Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-3131-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3131-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
IESDB – the Iberian Evaporite Structure Database
Eloi González-Esvertit
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès, s/n, 08028 Barcelona, Spain
Juan Alcalde
Geosciences Barcelona, GEO3BCN-CSIC, c/ Lluís Solé i
Sabarís, s/n, 08028 Barcelona, Spain
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, c/ Martí i Franquès, s/n, 08028 Barcelona, Spain
Related authors
No articles found.
Victoria Susin, Aline Melo, Koen Torremans, Juan Alcalde, David Martí, and Rafael Bartolome
EGUsphere, https://doi.org/10.5194/egusphere-2025-2512, https://doi.org/10.5194/egusphere-2025-2512, 2025
Short summary
Short summary
We integrated petrophysical and travel-time tomography data to refine the velocity model of a legacy seismic profile from the Limerick Syncline, a geologically complex Zn-Pb district in southwest Ireland. The improved seismic imaging enhanced subsurface characterisation and revealed previously unrecognised structural features, contributing to a better geological understanding and supporting future mineral exploration.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Juan Alcalde, Ramon Carbonell, Solveig Pospiech, Alba Gil, Liam A. Bullock, and Fernando Tornos
Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, https://doi.org/10.5194/se-13-1161-2022, 2022
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Cited articles
Andeweg, B.: Cenozoic tectonic evolution of the Iberian Peninsula: effects
and causes of changing stress fields, unpublished thesis, Vrije Universiteit, Amsterdam, 178 pp., 2002.
Burrel, L. and Teixell, A.: Contractional salt tectonics and role of
pre-existing diapiric structures in the South Pyrenean foreland
fold-and-thrust belt (Montsec and Serres Marginals), Journal of the Geological Society, 178, jgs2020-085, https://doi.org/10.1144/jgs2020-085, 2021.
Caglayan, D. G., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M.,
Kukla, P. A., and Stolten, D.: Technical potential of salt caverns for
hydrogen storage in Europe, Int. J. Hydrogen Energ., 45,
6793–6805, https://doi.org/10.1016/j.ijhydene.2019.12.161, 2020.
Cámara, P.: Salt and Strike-Slip Tectonics as Main Drivers in the
Structural Evolution of the Basque-Cantabrian Basin, Spain, in:
Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic
Margins, Elsevier, 371–393,
https://doi.org/10.1016/B978-0-12-809417-4.00018-5, 2017.
Cámara, P. and Flinch, J. F.: The Southern Pyrenees, in: Permo-Triassic
Salt Provinces of Europe, North Africa and the Atlantic Margins, Elsevier,
395–415, https://doi.org/10.1016/B978-0-12-809417-4.00019-7, 2017.
Carneiro, J. F., Matos, C. R., and van Gessel, S.: Opportunities for
large-scale energy storage in geological formations in mainland Portugal,
Renew. Sust. Energ. Rev., 99, 201–211,
https://doi.org/10.1016/j.rser.2018.09.036, 2019.
Carrillo, E., Koyi, H. A., and Nilfouroushan, F.: Structural significance of
an evaporite formation with lateral stratigraphic heterogeneities
(Southeastern Pyrenean Basin, NE Spain), Mar. Petrol. Geol., 86,
1310–1326, https://doi.org/10.1016/j.marpetgeo.2017.07.024, 2017.
Casas-Sainz, A. M. and de Vicente, G.: On the tectonic origin of Iberian
topography, Tectonophysics, 474, 214–235,
https://doi.org/10.1016/j.tecto.2009.01.030, 2009.
Dalton, C. E. G.: Stratigraphic and Structural Characterization and
Evolution of Exposed Megaflaps Flanking Salt Diapirs, PhD thesis, The
University of Texas, El Paso, 273 pp., https://scholarworks.utep.edu/open_etd/71/ (last access: 15 June 2023), 2019.
DeFelipe, I., Alcalde, J., Ivandic, M., Martí, D., Ruiz, M., Marzán, I., Diaz, J., Ayarza, P., Palomeras, I., Fernandez-Turiel, J.-L., Molina, C., Bernal, I., Brown, L., Roberts, R., and Carbonell, R.: Reassessing the lithosphere: SeisDARE, an open-access seismic data repository, Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, 2021.
