Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-3283-2023
https://doi.org/10.5194/essd-15-3283-2023
Data description paper
 | 
27 Jul 2023
Data description paper |  | 27 Jul 2023

HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery

Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani

Related authors

Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025,https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022,https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary

Cited articles

Abad, L., Hölbling, D., Spiekermann, R., Prasicek, G., Dabiri, Z., and Argentin, A.-L.: Detecting landslide-dammed lakes on Sentinel-2 imagery and monitoring their spatio-temporal evolution following the Kaikōura earthquake in New Zealand, Sci. Total Environ., 820, 153335, https://doi.org/10.1016/j.scitotenv.2022.153335, 2022. 
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: A system for large-scale machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283, 2016 (data available at: https://www.tensorflow.org/, last access: 19 July 2023). 
Abderrahim, N. Y. Q., Abderrahim, S., and Rida, A.: Road Segmentation using U-Net architecture, in: 2020 IEEE International conference of Moroccan Geomatics (Morgeo), Casablanca, Morocco, 2020, 1–4, https://doi.org/10.1109/Morgeo49228.2020.9121887, 2020. 
Abraham, N. and Khan, N. M.: A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019, 683–687, https://doi.org/10.1109/ISBI.2019.8759329, 2019. 
Alpert, L.: Rainfall maps of Hispaniola, B. Am. Meteorol. Soc., 23, 423–431, https://www.jstor.org/stable/26256082 (last access: 21 July 2023), 1942. 
Download
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Share
Altmetrics
Final-revised paper
Preprint