns to
the corresponding LST from MODIS. All of the results re-
flected broad spatiotemporal variations. For instance, LSTs
were relatively higher at middle and low latitudes and lower
in the Arctic and Antarctic. The instantaneous LST exhibited
a larger range than the daily mean LST. In addition, the pro-
posed method achieved the all-weather LST retrievals. For
the instantaneous LST (Fig. 16), a small number of gaps in
tropical regions were there due to the polar-orbiting satel-
lite configuration. The daily mean LST (Fig. 17) was spa-
tially continuous. Overall, the proposed instantaneous LST
and daily mean LST perform well on a global scale.

5 Discussion

Although several LST satellite products have been published,
they are missing data for cloudy-sky conditions. Existing re-
search on all-weather LST has mostly been conducted at the
regional scale. This study proposes a highly accurate and ef-

ficient algorithm to retrieve all-weather LST on a global scale
from multisource data, including MODIS TOA, surface radi-
ation, reanalysis, and in situ data. An all-weather daily mean
LST algorithm was also proposed. Both the estimated in-
stantaneous and daily mean LST had acceptable accuracy. In
addition, the algorithm performs well based on independent
ground measurements and space–time verification.

5.1 Effect of introducing MODIS TOA information and
ERA LST

In view of the complexity of global climate conditions and
to include more information to estimate the all-weather LST,
we introduced MODIS TOA data on the basis of using sur-
face variables. In addition, since the Global Land Data As-
similation System (GLDAS) LST used in previous studies
did not have global coverage (the Antarctica region was miss-
ing), we introduced the ERA LST in this study, which has not
only global coverage, but also a higher spatiotemporal reso-
lution (0.1° and 1 h). We conducted experiments with combi-
nations of different features to clarify the effect of introduc-
ing MODIS TOA information and ERA LST under different
weather conditions. A comparison between the removal of
ERA LST and MODIS TOA data in the models is shown
in Table 6. The results show that when the ERA LST and
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Figure 11. Time series of the estimated instantaneous LST, MODIS LST, and in situ LST at four sites from different regions in 2010 for
(a) daytime and (b) nighttime.

TOA data were removed, the accuracy of the model greatly
reduced. The RMSEs increased from 2.787 to 3.536 and
3.466 K when ERA LST and TOA data were removed, re-
spectively. However, the accuracy changes in the two feature
combinations under different weather conditions were signif-
icantly different. When ERA LST was eliminated, although
the accuracies of both weather conditions were reduced, the

RMSE increase for the cloudy sky (0.95 K) was significantly
greater than that for the clear sky (0.09 K). When the TOA
data were removed, the results were the opposite. The ac-
curacy of clear-sky LST estimation significantly decreased.
Overall, introducing MODIS TOA information and ERA
LST significantly improved the model accuracy. In addition,
it can be inferred that ERA LST provides more effective in-
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Figure 12. Time series of the estimated daily mean LST, daily mean LST retrieved from MODIS LST, and in situ LST at four sites from
different regions in 2010.

formation for cloudy-sky LST estimation, while TOA data
contribute more to clear-sky conditions.

5.2 Effect of station density on the model accuracy

To further evaluate the station density on the model accuracy,
experiments were conducted with different station densities.
Firstly, the stations were reduced randomly in the training
dataset, and the model performance was evaluated based on
the same test samples. The accuracies of the instantaneous
and daily mean models are shown in Table 7. The results
show that the accuracy of both models decreases as the num-
ber of stations in the training sample decreases. When the
number of stations in the training sample is reduced from
238 to 158, the RMSE of the instantaneous model increases
from 2.787 to 2.988 K and the RMSE of the daily model in-
creases from 2.374 to 2.479 K. The experiment indicates that
the model accuracy is affected by the station density but to a
limited extent when there is a sufficient number of samples.
It may be that the long time series of station data used in the
experiment provided relatively sufficient samples.

5.3 Effect of multiple MODIS observations

In contrast to most studies using MODIS data in sinusoidal
projection, we used swath-type MODIS data to estimate the
daily mean LST in this study. MODIS swath data can provide
a higher number of observations, particularly at high lati-
tudes. Furthermore, we statistically analyzed the relationship
between the daily mean LST model error and MODIS obser-

vation frequency. Figure 18 shows that the error decreased
with an increase in the MODIS observation frequency. For
high-latitude areas with more observations, the model accu-
racy at high latitudes was improved. This demonstrates the
superiority of using MODIS data in swath types with more
observations to construct a daily mean LST model.

