Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-753-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-753-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
Francesca Ardizzone
CNR – IRPI, Via della Madonna Alta 126, 06128, Perugia, Italy
Francesco Bucci
CNR – IRPI, Via della Madonna Alta 126, 06128, Perugia, Italy
Mauro Cardinali
CORRESPONDING AUTHOR
CNR – IRPI, Via della Madonna Alta 126, 06128, Perugia, Italy
Federica Fiorucci
CNR – IRPI, Via della Madonna Alta 126, 06128, Perugia, Italy
Luca Pisano
CNR – IRPI, Via Amendola 122, 70126, Bari, Italy
Michele Santangelo
CNR – IRPI, Via della Madonna Alta 126, 06128, Perugia, Italy
Veronica Zumpano
CNR – IRPI, Via Amendola 122, 70126, Bari, Italy
Related authors
Jalal Samia, Arnaud Temme, Arnold Bregt, Jakob Wallinga, Fausto Guzzetti, and Francesca Ardizzone
Nat. Hazards Earth Syst. Sci., 20, 271–285, https://doi.org/10.5194/nhess-20-271-2020, https://doi.org/10.5194/nhess-20-271-2020, 2020
Short summary
Short summary
For the Collazzone study area in Italy, we quantified how much landslides follow others using Ripley's K function, finding that susceptibility is increased within 60 m and 17 years after a previous landslide. We then calculated the increased susceptibility for every pixel and for the 17-time-slice landslide inventory. We used these as additional explanatory variables in susceptibility modelling. Model performance increased substantially with this landslide history component included.
Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
Short summary
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014, https://doi.org/10.5194/nhess-14-2215-2014, 2014
A. Manconi, F. Casu, F. Ardizzone, M. Bonano, M. Cardinali, C. De Luca, E. Gueguen, I. Marchesini, M. Parise, C. Vennari, R. Lanari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 1835–1841, https://doi.org/10.5194/nhess-14-1835-2014, https://doi.org/10.5194/nhess-14-1835-2014, 2014
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
M. Santangelo, L. Zhang, E. Rupnik, M. P. Deseilligny, and M. Cardinali
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1085–1092, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, 2022
Jalal Samia, Arnaud Temme, Arnold Bregt, Jakob Wallinga, Fausto Guzzetti, and Francesca Ardizzone
Nat. Hazards Earth Syst. Sci., 20, 271–285, https://doi.org/10.5194/nhess-20-271-2020, https://doi.org/10.5194/nhess-20-271-2020, 2020
Short summary
Short summary
For the Collazzone study area in Italy, we quantified how much landslides follow others using Ripley's K function, finding that susceptibility is increased within 60 m and 17 years after a previous landslide. We then calculated the increased susceptibility for every pixel and for the 17-time-slice landslide inventory. We used these as additional explanatory variables in susceptibility modelling. Model performance increased substantially with this landslide history component included.
Michele Santangelo, Massimiliano Alvioli, Marco Baldo, Mauro Cardinali, Daniele Giordan, Fausto Guzzetti, Ivan Marchesini, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 19, 325–335, https://doi.org/10.5194/nhess-19-325-2019, https://doi.org/10.5194/nhess-19-325-2019, 2019
Short summary
Short summary
The paper discusses the use of rockfall modelling software and photogrammetry applied to images acquired by RPAS to provide support to civil protection agencies during emergency response. The paper focuses on a procedure that was applied to define the residual rockfall risk for a road that was hit by an earthquake-triggered rockfall that occurred during the seismic sequence that hit central Italy on 24 August 2016. Road reopening conditions were decided based on the results of this study.
Federica Fiorucci, Daniele Giordan, Michele Santangelo, Furio Dutto, Mauro Rossi, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018, https://doi.org/10.5194/nhess-18-405-2018, 2018
Short summary
Short summary
This paper describes the criteria for the optimal selection of remote sensing images to map event landslides, discussing the ability of monoscopic and stereoscopic VHR satellite images and ultra-high-resolution UAV images to resolve the landslide photographical and morphological signatures. The findings can be useful to decide on the optimal imagery and technique to be used when planning the production of a landslide inventory map.
Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
Short summary
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
Paola Salvati, Umberto Pernice, Cinzia Bianchi, Ivan Marchesini, Federica Fiorucci, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 16, 1487–1497, https://doi.org/10.5194/nhess-16-1487-2016, https://doi.org/10.5194/nhess-16-1487-2016, 2016
Short summary
Short summary
We designed the POLARIS website to communicate to a broader audience information on geohydrological (landslide and flood) hazards with potential consequences to the population. POLARIS publishes periodic reports, analyses of specific damaging events and blog posts. POLARIS can help multiple audiences understand how risks can be reduced through appropriate measures and behaviours, contributing to increasing the resilience of the population to geohydrological risk.
M. Santangelo, I. Marchesini, F. Bucci, M. Cardinali, F. Fiorucci, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 15, 2111–2126, https://doi.org/10.5194/nhess-15-2111-2015, https://doi.org/10.5194/nhess-15-2111-2015, 2015
Short summary
Short summary
In this work, we present a new semi-automatic procedure to prepare landslide inventory maps that uses GIS applications and tools for the digitization of photo-interpreted data. Results show that the new semi-automatic procedure proves more efficient for the production of landslide inventories and results in the production of more accurate maps, compared to the manual procedure. The presented work has potential consequences for multiple applications of landslide studies.
P. Salvati, C. Bianchi, F. Fiorucci, P. Giostrella, I. Marchesini, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2589–2603, https://doi.org/10.5194/nhess-14-2589-2014, https://doi.org/10.5194/nhess-14-2589-2014, 2014
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014, https://doi.org/10.5194/nhess-14-2215-2014, 2014
A. Manconi, F. Casu, F. Ardizzone, M. Bonano, M. Cardinali, C. De Luca, E. Gueguen, I. Marchesini, M. Parise, C. Vennari, R. Lanari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 1835–1841, https://doi.org/10.5194/nhess-14-1835-2014, https://doi.org/10.5194/nhess-14-1835-2014, 2014
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
The China Active Faults Database (CAFD) and its web system
A regolith lead isoscape of Australia
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania region (Italy): Statistical combination of different predictions for spatial thickness estimation
High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen
Integration by design: Driving mineral system knowledge using multi modal, collocated, scale-consistent characterization
High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia
A global zircon U–Th–Pb geochronological database
Subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy)
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
IESDB – the Iberian Evaporite Structure Database
Spectral Library of European Pegmatites, Pegmatite Minerals and Pegmatite Host-Rocks – the GREENPEG project database
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Digital soil mapping of lithium in Australia
A multi-dimensional dataset of Ordovician to Silurian graptolite specimens for virtual examination, global correlation, and shale gas exploration
A strontium isoscape of northern Australia
Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks
A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy
Pan-Arctic soil element bioavailability estimations
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
OCTOPUS database (v.2)
A national landslide inventory for Denmark
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024, https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Short summary
This study presents a national-scale database (1:4000 000) of active faults in China and its adjacent regions in tandem with an associated web-based query system. This database integrates regional-scale studies and surveys conducted over the past 2 decades (at reference scales from 1:250 000 to 1:50 000). Our system hosts this nation-scale database accessible through a Web Geographic Information System (GIS) application.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Pooria Ebrahimi, Fabio Matano, Vincenzo Amato, Raffaele Mattera, and Germana Scepi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-44, https://doi.org/10.5194/essd-2024-44, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly influence landscape evolution, hydrology, erosion, and slope stability processes. Accurate mapping the thickness spatial variations of these fallout pyroclastic deposits over large hillslope areas remains a knowledge gap. We attempt to bridge this gap by applying statistical techniques on a field-based thickness measurement dataset for making representative predictions.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
James Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-464, https://doi.org/10.5194/essd-2023-464, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Cloncurry METAL aims to shift the “Big Data” paradigm in mineral system science by developing a quantitative, fully integrated, multi-modal, scale-consistent methodology for system characterisation. The data comprises collocated petrophysical-mineralogical-geochemical-structural-metasomatic characterisation of 23 deposits from a highly complex mineral system. This approach allows translation of mineral system processes into physics, providing a framework for smarter geophysics-based exploration.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Yujing Wu, Xianjun Fang, and Jianqing Ji
Earth Syst. Sci. Data, 15, 5171–5181, https://doi.org/10.5194/essd-15-5171-2023, https://doi.org/10.5194/essd-15-5171-2023, 2023
Short summary
Short summary
We introduce a zircon U‒Th‒Pb chronological database of the global continental crust. This database provides comprehensive research materials for Earth system science in deep time and space due to its large amount of data (~2 million records), long time span (4.4 billion years), global sampling range, comprehensive zircon samples, and various dating instruments.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Kristen Chiama, Morgan Gabor, Isabella Lupini, Randolph Rutledge, Julia Ann Nord, Shuang Zhang, Asmaa Boujibar, Emma S. Bullock, Michael J. Walter, Kerstin Lehnert, Frank Spear, Shaunna M. Morrison, and Robert M. Hazen
Earth Syst. Sci. Data, 15, 4235–4259, https://doi.org/10.5194/essd-15-4235-2023, https://doi.org/10.5194/essd-15-4235-2023, 2023
Short summary
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Joana Cardoso-Fernandes, Douglas Santos, Cátia Rodrigues de Almeida, Alexandre Lima, Ana C. Teodoro, and GREENPEG project team
Earth Syst. Sci. Data, 15, 3111–3129, https://doi.org/10.5194/essd-15-3111-2023, https://doi.org/10.5194/essd-15-3111-2023, 2023
Short summary
Short summary
GREENPEG aims to develop tools for pegmatite exploration and to enhance European databases, adding new data on pegmatite properties, such as the spectral signature. Samples comprise pegmatites and wall rocks from Austria, Ireland, Norway, Portugal, and Spain. A detailed description of the spectral database is presented as well as reflectance spectra, photographs, and absorption features. Its European scale comprises pegmatites with distinct characteristics, providing a reference for exploration.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Hong-He Xu, Zhi-Bin Niu, Yan-Sen Chen, Xuan Ma, Xiao-Jing Tong, Yi-Tong Sun, Xiao-Yan Dong, Dan-Ni Fan, Shuang-Shuang Song, Yan-Yan Zhu, Ning Yang, and Qing Xia
Earth Syst. Sci. Data, 15, 2213–2221, https://doi.org/10.5194/essd-15-2213-2023, https://doi.org/10.5194/essd-15-2213-2023, 2023
Short summary
Short summary
A multi-dimensional and integrated dataset of fossil specimens is described. The dataset potentially contributes to a range of scientific activities and provides easy access to and virtual examination of fossil specimens in a convenient and low-cost way. It will greatly benefit paleontology in research, teaching, and science communication.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Samuel W. Scott, Léa Lévy, Cari Covell, Hjalti Franzson, Benoit Gibert, Ágúst Valfells, Juliet Newson, Julia Frolova, Egill Júlíusson, and María Sigríður Guðjónsdóttir
Earth Syst. Sci. Data, 15, 1165–1195, https://doi.org/10.5194/essd-15-1165-2023, https://doi.org/10.5194/essd-15-1165-2023, 2023
Short summary
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical, and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, these data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Cited articles
Antonini, G., Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., and
Reichenbach, P.: Surface deposits and landslide inventory map of the area
affected by the 1997 Umbria-Marche earthquakes, Bollettino della Società
Geologica Italiana, Volume SPE, 121, 843–853, 2002.