Duffy, O., Hudec, M., Peel, F., Apps, G., Bump, A., Moscardelli, L., Dooley,
T., Bhattacharya, S., Wisian, K., and Shuster, M.: The Role of Salt
Tectonics in the Energy Transition: An Overview and Future Challenges, Tektonika,
1, 18–48, https://doi.org/10.55575/tektonika2023.1.1.11, 2023.
Escavy, J. I., Herrero, M. J., and Arribas, M. E.: Gypsum resources of
Spain: Temporal and spatial distribution, Ore Geol. Rev., 13, 72–84, https://doi.org/10.1016/j.oregeorev.2012.09.001, 2012.
Escosa, F. O., Ferrer, O., and Roca, E.: Geology of the Eastern Prebetic
Zone at the Jumilla region (SE Iberia), J. Maps, 14, 77–86,
https://doi.org/10.1080/17445647.2018.1433562, 2018.
Galdeano, C. S. and Vera, J. A.: Stratigraphic record and palaeogeographical
context of the Neogene basins in the Betic Cordillera, Spain, Basin
Res., 4, 21–36, https://doi.org/10.1111/j.1365-2117.1992.tb00040.x,
1992.
Galindo-Zaldívar, J., Braga, J. C., Marín-Lechado, C., Ercilla,
G., Martín, J. M., Pedrera, A., Casas, D., Aguirre, J.,
Ruiz-Constán, A., Estrada, F., Puga-Bernabéu, Á., Sanz de
Galdeano, C., Juan, C., García-Alix, A., Vázquez, J. T., and
Alonso, B.: Extension in the Western Mediterranean, in: The Geology of
Iberia: A Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T.,
Springer International Publishing, Cham, 61–103,
https://doi.org/10.1007/978-3-030-11190-8_3, 2019.
García-Hernández, M., López-Garrido, A. C., Rivas, P., Sanz de
Galdeano, C., and Vera, J. A.: Mesozoic palaeogeographic evolution of the
External Zones of the Betic Cordillera, Geol. Mijnbouw, 59,
155–168, 1980.
García-Tortosa, F. J., Alfaro, P., Galindo-Zaldívar, J., Gibert,
L., López-Garrido, A. C., Sanz de Galdeano, C., and Ureña, M.:
Geomorphologic evidence of the active Baza Fault (Betic Cordillera, South
Spain), Geomorphology, 97, 374–391,
https://doi.org/10.1016/j.geomorph.2007.08.007, 2008.
García-Veigas, J., Gibert, L., Cendón, D. I., Artiaga, D.,
Corbí, H., Soria, J. M., Lowenstein, T. K., and Sanz, E.: Late Miocene
evaporite geochemistry of Lorca and Fortuna basins (Eastern Betics, SE
Spain): Evidence of restriction and continentalization, Basin Res., 32,
916–948, https://doi.org/10.1111/bre.12408, 2020.
Gibert, L., Ortí, F., and Rosell, L.: Plio-Pleistocene lacustrine
evaporites of the Baza Basin (Betic Chain, SE Spain), Sediment. Geol.,
28, 89–116, https://doi.org/10.1016/j.sedgeo.2007.03.003, 2007.
Gómez, J. J., Sandoval, J., Aguado, R., O'Dogherty, L., and Osete, M.
L.: The Alpine Cycle in Eastern Iberia: Microplate Units and Geodynamic
Stages, in: The Geology of Iberia: A Geodynamic Approach, edited by:
Quesada, C. and Oliveira, J. T., Springer International Publishing, Cham,
15–27, https://doi.org/10.1007/978-3-030-11295-0_2, 2019.
González-Esvertit, E., Alcalde, J., and Gomez-Rivas, E.: IESDB – The
Iberian Evaporite Structures DataBase. An interactive atlas of evaporite
structures in Iberia, Digital.CSIC [data set], https://doi.org/10.20350/digitalCSIC/14586, 2022.
Heroy, W. B.: Disposal of radioactive waste in salt cavities, in: The
Disposal of Radioactive Waste on Land. Report prepared for the Report
prepared for the Committee on Waste Disposal in Geologic Structures.
Division on Earth and Life Studies, The National Academies
Press, Washington, DC, https://doi.org/10.17226/10294, 1957.
Hudec, M. R. and Jackson, M. P. A.: Terra infirma: Understanding salt
tectonics, Earth-Sci. Rev., 82, 1–28,
https://doi.org/10.1016/j.earscirev.2007.01.001, 2007.