5.4 Effect of in situ measurements in the model

In contrast to previous studies that used machine learning
algorithms, in situ measurements were used to construct
the model instead of clear-sky MODIS LST. In situ mea-
surements can obtain the real LST under cloudy-sky condi-
tions without obtaining the hypothetical LST from clear-sky
MODIS LST. In addition, LST from in situ measurements
is close to the hemispherical LST or observing the LST from
the zenith. In contrast, MODIS LST is a directional LST, with
view angles ranging from 0° to > 60°, resulting in a signif-
icant thermal radiation directionality (TRD) effect (Cao et
al., 2019; Ermida et al., 2017). This results in a difference in
the LST of the same object at different observation angles.
Theoretically, the proposed instantaneous LST weakens the
influence of the TRD effect, which was been confirmed in
our previous study (Li et al., 2021).

5.5 Effect of the new algorithm on product generation

In a previous study, a RF algorithm was used to estimate
the all-weather LST over the conterminous United States (Li
et al., 2021). Although the RF algorithm performs well, the
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Figure 13. Spatial details of the MODIS LST (a, d, g), ERA LST (b, e, h), and estimated instantaneous LST (c, f, i) of three tiles, H10V04 (a,
b, c), H23V04 (d, e, f), and H24V05 (g, h, i) from the 90th day in 2010.

Table 6. The accuracy of the independent dataset with different feature combinations for the instantaneous LST model.

Feature combination All weather Clear sky Cloudy sky

RMSE [K] Bias [K] R2 RMSE [K] Bias [K] R2 RMSE [K] Bias [K] R2

All features 2.787 0.178 0.974 2.614 0.082 0.982 2.931 0.240 0.965
No ERA LST 3.536 −0.012 0.959 2.730 −0.14 0.980 3.950 0.07 0.941
No TOA data 3.466 0.335 0.960 3.620 0.21 0.960 3.360 0.41 0.960

application efficiency needs to be considered for generating
global products. Hence, the model accuracy and efficiency
were compared using RF and XGBoost. The model accura-
cies of RF and XGBoost were comparable, with RMSEs of
2.787 and 2.801 K, respectively (Table 8). However, training
the XGBoost model took significantly less time, taking up
3.33 min compared to 60.01 min for RF training. XGBoost

also showed outstanding performance in the model applica-
tion. As an example, XGBoost took 8.93 min to produce 100
LST swath-type images, while the RF model took 38.85 min
(Table 8). Considering the quantities of swath files on the
global scale, XGBoost is a better choice for long-sequence
product generation, with high accuracy and efficiency.
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Figure 14. Spatial details of the daily mean LST retrieved from MODIS LST (a, d, g), ERA LST (b, e, h), and estimated daily mean LST (c,
f, i) of three tiles, H10V04 (a, b, c), H23V04 (d, e, f), and H24V05 (g, h, i) from the 90th day in 2010.

Table 7. The training and testing accuracy of instantaneous and daily mean LST with the number of stations decreasing in the model training.

Instantaneous model Daily mean model

Training stations Training samples RMSE [K] Bias [K] R2 RMSE [K] Bias [K] R2

238 1 797 803 2.787 0.178 0.974 2.374 0.100 0.978
218 1 609 953 2.828 0.203 0.974 2.397 0.121 0.978
198 1 420 496 2.867 0.211 0.973 2.421 0.116 0.977
178 1 327 160 2.877 0.243 0.973 2.426 0.140 0.977
158 1 072 730 2.988 0.239 0.971 2.479 0.160 0.976

5.6 Limitations

However, this study has certain limitations. Despite enhance-
ments in LST accuracy on ice and snow surfaces, accu-
racy remains comparatively lower in barren and urban ar-
eas. Additionally, while the study aimed to select the high-
est possible number of representative ground stations for

the long-term sequence, the spatial distribution was non-
uniform, potentially impacting the generality of data-driven
models. Furthermore, the accuracy of the high-altitude model
was marginally lower, which can possibly be attributed to the
complex climatic environment and topographic conditions.
For mountainous areas with complex terrain, there may be
boundary effects, which is probably due to the reanalysis data
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Figure 15. Spatial pattern of the estimated all-weather LST in four representative cities. The black lines are the boundary of urban regions
extracted using global artificial impervious area data.