Ardizzone, F., Basile, G., Cardinali, M., Casagli, N., Del Conte, S., Del
Ventisette, C., Fiorucci, F., Garfagnoli, F., Gigli, G., Guzzetti, F.,
Iovine, G., Mondini, A. C., Moretti, S., Panebianco, M., Raspini, F.,
Reichenbach, P., Rossi, M., Tanteri, L., and Terranova, O.: Landslide
inventory map for the Briga and the Giampilieri catchments, NE Sicily,
Italy, J. Maps, 8, 176–180,
https://doi.org/10.1080/17445647.2012.694271, 2012.
Ardizzone, F., Fiorucci, F., Santangelo, M., Cardinali, M., Mondini, A. C., Rossi, M., Reichenbach, P., Guzzetti, F., and Ardizzone, F.: Very-High Resolution Stereoscopic Satellite Images for Landslide Mapping, in:
Landslide Inventory and Susceptibility and Hazard Zoning, Berlin,
Heidelberg, Citation Key: CNRPRODOTTI89033, 95–101, 2013.
Brozzetti, F., Boncio, P., Lavecchia, G., and Pace, B.: Present activity and
seismogenic potential of a low-angle normal fault system (Città di
Castello, Italy): Constraints from surface geology, seismic reflection data
and seismicity, Tectonophysics, 463, 31–46,
https://doi.org/10.1016/j.tecto.2008.09.023, 2009.
Bucci, F., Cardinali, M., and Guzzetti, F.: Structural geomorphology, active
faulting and slope deformations in the epicentre area of the MW 7.0, 1857,
Southern Italy earthquake, Phys. Chem. Earth,
63, 12–24, https://doi.org/10.1016/j.pce.2013.04.005, 2013.
Bucci, F., Novellino, R., Tavarnelli, E., Prosser, G., Guzzetti, F.,
Cardinali, M., Gueguen, E., Guglielmi, P., and Adurno, I.: Frontal collapse
during thrust propagation in mountain belts: a case study in the Lucania
Apennines, Southern Italy, J. Geol. Soc., 171, 571–581,
https://doi.org/10.1144/jgs2013-103, 2014.
Bucci, F., Santangelo, M., Cardinali, M., Fiorucci, F., and Guzzetti, F.:
Landslide distribution and size in response to Quaternary fault activity:
The Peloritani Range, NE Sicily, Italy, Earth Surf. Proc.
Land., 41, 711–720, https://doi.org/10.1002/esp.3898, 2016a.
Bucci, F., Mirabella, F., Santangelo, M., Cardinali, M., and Guzzetti, F.:
Photo-geology of the Montefalco Quaternary Basin, Umbria, Central Italy,
J. Maps, 12, 314–322, https://doi.org/10.1080/17445647.2016.1210042, 2016b.
Bucci, F., Santangelo, M., Fiorucci, F., Ardizzone, F., Giordan, D.,
Cignetti, M., Notti, D., Allasia, P., Godone, D., Lagomarsino, D., Pozzoli,
A., Norelli, E., and Cardinali, M.: Geomorphologic landslide inventory by
air photo interpretation of the High Agri Valley (Southern Italy), J.
Maps, 17, 376–388, https://doi.org/10.1080/17445647.2021.1943552, 2021.
Cardinali, M., Antonini, G., Reichenbach, P., and Guzzetti, F.: Photo geological and landslide inventory map for the Upper Tiber River basin. Pubblication CNR GNDCI n. 2116, Scale 1:1,200,000,
2001 (in English and Italian).
Cardinali, M., Ardizzone, F., Bucci, F., Fiorucci, F., Pisano, L.,
Santangelo, M., and Zumpano, V.: Geomorphological landslide inventory map of
the Daunia Mountains, Southern Italian Apennines, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.942427, 2022.
Ciarcia, S., Di Nocera, S., Matano, F., and Torre, Ma. L.: Evoluzione
tettono-sedimentaria e paleogeografica dei depocentri “wedge-top”
nell'ambito del “foreland basin system” pliocenico dell'Appennino
meridionale (settore Irpino-Dauno), Boll. Soc. Geol. It., 122, 117–137,
2003.
