Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-3283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3283-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
Sansar Raj Meena
CORRESPONDING AUTHOR
Machine Intelligence and Slope Stability Laboratory, Department of
Geosciences, University of Padova, 35129 Padua, Italy
Lorenzo Nava
Machine Intelligence and Slope Stability Laboratory, Department of
Geosciences, University of Padova, 35129 Padua, Italy
Kushanav Bhuyan
Machine Intelligence and Slope Stability Laboratory, Department of
Geosciences, University of Padova, 35129 Padua, Italy
Silvia Puliero
Machine Intelligence and Slope Stability Laboratory, Department of
Geosciences, University of Padova, 35129 Padua, Italy
Lucas Pedrosa Soares
Institute of Energy and Environment, University of São Paulo, 05508-010 São Paulo , Brazil
Helen Cristina Dias
Institute of Energy and Environment, University of São Paulo, 05508-010 São Paulo , Brazil
Mario Floris
Machine Intelligence and Slope Stability Laboratory, Department of
Geosciences, University of Padova, 35129 Padua, Italy
Filippo Catani
Machine Intelligence and Slope Stability Laboratory, Department of
Geosciences, University of Padova, 35129 Padua, Italy
Related authors
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025, https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Short summary
On 2 April 2024, a Mw 7.4 earthquake hit Taiwan's eastern coast, causing extensive landslides and damage. We used automated methods combining Earth observation (EO) data with AI to quickly inventory the landslides. This approach identified 7090 landslides over 75 km2 within 3 h of acquiring the EO imagery. The study highlights AI's role in improving landslide detection efforts in disaster response.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021, https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Short summary
Comprehensive and sustainable landslide management, including identification of landslide-susceptible areas, requires a lot of organisations and people to collaborate efficiently. In this study, we propose a concept for a system that provides users with a platform to share the location of landslide events for further collaboration in Nepal. The system can be beneficial for specifying potentially risky regions and consequently, the development of risk mitigation strategies at the local level.
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025, https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Short summary
On 2 April 2024, a Mw 7.4 earthquake hit Taiwan's eastern coast, causing extensive landslides and damage. We used automated methods combining Earth observation (EO) data with AI to quickly inventory the landslides. This approach identified 7090 landslides over 75 km2 within 3 h of acquiring the EO imagery. The study highlights AI's role in improving landslide detection efforts in disaster response.
Lorenzo Nava, Maximilian Van Wyk de Vries, and Louie Elliot Bell
EGUsphere, https://doi.org/10.5194/egusphere-2025-2795, https://doi.org/10.5194/egusphere-2025-2795, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We introduce TerraTrack, an open-source tool for detecting and monitoring slow-moving landslides using Sentinel-2 data. It automates image acquisition, landslide identification, and time-series generation in an accessible and cloud-based workflow. TerraTrack supports early warning, complements InSAR, and offers a scalable solution for landslide hazard identification and monitoring.
Lorenzo Nava, Alessandro Mondini, Kushanav Bhuyan, Chengyong Fang, Oriol Monserrat, Alessandro Novellino, and Filippo Catani
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-230, https://doi.org/10.5194/gmd-2024-230, 2025
Preprint under review for GMD
Short summary
Short summary
This paper presents a new framework for landslide detection using radar and deep learning, informed by data from 73000 landslides across diverse regions in the world. The method showed high accuracy and rapid response potential regardless of weather and illumination conditions. By overcoming the limits of optical satellite imagery, it offers a powerful tool for global landslide detection, benefiting disaster management and advancing methods for monitoring hazardous terrains.
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024, https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
Short summary
In this study, we present the largest publicly available landslide dataset, Globally Distributed Coseismic Landslide Dataset (GDCLD), which includes multi-sensor high-resolution images from various locations around the world. We test GDCLD with seven advanced algorithms and show that it is effective in achieving reliable landslide mapping across different triggers and environments, with great potential in enhancing emergency response and disaster management.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021, https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Short summary
Comprehensive and sustainable landslide management, including identification of landslide-susceptible areas, requires a lot of organisations and people to collaborate efficiently. In this study, we propose a concept for a system that provides users with a platform to share the location of landslide events for further collaboration in Nepal. The system can be beneficial for specifying potentially risky regions and consequently, the development of risk mitigation strategies at the local level.
Cited articles
Abad, L., Hölbling, D., Spiekermann, R., Prasicek, G., Dabiri, Z., and
Argentin, A.-L.: Detecting landslide-dammed lakes on Sentinel-2 imagery and
monitoring their spatio-temporal evolution following the Kaikōura
earthquake in New Zealand, Sci. Total Environ., 820, 153335, https://doi.org/10.1016/j.scitotenv.2022.153335,
2022.