Hudec, M. R. and Jackson, M. P. A.: De Re Salica: Fundamental principles of
salt tectonics, in: Regional Geology and Tectonics: Phanerozoic Passive
Margins, Cratonic Basins and Global Tectonic Maps, Elsevier, 18–41,
https://doi.org/10.1016/B978-0-444-56357-6.00001-9, 2012.
International Atomic Energy Agency (Ed.): Scientific and technical basis for
the geological disposal of radioactive waste, International Atomic Energy
Agency, Vienna, 80 pp., ISBN 92-0-100103-7, 2003.
Jackson, M. P. A. and Hudec, M. R.: Salt Tectonics: Principles and Practice,
Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781139003988, 2017.
Jackson, M. P. A. and Talbot, C. J.: A Glossary of Salt Tectonics,
The University of Texas at Austin, Bureau of Economic Geology, Geological Circular, 44 pp.,
https://doi.org/10.23867/GC9104D, 1991.
Jurado, M. J.: El Triásico y el Liásico basal evaporíticos del
subsuelo de la Cuenca del Ebro, in:
Formaciones Evaporíticas de la Cuenca del Ebro y Cadenas
Periféricas, y de la Zona de Levante, edited by: Ortí, F. and Salvany, J. M., Universitat de Barcelona, ISBN mkt0006759737, 1990.
Llamas, B., Cruz Castañeda, M., Laín, C., and Pous, J.: Study of
the Basque–Cantabrian basin as a suitable region for the implementation of
an energy storage system based on compressed air energy storage (CAES),
Environ. Earth Sci., 76, 204, https://doi.org/10.1007/s12665-017-6515-y, 2017.
López-Gómez, J., Mas, R., and Arche, A.: The evolution of the Middle
Triassic (Muschelkalk) carbonate ramp in the SE Iberian Ranges, eastern
Spain: sequence stratigraphy, dolomitization processes and dynamic controls,
Sediment. Geol., 87, 165–193,
https://doi.org/10.1016/0037-0738(93)90003-N, 1993.
López-Gómez, J., Alonso-Azcárate, J., Arche, A., Arribas, J.,
Fernández Barrenechea, J., Borruel-Abadía, V., Bourquin, S.,
Cadenas, P., Cuevas, J., De la Horra, R., Díez, J. B., Escudero-Mozo,
M. J., Fernández-Viejo, G., Galán-Abellán, B., Galé, C.,
Gaspar-Escribano, J., Gisbert Aguilar, J., Gómez-Gras, D., Goy, A.,
Gretter, N., Heredia Carballo, N., Lago, M., Lloret, J., Luque, J.,
Márquez, L., Márquez-Aliaga, A., Martín-Algarra, A.,
Martín-Chivelet, J., Martín-González, F., Marzo, M.,
Mercedes-Martín, R., Ortí, F., Pérez-López, A.,
Pérez-Valera, F., Pérez-Valera, J. A., Plasencia, P., Ramos, E.,
Rodríguez-Méndez, L., Ronchi, A., Salas, R.,
Sánchez-Fernández, D., Sánchez-Moya, Y., Sopeña, A.,
Suárez-Rodríguez, Á., Tubía, J. M., Ubide, T., Valero
Garcés, B., Vargas, H., and Viseras, C.: Permian-Triassic Rifting Stage,
in: The Geology of Iberia: A Geodynamic Approach, edited by: Quesada, C. and
Oliveira, J. T., Springer International Publishing, Cham, 29–112,
https://doi.org/10.1007/978-3-030-11295-0_3, 2019.
Lux, K.-H.: Design of salt caverns for the storage of natural gas, crude oil
and compressed air: Geomechanical aspects of construction, operation and
abandonment, Geological Society, London, Special Publications, 313, 93–128,
https://doi.org/10.1144/SP313.7, 2009.
Macchiavelli, C., Vergés, J., Schettino, A., Fernàndez, M., Turco,
E., Casciello, E., Torne, M., Pierantoni, P. P., and Tunini, L.: A New
Southern North Atlantic Isochron Map: Insights Into the Drift of the Iberian
Plate Since the Late Cretaceous, J. Geophys. Res., 122, 9603–9626, https://doi.org/10.1002/2017JB014769, 2017.
Martínez del Olmo, W.: Almacenamiento de Hidrógeno en España,
Revista de la Sociedad Geológica de España, 34, 53–59, 2021.