Cotecchia, F., Santaloia, F., and Tagarelli, V.: Towards A
Geo-Hydro-Mechanical Characterization of Landslide Classes: Preliminary
Results, Appl. Sci., 10, 7960, https://doi.org/10.3390/app10227960,
2020.
Cruden, D. M. and Varnes, D. J.: Landslide Types and Processes, Special
Report National Research Council Transportation Research Board, 247, 36–75,
1996.
di Lernia, A., Cotecchia, F., Elia, G., Tagarelli, V., Santaloia, F., and
Palladino, G.: Assessing the influence of the hydraulic boundary conditions
on clay slope stability: The Fontana Monte case study, Eng. Geol.,
297, 106509, https://doi.org/10.1016/j.enggeo.2021.106509, 2022.
Donnini, M., Napolitano, E., Salvati, P., Ardizzone, F., Bucci, F.,
Fiorucci, F., Santangelo, M., Cardinali, M., and Guzzetti, F.: Impact of
event landslides on road networks: a statistical analysis of two Italian
case studies, Landslides, 14, 1521–1535,
https://doi.org/10.1007/s10346-017-0829-4, 2017.
Filice, F. and Seeber, L.: The Culmination of an Oblique Time-Transgressive
Arc Continent Collision: The Pollino Massif Between Calabria and the
Southern Apennines, Italy, Tectonics, 38, 3261–3280,
https://doi.org/10.1029/2017TC004932, 2019.
Fiorucci, F., Ardizzone, F., Rossi, M., and Torri, D.: The Use of
Stereoscopic Satellite Images to Map Rills and Ephemeral Gullies, Remote
Sensing, 7, 14151–14178, https://doi.org/10.3390/rs71014151, 2015.
Fiorucci, F., Giordan, D., Santangelo, M., Dutto, F., Rossi, M., and Guzzetti, F.: Criteria for the optimal selection of remote sensing optical images to map event landslides, Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018, 2018.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.:
Comparing landslide inventory maps, Geomorphology, 94, 268–289,
https://doi.org/10.1016/j.geomorph.2006.09.023, 2008.
Gioia, D., Di Leo, P., Giano, S. I., and Schiattarella, M.: Chronological
constraints on a Holocene landslide in an intermontane basin of the southern
Apennines, Italy: Morphological evolution and palaeoclimate implications,
Holocene, 21, 263–273, https://doi.org/10.1177/0959683610378879, 2011.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.:
Probabilistic landslide hazard assessment at the basin scale, Geomorphology,
72, 272–299, https://doi.org/10.1016/j.geomorph.2005.06.002, 2005.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M.,
and Chang, K.-T.: Landslide inventory maps: New tools for an old problem,
Earth-Sci. Rev., 112, 42–66,
https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Harp, E. L. and Jibson, R. W.: Inventory of landslides triggered by the 1994
Northridge, California earthquake, U.S. Geological Survey [data set], https://doi.org/10.5066/F7Z60MKF, 2017.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
Keaton, J. R. and DeGraff, J. V.: Surface observation and geologic mapping,
in: Landslides: Investigation and mitigation, edited by: Turner, A. K. and Schuster, R. L., Transportation Research Board Special Report 247, Washington, D.C.,
National Research Council, 178–230, 1996.
Losacco, N., Bottiglieri, O., Santaloia, F., Vitone, C., and Cotecchia, F.:
The Geo-Hydro-Mechanical Properties of a Turbiditic Formation as Internal
Factors of Slope Failure Processes, Geosciences, 11, 429,
https://doi.org/10.3390/geosciences11100429, 2021.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf. Proc.
Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Mancini, M., Vignaroli, G., Bucci, F., Cardinali, M., Cavinato, G. P., Di
salvo, C., Giallini, S., Moscatelli, M., Polpetta, F., Putignano, M. L.,
Santangelo, M., and Sirianni, P.: New stratigraphic constraints for the
Quaternary source-to-sink history of the Amatrice Basin (central Apennines,
Italy), Geol. J., 55, 4226–4251, https://doi.org/10.1002/gj.3672,
2020.