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: A system for large-scale machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283, 2016 (data available at: https://www.tensorflow.org/, last access: 19 July 2023).
Abderrahim, N. Y. Q., Abderrahim, S., and Rida, A.: Road Segmentation using U-Net architecture, in: 2020 IEEE International conference of Moroccan Geomatics (Morgeo), Casablanca, Morocco, 2020, 1–4, https://doi.org/10.1109/Morgeo49228.2020.9121887, 2020.
Abraham, N. and Khan, N. M.: A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019, 683–687, https://doi.org/10.1109/ISBI.2019.8759329, 2019.
Alpert, L.: Rainfall maps of Hispaniola, B. Am.
Meteorol. Soc., 23, 423–431, https://www.jstor.org/stable/26256082 (last access: 21 July 2023), 1942.
Amatya, P., Kirschbaum, D., and Stanley, T.: Rainfall-induced landslide
inventories for Lower Mekong based on Planet imagery and a semi-automatic
mapping method, Geosci. Data J., 9, 315–327, https://doi.org/10.1002/gdj3.145, 2022.
Bai, H., Feng, W., Yi, X., Fang, H., Wu, Y., Deng, P., Dai, H., and Hu, R.:
Group-occurring landslides and debris flows caused by the continuous heavy
rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong
Province, China, Nat. Hazards, 108, 3181–3201,
https://doi.org/10.1007/s11069-021-04819-1, 2021.
Basofi, A., Fariza, A., and Dzulkarnain, M. R.: Landslides susceptibility mapping using fuzzy logic: A case study in Ponorogo, East Java, Indonesia, in: 2016 International Conference on Data and Software Engineering (ICoDSE), Denpasar, Indonesia, 2016, 1–7, https://doi.org/10.1109/ICODSE.2016.7936156, 2017.
Bhuyan, K., Van Westen, C., Wang, J., and Meena, S. R.: Mapping and
characterising buildings for flood exposure analysis using open-source data
and artificial intelligence, Nat. Hazards, https://doi.org/10.1007/s11069-022-05612-4,
2022.
Bhuyan, K., Tanyaş, H., Nava, L., Puliero, S., Meena, S. R., Floris, M.,
van Westen, C., and Catani, F.: Generating multi-temporal landslide
inventories through a general deep transfer learning strategy using HR EO
data, Scientific Reports, 13, 162, https://doi.org/10.1038/s41598-022-27352-y, 2023.
Cruden, D. M. and Varnes, D. J.: Landslide Types and Processes, Special Report, Transportation Research Board, National Academy of Sciences, 247, 36–75, 1996.
Dang, V. H., Hoang, N. D., Nguyen, L. M. D., Bui, D. T., and Samui, P.: A
novel GIS-Based random forest machine algorithm for the spatial prediction
of shallow landslide susceptibility, Forests, 11, 118, https://doi.org/10.3390/f11010118, 2020.
Deijns, A. A. J., Dewitte, O., Thiery, W., d'Oreye, N., Malet, J.-P., and Kervyn, F.: Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments, Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, 2022.
Diakogiannis, F. I., Waldner, F., Caccetta, P., and Wu, C.: ResUNet-a: A
deep learning framework for semantic segmentation of remotely sensed data,
ISPRS J. Photogramm., 162, 94–114,
https://doi.org/10.1016/j.isprsjprs.2020.01.013, 2020.
Fadhila, A., Fauzi, A., and Rifai, H.: Effectiveness of integrated science
(IPA) textbook nested with landslide theme to improve preparedness of
students, J. Phys. Conf. Ser., 1185, 012055,
https://doi.org/10.1088/1742-6596/1185/1/012055, 2019.
Fan, X., Juang, C. H., Wasowski, J., Huang, R., Xu, Q., Scaringi, G., van
Westen, C. J., and Havenith, H.-B.: What we have learned from the 2008
Wenchuan Earthquake and its aftermath: A decade of research and challenges,
Eng. Geol., 241, 25–32, https://doi.org/10.1016/j.enggeo.2018.05.004, 2018.