Martínez del Olmo, W., Motis, K., and Martín, D.: El papel del
diapirismo de la sal Triásica en la estructuración del Prebético
(SE de España), Revista de la Sociedad Geológica de España,
28, 3–24, 2015.
Marzo, M.: El Buntsandstein de los Catalánides, Universitat de
Barcelona, unpublished PhD thesis, 317 pp., http://hdl.handle.net/10803/1579 (last access: 20 June 2023), 1980.
McClay, K., Muñoz, J.-A., and García-Senz, J.: Extensional salt
tectonics in a contractional orogen: A newly identified tectonic event in
the Spanish Pyrenees, Geology, 32, 737–740, https://doi.org/10.1130/G20565.1, 2004.
Muñoz, J. A., Mencos, J., Roca, E., Carrera, N., Gratacós, O.,
Ferrer, O., and Fernández, O.: The structure of the
South-Central-Pyrenean fold and thrust belt as constrained by subsurface
data, Geol. Acta, 22, 439–460, https://doi.org/10.1344/GeologicaActa2018.16.4.7, 2018.
Ortí, F.: Aspectos sedimentológicos de las evaporitas del
Triásico y del Liásico inferior en el E de la Península
Ibérica, Cuadernos de Geología Ibérica, 11, 837–858, 1987.
Ortí, F., Pérez-López, A., and Salvany, J. M.: Triassic
evaporites of Iberia: Sedimentological and palaeogeographical implications
for the western Neotethys evolution during the Middle Triassic-Earliest
Jurassic, Palaeogeogr. Palaeocl., 471, 157–180, https://doi.org/10.1016/j.palaeo.2017.01.025, 2017.
Ozarslan, A.: Large-scale hydrogen energy storage in salt caverns,
Int. J. Hydrogen Energ., 37, 14265–14277,
https://doi.org/10.1016/j.ijhydene.2012.07.111, 2012.
Peper, T. and Cloetingh, S.: Lithosphere dynamics and tectono-stratigraphic
evolution of the Mesozoic Betic rifted margin (southeastern Spain),
Tectonophysics, 203, 345–361, https://doi.org/10.1016/0040-1951(92)90231-T,
1992.
Pereira, N., Carneiro, J. F., Araújo, A., Bezzeghoud, M., and Borges,
J.: Seismic and structural geology constraints to the selection of CO2
storage sites – The case of the onshore Lusitanian basin, Portugal, J.
Appl. Geophys., 102, 21–38,
https://doi.org/10.1016/j.jappgeo.2013.12.001, 2014.
Pereira, P., Ribeiro, C., and Carneiro, J.: Identification and
characterisation of geological formations with CO2 storage potential
in Portugal, Petrol. Geosci., 27, petgeo2020-123,
https://doi.org/10.1144/petgeo2020-123, 2021.
Playà, E., Ortıì, F., and Rosell, L.: Marine to non-marine
sedimentation in the upper Miocene evaporites of the Eastern Betics, SE
Spain: sedimentological and geochemical evidence, Sediment. Geol., 133,
135–166, https://doi.org/10.1016/S0037-0738(00)00033-6, 2000.
Puigdefàbregas, C. and Souquet, P.: Tectono-sedimentary cycles and
depositional sequences of the Mesozoic and Tertiary from the Pyrenees,
Tectonophysics, 129, 173–203, 1986.
Quijada, I. E., Suarez-Gonzalez, P., Benito, M. I., and Mas, R.:
Depositional Depth of Laminated Carbonate Deposits: Insights From the Lower
Cretaceous Valdeprado Formation (Cameros Basin, Northern Spain), J.
Sediment. Res., 83, 241–257, https://doi.org/10.2110/jsr.2013.23,
2013.
Ramos, A., Fernández, O., Terrinha, P., and Muñoz, J. A.: Extension
and inversion structures in the Tethys–Atlantic linkage zone, Algarve
Basin, Portugal, Int. J. Earth Sci., 105, 1663–1679,
https://doi.org/10.1007/s00531-015-1280-1, 2016.
Ramos, A., Fernández, O., Muñoz, J. A., and Terrinha, P.: Impact of
basin structure and evaporite distribution on salt tectonics in the Algarve
Basin, Southwest Iberian margin, Mar. Petrol. Geol., 88, 961–984,
https://doi.org/10.1016/j.marpetgeo.2017.09.028, 2017.