Mirabella, F., Bucci, F., Santangelo, M., Cardinali, M., Caielli, G., De
Franco, R., Guzzetti, F., and Barchi, M. R.: Alluvial fan shifts and stream
captures driven by extensional tectonics in central Italy, J.
Geol. Soc., 175, 788–805, https://doi.org/10.1144/jgs2017-138, 2018.
Mondini, A. C., Chang, K., Rossi, M., Marchesini, I., and Guzzetti, F.:
Semi-automatic recognition and mapping of event-induced landslides by
exploiting multispectral satellite images and DEM in a Bayesian framework, SPIE Asia-Pacific Remote Sensing, 2012, Kyoto, Japan, P. SPIE,
852415, https://doi.org/10.1117/12.977432, 2012.
Niculiţă, M., Mărgărint, M. C. M. C., and Santangelo, M.:
Archaeological evidence for Holocene landslide activity in the Eastern
Carpathian lowland, Quatern. Int., 415, 175–189,
https://doi.org/10.1016/j.quaint.2015.12.048, 2016.
Pánek, T., Hartvich, F., Jankovská, V., Klimeš, J.,
Tábořík, P., Bubík, M., Smolková, V., and
Hradecký, J.: Large Late Pleistocene landslides from the marginal slope
of the Flysch Carpathians, Landslides, 11, 981–992,
https://doi.org/10.1007/s10346-013-0463-8, 2014.
Pellicani, R. and Spilotro, G.: Evaluating the quality of landslide
inventory maps: comparison between archive and surveyed inventories for the
Daunia region (Apulia, Southern Italy), Bull. Eng. Geol. Environ., 74, 357–367,
https://doi.org/10.1007/s10064-014-0639-z, 2015.
Pellicani, R., Van Westen, C. J., and Spilotro, G.: Assessing landslide
exposure in areas with limited landslide information, Landslides, 11,
463–480, https://doi.org/10.1007/s10346-013-0386-4, 2014a.
Pellicani, R., Frattini, P., and Spilotro, G.: Landslide susceptibility
assessment in Apulian Southern Apennine: heuristic vs. statistical methods,
Environ. Earth Sci., 72, 1097–1108,
https://doi.org/10.1007/s12665-013-3026-3, 2014b.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40,
927–930, https://doi.org/10.1130/G33217.1, 2012.
Razak, K. A., Santangelo, M., Westen, C. J. V., Straatsma, M. W., and Jong,
S. M. D.: Generating an optimal DTM from airborne laser scanning data for
landslide mapping in a tropical forest environment, Geomorphology,
190, 112–125, https://doi.org/10.1016/j.geomorph.2013.02.021, 2013.
Santangelo, M., Gioia, D., Cardinali, M., Guzzetti, F., and Schiattarella,
M.: Interplay between mass movement and fluvial network organization: An
example from southern Apennines, Italy, Geomorphology, 188, 54–67,
https://doi.org/10.1016/j.geomorph.2012.12.008, 2013.
Santangelo, M., Gioia, D., Cardinali, M., Guzzetti, F., and Schiattarella,
M.: Landslide inventory map of the upper Sinni River valley, Southern Italy,
J. Maps, 11, 444–453, https://doi.org/10.1080/17445647.2014.949313,
2015.
Santangelo, M., Cardinali, M., Bucci, F., Fiorucci, F., and Mondini, A. C.:
Exploring event landslide mapping using Sentinel-1 SAR backscatter products,
Geomorphology, 397, 108021, https://doi.org/10.1016/j.geomorph.2021.108021,
2022.
Schiattarella, M., Di Leo, P., Beneduce, P., and Ivo Giano, S.: Quaternary
uplift vs tectonic loading: a case study from the Lucanian Apennine,
southern Italy, Quatern. Int., 101–102, 239–251,
https://doi.org/10.1016/S1040-6182(02)00126-X, 2003.