Feng, W., Tang, Y., and Hong, B.: Landslide Hazard Assessment Methods along
Fault Zones Based on Multiple Working Conditions: A Case Study of the
Lixian–Luojiabu Fault Zone in Gansu Province (China), Sustainability
(Switzerland), 14, 8098, https://doi.org/10.3390/su14138098, 2022.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Gameiro, S., Riffel, E. S., de Oliveira, G. G., and Guasselli, L. A.:
Artificial neural networks applied to landslide susceptibility: The effect
of sampling areas on model capacity for generalization and extrapolation,
Appl. Geogr., 137, 102598, https://doi.org/10.1016/j.apgeog.2021.102598, 2021.
Ghorbanzadeh, O., Xu, Y., Ghamis, P., Kopp, M., and Kreil, D.:
Landslide4sense: Reference benchmark data and deep learning models for
landslide detection, arXiv [preprint], https://doi.org/10.48550/arXiv.2206.00515, 1 June 2022.
Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., and
Wang, G.: Distribution pattern of earthquake-induced landslides triggered by
the 12 May 2008 Wenchuan earthquake, Geomorphology, 133, 152–167,
https://doi.org/10.1016/j.geomorph.2010.12.030, 2011.
Guha-Sapir, D., Below, R., and Hoyois, P.: EM-DAT: The CRED/OFDA
International Disaster Database,
Université Catholique de Louvain, Brussels, Belgium, https://www.emdat.be (last access: 15 July 2023), 2009.
Harp, E. L., Jibson, R. W., and Schmitt, R. G.: Map of landslides triggered
by the January 12, 2010, Haiti earthquake, Reston, VA, Report 3353, US Geological Survey Scientific Investigations Map, 2016.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194, 2014.
Ichsandya, D. B., Dimyati, M., Shidiq, I. P. A., Zulkarnain, F.,
Rahatiningtyas, N. S., Syamsuddin, R. P., and Zein, F. M.: Landslide
assessment using interferometric synthetic aperture radar in Pacitan, East
Java, International Journal of Electrical and Computer Engineering, 12,
2614–2625, https://doi.org/10.11591/ijece.v12i3.pp2614-2625, 2022.
Jennifer, J. J., Saravanan, S., and Abijith, D.: Application of Frequency
Ratio and Logistic Regression Model in the Assessment of Landslide
Susceptibility Mapping for Nilgiris District, Tamilnadu, India, Indian
Geotechnical Journal, 51, 773–787, https://doi.org/10.1007/s40098-021-00520-z, 2021.
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv
[preprint], https://doi.org/10.48550/arXiv.1412.6980, 22 December 2014.
Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.: Deeply-supervised
nets, arXiv [preprint],
https://doi.org/10.48550/arXiv.1409.5185, 18 September 2014.
Liu, Y., Yao, X., Gu, Z., Zhou, Z., Liu, X., Chen, X., and Wei, S.: Study of
the Automatic Recognition of Landslides by Using InSAR Images and the
Improved Mask R-CNN Model in the Eastern Tibet Plateau, Remote Sensing, 14,
3362, https://doi.org/10.3390/rs14143362, 2022.
Martha, T. R., Roy, P., Khanna, K., Mrinalni, K., and Kumar, K. V.:
Landslides mapped using satellite data in the Western Ghats of India after
excess rainfall during August 2018, Current Science, 117, 804–812, 2019.
Martinez, S. N., Allstadt, K. E., Slaughter, S. L., Schmitt, R., Collins, E., Schaefer, L. N., and Ellison, S.: Landslides triggered by the August 14, 2021, magnitude 7.2 Nippes, Haiti, earthquake: U.S. Geological Survey Open-File Report 2021–1112, 17 pp., https://doi.org/10.3133/ofr20211112, 2021.
Massey, C., Townsend, D., Jones, K., Lukovic, B., Rhoades, D., Morgenstern,
R., Rosser, B., Ries, W., Howarth, J., and Hamling, I.: Volume
characteristics of landslides triggered by the Mw 7.8 2016 Kaikōura
Earthquake, New Zealand, derived from digital surface difference modeling,
J. Geophys. Res-Earth, 125, e2019JF005163, https://doi.org/10.1029/2019JF005163, 2020.
Meena, S., Chauhan, A., Bhuyan, K., and Singh, R. P.: Impact of the Chamoli disaster on flood Plain and water quality along the Himalayan rivers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16592, https://doi.org/10.5194/egusphere-egu21-16592, 2021a.
Meena, S. R., Chauhan, A., Bhuyan, K., and Singh, R. P.: Chamoli disaster: pronounced changes in water quality and flood plains using Sentinel data, Environ. Earth Sci., 80, 601, https://doi.org/10.1007/s12665-021-09904-z,
2021b.