Ramos, A., Fernández, O., Terrinha, P., Muñoz, J. A., and Arnaiz,
Á.: Paleogeographic evolution of a segmented oblique passive margin: the
case of the SW Iberian margin, Int. J. Earth Sci., 109,
1871–1895, https://doi.org/10.1007/s00531-020-01878-w, 2020.
Rasmussen, E. S., Lomholt, S., Andersen, C., and Vejbæk, O. V.: Aspects
of the structural evolution of the Lusitanian Basin in Portugal and the
shelf and slope area offshore Portugal, Tectonophysics, 300, 199–225,
https://doi.org/10.1016/S0040-1951(98)00241-8, 1998.
Roca, E., Ferrer, O., Rowan, M. G., Muñoz, J. A., Butillé, M.,
Giles, K. A., Arbués, P., and de Matteis, M.: Salt tectonics and
controls on halokinetic-sequence development of an exposed deepwater diapir:
The Bakio Diapir, Basque-Cantabrian Basin, Pyrenees, Mar. Petrol. Geol., 123, 104770, https://doi.org/10.1016/j.marpetgeo.2020.104770, 2021.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Relative motions of Africa,
Iberia and Europe during Alpine orogeny, Tectonophysics, 359, 117–129,
https://doi.org/10.1016/S0040-1951(02)00442-0, 2002.
Rubinat, M., Roca, E., Escalas, M., Queralt, P., Ferrer, O., and Ledo, J.
J.: The influence of basement structure on the evolution of the Bicorb-Quesa
Diapir (eastern Betics, Iberian Peninsula): contractive thin-skinned
deformation above a pre-existing extensional basement fault, Int. J. Earth Sci., 102, 25–41, https://doi.org/10.1007/s00531-012-0789-9,
2013.
Salas, R. and Casas, A.: Mesozoic extensional tectonics, stratigraphy and
crustal evolution during the Alpine cycle of the eastern Iberian basin,
Tectonophysics, 228, 33–55, https://doi.org/10.1016/0040-1951(93)90213-4,
1993.
Saucier, H.: Geoscientists Will Be the Backbone of the Energy Transition,
AAPG Explorer, https://explorer.aapg.org/story/articleid/61004/
(last access: 15 March 2022), 2021.
Saura, E., Ardèvol i Oró, L., Teixell, A., and Vergés, J.:
Rising and falling diapirs, shifting depocenters, and flap overturning in
the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin,
southern Pyrenees): Southern Pyrenees Cretaceous Diapirism, Tectonics, 35,
638–662, https://doi.org/10.1002/2015TC004001, 2016.
Segura, M., Polo, T., García-Hidalgo, J. F., Gil, J., Carenas, B., and
García, Á.: The Upper Cretaceous in the Tagus Basin (Central
Spain): sequential analysis based on oil-well data and outcrop correlation,
Geological Society, London, Special Publications, 262, 231–244,
https://doi.org/10.1144/GSL.SP.2006.262.01.14, 2006.
Simancas, J. F.: Variscan Cycle, in: The Geology of Iberia: A Geodynamic
Approach, edited by: Quesada, C. and Oliveira, J. T., Springer International
Publishing, Cham, 1–25,
https://doi.org/10.1007/978-3-030-10519-8_1, 2019.
Soto, R., Villalaín, J. J., and Casas-Sainz, A. M.: Remagnetizations as a tool to analyze the tectonic history of inverted sedimentary basins: A case study from the Basque-Cantabrian basin (north Spain), Tectonics, 27, TC1017,
https://doi.org/10.1029/2007TC002208, 2008.
Soto, R., Beamud, E., Roca, E., Carola, E., and Almar, Y.: Distinguishing
the effect of diapir growth on magnetic fabrics of syn-diapiric overburden
rocks: Basque–Cantabrian basin, Northern Spain, Terra Nova, 29, 191–201,
https://doi.org/10.1111/ter.12262, 2017.
Sun, X., Alcalde, J., Bakhtbidar, M., Elío, J., Vilarrasa, V., Canal,
J., Ballesteros, J., Heinemann, N., Haszeldine, S., Cavanagh, A., Vega-Maza,
D., Rubiera, F., Martínez-Orio, R., Johnson, G., Carbonell, R., Marzan,
I., Travé, A., and Gomez-Rivas, E.: Hubs and clusters approach to unlock
the development of carbon capture and storage – Case study in Spain,
Appl. Energ., 300, 117418, https://doi.org/10.1016/j.apenergy.2021.117418,
2021.