Schiattarella, M., Giano, S. I., and Gioia, D.: Long-term geomorphological
evolution of the axial zone of the Campania-Lucania Apennine, southern
Italy: a review, Geol. Carpath., 68, 57–67,
https://doi.org/10.1515/geoca-2017-0005, 2017.
Schulz, W. H.: OF-2004-1396: Landslides mapped using LIDAR imagery, Seattle, Washington, U.S. Geological Survey, 2004.
Spalluto, L., Fiore, A., Miccoli, M. N., and Parise, M.: Activity maps of
multi-source mudslides from the Daunia Apennines (Apulia, southern Italy),
Nat. Hazards, 106, 277–301, https://doi.org/10.1007/s11069-020-04461-3,
2021.
Thiery, Y., Terrier, M., Colas, B., Fressard, M., Maquaire, O., Grandjean,
G., and Gourdier, S.: Improvement of landslide hazard assessments for
regulatory zoning in France: STATE–OF–THE-ART perspectives and
considerations, Int. J. Disast. Risk Re., 47,
101562, https://doi.org/10.1016/j.ijdrr.2020.101562, 2020.
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J.,
Moeyersons, J., Beek, L. P. H. van, and Vandekerckhove, L.: Use of
LIDAR-derived images for mapping old landslides under forest, Earth Surf.
Proc. Land., 32, 754–769, https://doi.org/10.1002/esp.1417,
2007.
Vignaroli, G., Mancini, M., Bucci, F., Cardinali, M., Cavinato, G. P.,
Moscatelli, M., Putignano, M. L., Sirianni, P., Santangelo, M., Ardizzone,
F., Cosentino, G., Di Salvo, C., Fiorucci, F., Gaudiosi, I., Giallini, S.,
Messina, P., Peronace, E., Polpetta, F., Reichenbach, P., Scionti, V.,
Simionato, M., and Stigliano, F.: Geology of the central part of the
Amatrice Basin (Central Apennines, Italy), J. Maps, 15, 193–202,
https://doi.org/10.1080/17445647.2019.1570877, 2019.
Vitale, S. and Ciarcia, S.: Tectono-stratigraphic and kinematic evolution of
the southern Apennines/Calabria–Peloritani Terrane system (Italy),
Tectonophysics, 583, 164–182, https://doi.org/10.1016/j.tecto.2012.11.004,
2013.
Vitale, S., Ciarcia, S., Mazzoli, S., and Zaghloul, M. N.: Tectonic
evolution of the “Liguride” accretionary wedge in the Cilento area, southern
Italy: A record of early Apennine geodynamics, J. Geodyn., 51,
25–36, https://doi.org/10.1016/j.jog.2010.06.002, 2011.
Wasowski, J., Lamanna, C., and Casarano, D.: Influence of land-use change
and precipitation patterns on landslide activity in the Daunia Apennines,
Italy, Q. J. Eng. Geol. Hydroge., 43,
387–401, https://doi.org/10.1144/1470-9236/08-101, 2010.
Wasowski, J., Lamanna, C., Gigante, G., and Casarano, D.: High resolution
satellite imagery analysis for inferring surface–subsurface water
relationships in unstable slopes, Remote Sens. Environ., 124,
135–148, https://doi.org/10.1016/j.rse.2012.05.007, 2012.
WP/WLI: International Geotechnical societies UNESCO Working Party on World
Landslide Inventory, Multilingual landslide glossary, Richmond: A suggested method for descibing the activity of a landslide, Bulletin International Association of Engineering Geology, 47, 53–57, 1993.
Zumpano, V., Ardizzone, F., Bucci, F., Cardinali, M., Fiorucci, F., Parise,
M., Pisano, L., Reichenbach, P., Santaloia, F., Santangelo, M., Wasowski,
J., and Lollino, P.: The relation of spatio-temporal distribution of
landslides to urban development (a case study from the Apulia region,
Southern Italy), J. Maps, 17, 133–140,
https://doi.org/10.1080/17445647.2020.1746417, 2020.
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines,...
Altmetrics
Final-revised paper
Preprint