Meena, S. R., Bhuyan, K., Chauhan, A., and Singh, R. P.: Snow covered with
dust after Chamoli rockslide: inference based on high-resolution satellite
data, Remote Sens. Lett., 12, 704–714, https://doi.org/10.1080/2150704X.2021.1931532,
2021c.
Meena, S. R., Ghorbanzadeh, O., van Westen, C. J., Nachappa, T. G.,
Blaschke, T., Singh, R. P., and Sarkar, R.: Rapid mapping of landslides in
the Western Ghats (India) triggered by 2018 extreme monsoon rainfall using a
deep learning approach, Landslides, 18, 1937–1950, https://doi.org/10.1007/s10346-020-01602-4, 2021d.
Meena, S. R., Nava, L., Bhuyan, K., Puliero, S., Soares, L. P., Dias, H. C., Floris, M., and Catani, F.: HR-GLDD: A globally distributed dataset using generalized DL for rapid landslide mapping on HR satellite imagery, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-350, in review, 2022a.
Meena, S. R., Soares, L. P., Grohmann, C. H., van Westen, C., Bhuyan, K.,
Singh, R. P., Floris, M., and Catani, F.: Landslide detection in the
Himalayas using machine learning algorithms and U-Net, Landslides, 19,
1209–1229, https://doi.org/10.1007/s10346-022-01861-3, 2022b.
Meena, S. R., Nava, L., Bhuyan, K., Puliero, S., Pedrosa Soares, L., Dias, H. C., Floris, M., and Catani, F.: HR-GLDD: A globally distributed high resolution landslide dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.7189381, 2022c.
Milletari, F., Navab, N., and Ahmadi, S.-A.: V-net: Fully convolutional
neural networks for volumetric medical image segmentation, in: Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 2016, 565–571, https://doi.org/10.1109/3DV.2016.79, 2016.
Mokoso, J. D. D. M., Kavusa, G. K., Milenge, L. W., Sefu, J. A., and
Kiswele, P. K.: Hippopotamus amphibius Linnaeus 1758 at Ruzizi River and
Lake Tanganyika (Territory of Uvira, South Kivu, DR Congo): population
census and conservation implications, Journal of Applied Biosciences, 171,
17795-17811–17795-17811, https://www.ajol.info/index.php/jab/article/view/232603 (last access: 21 July 2023), 2022.
Nava, L., Bhuyan, K., Meena, S. R., Monserrat, O., and Catani, F.: Rapid
Mapping of Landslides on SAR Data by Attention U-Net, Remote Sensing, 14, 1449, https://doi.org/10.3390/rs14061449, 2022a.
Nava, L., Monserrat, O., and Catani, F.: Improving Landslide Detection on SAR Data Through Deep Learning, IEEE Geosci. Remote S., 19, 4020405, https://doi.org/10.1109/LGRS.2021.3127073, 2022b.
Nava, L., Cuevas, M., Meena, S. R., Catani, F., and Monserrat, O.: Artisanal
and Small-Scale Mine Detection in Semi-Desertic Areas by Improved U-Net,
IEEE Geosci. Remote S., 19, 2507905, https://doi.org/10.1109/LGRS.2022.3220487, 2022c.
Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K.,
Mori, K., McDonagh, S., Hammerla, N. Y., and Kainz, B.: Attention u-net:
Learning where to look for the pancreas, arXiv [preprint], https://doi.org/10.48550/arXiv.1804.03999, 11 April
2018.
Planet Team: Education and RESEARCH: Satellite imagery solutions, Planet, https://www.planet.com/ (last access: 24 July 2023), 2019.
Prakash, N., Manconi, A., and Loew, S.: Mapping Landslides on EO Data:
Performance of Deep Learning Models vs. Traditional Machine Learning Models,
Remote Sensing, 12, 346, https://doi.org/10.3390/rs12030346, 2020.
Qi, S., Xu, Q., Lan, H., Zhang, B., and Liu, J.: Spatial distribution
analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China,
Eng. Geol., 116, 95–108, https://doi.org/10.1016/j.enggeo.2010.07.011, 2010.
Quevedo, R. P., Oliveira, G. G., and Guasselli, L. A.: Mapeamento de Suscetibilidade a Movimentos de Massa a partir de Redes Neurais Artificiais, Anuario do
Instituto de Geociencias, 43, 128–138, https://doi.org/10.11137/2020_2_128_138, 2020.
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F.,
Chamlagain, D., and Godt, J. W.: The size, distribution, and mobility of
landslides caused by the 2015 Mw 7.8 Gorkha earthquake, Nepal,
Geomorphology, 301, 121–138, 2018.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, edited by: Navab, N., Hornegger, J., Wells, W., and Frangi, A., MICCAI 2015, Lecture Notes in Computer Science, vol. 9351, Springer, Cham, https://doi.org/10.1007/978-3-319-24574-4_28, 2015.