Tarkowski, R. and Czapowski, G.: Salt domes in Poland – Potential sites for
hydrogen storage in caverns, Int. J. Hydrogen Energ., 43,
21414–21427, https://doi.org/10.1016/j.ijhydene.2018.09.212, 2018.
Urquiza, M. R.: Estudio de las formaciones favorables para almacenamiento de
CO2 en un sector del borde meridional de las Béticas orientales, PhD
thesis, Universidad de Oviedo, 262 pp., http://hdl.handle.net/10651/13206 (last access: 20 June 2023), 2012.
U.S. Geological Survey: Mineral commodity summaries 2020, U.S. Geological Survey, 200 pp., https://doi.org/10.3133/mcs2020, 2020.
Vergés, J. and Fernàndez, M.: Ranges and basins in the Iberian
Peninsula: their contribution to the present topography, Geological Society,
London, Memoirs, 32, 223–234,
https://doi.org/10.1144/GSL.MEM.2006.032.01.13, 2006.
Vergés, J., Kullberg, J. C., Casas-Sainz, A., de Vicente, G., Duarte, L.
V., Fernàndez, M., Gómez, J. J., Gómez-Pugnaire, M. T., Jabaloy
Sánchez, A., López-Gómez, J., Macchiavelli, C.,
Martín-Algarra, A., Martín-Chivelet, J., Muñoz, J. A.,
Quesada, C., Terrinha, P., Torné, M., and Vegas, R.: An Introduction to
the Alpine Cycle in Iberia, in: The Geology of Iberia: A Geodynamic
Approach, edited by: Quesada, C. and Oliveira, J. T., Springer International
Publishing, Cham, 1–14,
https://doi.org/10.1007/978-3-030-11295-0_1, 2019.
Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M.,
Bover-Arnal, T., Macchiavelli, C., Wright, W., Messager, G., Embry, J., and
Hunt, D.: Tectono-sedimentary evolution of Jurassic–Cretaceous diapiric
structures: Miravete anticline, Maestrat Basin, Spain, Basin Res., 32,
1653–1684, https://doi.org/10.1111/bre.12447, 2020.
Virgili, C., Sopeña, A., and Ramos, A.: Problemas de la
cronoestratigrafía del Trías en España, Cuadernos de
Geología Ibérica, 4, 57–88, 1977.
Wang, J., Lu, K., Ma, L., Wang, J., Dooner, M., Miao, S., Li, J., and Wang,
D.: Overview of Compressed Air Energy Storage and Technology Development,
Energies, 10, 991, https://doi.org/10.3390/en10070991, 2017.
Warren, J. K.: Evaporites: Sediments, Resources and Hydrocarbons, Springer
Berlin, 1035 pp., ISBN 978-3-540-32344-0, https://doi.org/10.1007/3-540-32344-9, 2006.
Warren, J. K.: Evaporites through time: Tectonic, climatic and eustatic
controls in marine and nonmarine deposits, Earth-Sci. Rev., 98,
217–268, https://doi.org/10.1016/j.earscirev.2009.11.004, 2010.
Warren, J. K.: Interpreting Evaporite Textures, in: Evaporites, Springer
International Publishing, Cham, 1–83,
https://doi.org/10.1007/978-3-319-13512-0_1, 2016.
Warren, J. K.: Salt usually seals, but sometimes leaks: Implications for
mine and cavern stabilities in the short and long term, Earth-Sci. Rev., 165, 302–341, https://doi.org/10.1016/j.earscirev.2016.11.008,
2017.
Weijermars, R., Jackson, M. P. A., and Vendeville, B.: Rheological and
tectonic modeling of salt provinces, Tectonophysics, 217, 143–174,
https://doi.org/10.1016/0040-1951(93)90208-2, 1993.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C.,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wilson, R. C. L., Hiscott, R. N., Willis, M. G., and Gradstein, F. M.: The
Lusitanian Basin of West-Central Portugal: Mesozoic and Tertiary Tectonic,
Stratigraphic, and Subsidence History, in: Extensional Tectonics and
Stratigraphy of the North Atlantic Margins, ISBN 9781629811291, https://doi.org/10.1306/M46497C22, 1989.
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Evaporites are, scientifically and economically, key rocks due to their unique geological...
Altmetrics
Final-revised paper
Preprint