Figure 16. Spatial patterns of MODIS LST (a, c) and estimated instantaneous LST (b, d) on a global scale on days 90 (first row) and 270
(second row) of 2010.
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Figure 17. Spatial patterns of daily mean LST retrieved from (a, c) MODIS LST and (b, d) estimated daily mean LST on a global scale on
days 90 (first row) and 270 (second row) of 2010.

Table 8. Comparison of algorithms of model accuracy and efficiency.

Algorithm Model accuracy Model efficiency

RMSE [K] Bias [K] R2 Training time [min] Application time [min]

XGBoost 2.787 0.178 0.974 3.33 8.93
RF 2.801 0.196 0.974 60.01 38.85

with coarse resolution. Future investigations could employ
advanced methods, such as deep learning, to develop a more
adaptive model that incorporates spatial and temporal infor-
mation. Moreover, integration with other satellite sensors has
the potential to extend the temporal–spatial resolution and
time span of all-weather LST products.

6 Data availability

The global all-weather LST data at monthly scale
from 2000–2020 can be freely downloaded from
https://doi.org/10.5281/zenodo.4292068 (Li et al., 2024),
the daily mean LST on the first day of year 2010 is freely
available at Li et al. (2024), and all data will be available at
https://glass-product.bnu.edu.cn/dload.html (Li and Liang,
2024).

7 Conclusion

LST is a crucial parameter of the Earth’s energy budget,
and current LST satellite products are affected by cloud
contamination, resulting in missing values. This study at-
tempted to retrieve all-weather instantaneous and daily mean
LSTs on a global scale. A new framework that generates a
global, long-sequence LST product is proposed. Multiple all-
weather datasets from MODIS TOA observations, surface ra-
diation data, geolocation data, reanalysis data, and ground
measurements were used to construct the models.

Based on the XGBoost algorithm and multisource data
from 2002–2018, all-weather instantaneous and daily mean
LST models were successively built. The validation of the in-
dependent dataset showed high accuracy. The 10-fold cross
validation demonstrated the robustness of the models. For the
instantaneous LST model, clear-sky LST showed higher ac-
curacy than cloudy-sky LST, while cloud contamination had
limited effects on daily mean LST estimations. Both mod-
els performed well for most land cover types and geoloca-
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Figure 18. Density plots of daily mean LST model error with re-
spect to MODIS observation frequency.

tion conditions. The time series for validation at the four
sites from different regions was temporally contiguous. The
results showed high consistency with in situ measurements
and the corresponding official MODIS LST. The spatial dis-
tributions of MODIS tiles showed more spatial details than
the ERA LST. Global mapping illustrated spatial continuity
and similar patterns with instantaneous and daily mean LSTs
from the official MODIS LST data.

Compared with previous products, adding TOA obser-
vations effectively improved the accuracy of the instanta-
neous model, especially under clear-sky conditions. More-
over, multiple effective swath-type observations from the
MODIS data significantly improved the accuracy of the daily
mean LST model. In contrast to the MODIS and ERA LSTs,
the proposed all-weather method has a higher accuracy and is
less affected by cloud contamination, especially at high lat-
itudes. In terms of product generation, XGBoost has higher
precision and efficiency compared with RF and provides ef-
fective support for mass data production.

Overall, the proposed models were effective and robust,
demonstrating the potential of estimating all-weather instan-
taneous and daily mean LSTs from multisource data. The
constructed models can be used to generate long-sequence
LST products from 2000 to the present. The generated prod-
uct is a combination of 1 km all-weather instantaneous and
daily mean LST products on a global scale. It has great sig-
nificance for studies on climate change, surface energy bal-
ance, and many other scientific fields. In the future, new
methods involving spatial and temporal information, as well
as other satellite sensors, should be considered to expand the
spatiotemporal monitoring capabilities of LST products.
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