Soares, L. P., Dias, H. C., Garcia, G. P. B., and Grohmann, C. H.: Landslide
Segmentation with Deep Learning: Evaluating Model Generalization in
Rainfall-Induced Landslides in Brazil, Remote Sensing, 14, 2237, https://doi.org/10.3390/rs14092237, 2022.
Tang, X., Tu, Z., Wang, Y., Liu, M., Li, D., and Fan, X.: Automatic Detection of Coseismic Landslides Using a New Transformer Method, Remote Sens., 14, 2884, https://doi.org/10.3390/rs14122884, 2022.
Tanyaş, H., Görüm, T., Fadel, I., Yıldırım, C., and
Lombardo, L.: An open dataset for landslides triggered by the 2016 Mw 7.8
Kaikōura earthquake, New Zealand, Landslides, 19, 1405–1420, 2022a.
Tanyaş, H., Hill, K., Mahoney, L., Fadel, I., and Lombardo, L.: The
world's second-largest, recorded landslide event: Lessons learnt from the
landslides triggered during and after the 2018 Mw 7.5 Papua New Guinea
earthquake, Eng. Geol., 297, 106504, https://doi.org/10.1016/j.enggeo.2021.106504, 2022b.
Tiwari, B., Ajmera, B., and Dhital, S.: Geological, topographical, and
seismological control on the co-seismic landslides triggered by the 2015
Gorkha earthquake, Geotechnical Frontiers, 234–243, https://doi.org/10.1061/9780784480458.023, 2017.
Uehara, T. D. T., Passos Corrêa, S. P. L., Quevedo, R. P., Körting,
T. S., Dutra, L. V., and Rennó, C. D.: Landslide scars detection using
remote sensing and pattern recognition techniques: Comparison among
artificial neural networks, gaussian maximum likelihood, random forest, and
support vector machine classifiers, Revista Brasileira de Cartografia, 72,
665–680, https://doi.org/10.14393/rbcv72n4-54037, 2020.
Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A.,
Dai, L., Xu, Q., and Huang, R.: Coseismic landslides triggered by the 2018
Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling
factors, and possible failure mechanism, Landslides, 16, 1551–1566, https://doi.org/10.1007/s10346-019-01187-7, 2019.
Xu, C. and Xu, X. W.: Construction of basic earthquake-triggered landslides
dataset for several large earthquake events at the beginning of the
twenty-first century, Dizhen Dizhi, 36, 90–104, https://doi.org/10.3969/j.issn.0253-4967.2014.01.008, 2014.
Xu, S., Liu, J., Wang, X., Zhang, Y., Lin, R., Zhang, M., Liu, M., and
Jiang, T.: Landslide Susceptibility Assessment Method Incorporating Index of
Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province,
Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of
Wuhan University, 45, 1214–1222, https://doi.org/10.13203/j.whugis20200109, 2020.
Yamagishi, H. and Yamazaki, F.: Landslides by the 2018 Hokkaido Iburi-Tobu
Earthquake on September 6, Landslides, 15, 2521–2524, https://doi.org/10.1007/s10346-018-1092-z, 2018.
Yang, Z. and Xu, C.: Efficient Detection of Earthquake−Triggered Landslides Based on U−Net++: An Example of the 2018 Hokkaido Eastern Iburi (Japan) Mw=6.6 Earthquake, Remote Sens., 14, 2826, https://doi.org/10.3390/rs14122826, 2022.
Yang, Z., Xu, C., and Li, L.: Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments, Remote Sens., 14, 2885, https://doi.org/10.3390/rs14122885, 2022.
Zhao, B., Wang, Y., Feng, Q., Guo, F., Zhao, X., Ji, F., Liu, J., and Ming,
W.: Preliminary analysis of some characteristics of coseismic landslides
induced by the Hokkaido Iburi-Tobu earthquake (September 5, 2018), Japan,
Catena, 189, 104502, https://doi.org/10.1016/j.catena.2020.104502, 2020.
Zin, W. W. and Rutten, M.: Long-term changes in annual precipitation and
monsoon seasonal characteristics in Myanmar, Hydrol. Current Res., 8, 1–8, https://doi.org/10.4172/2157-7587.1000271,
2017.
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Landslides occur often across the world, with the potential to cause significant damage....
Altmetrics
Final-revised paper
Preprint