Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2465-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2465-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Digital soil mapping of lithium in Australia
Sydney Institute of Agriculture, School of Life and Environmental
Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia
Budiman Minasny
Sydney Institute of Agriculture, School of Life and Environmental
Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia
Alex McBratney
Sydney Institute of Agriculture, School of Life and Environmental
Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia
Patrice de Caritat
Geoscience Australia, Canberra, ACT 2601, Australia
John Wilford
Geoscience Australia, Canberra, ACT 2601, Australia
Related authors
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020, https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Short summary
The number of samples utilised to create predictive models affected model performance. This research compares the number of samples needed by a deep learning model to outperform the traditional machine learning models using visible near-infrared spectroscopy data for soil properties predictions. The deep learning model was found to outperform machine learning models when the sample size was above 2000.
Yin-Chung Huang, José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 11, 553–563, https://doi.org/10.5194/soil-11-553-2025, https://doi.org/10.5194/soil-11-553-2025, 2025
Short summary
Short summary
Uncertainty quantification plays a crucial role in reporting machine learning models in soil spectroscopy. This study introduces Monte Carlo conformal prediction (MC-CP), a novel method for uncertainty quantification in deep-learning soil spectral models. MC-CP outperformed two established methods, providing the most reliable results. Its efficiency and robustness make it a practical choice for implementing soil spectral models in decision making.
Anthony Dosseto, Florian Dux, Clement Bataille, and Patrice de Caritat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-277, https://doi.org/10.5194/essd-2025-277, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils that are taken up by plants and animals. These ratios vary depending on local geology and are useful for tracing the origins of people, animals, and food. By combining new data from across Australia with global datasets and a machine learning model, we produced a national prediction that supports research in archaeology, ecology, and forensic science.
Marliana Tri Widyastuti, José Padarian, Budiman Minasny, Mathew Webb, Muh Taufik, and Darren Kidd
SOIL, 11, 287–307, https://doi.org/10.5194/soil-11-287-2025, https://doi.org/10.5194/soil-11-287-2025, 2025
Short summary
Short summary
This work aims to predict soil water content at a fine spatiotemporal resolution (80 m grids, daily) to support agricultural management in Tasmania. It proves that transfer learning can improve the accuracy of deep learning models to predict multilevel soil moisture. We address the challenge of mapping soil moisture at field-scale resolution and integrate the model into a near-real-time monitoring system.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research, 2, 315–327, https://doi.org/10.5194/ar-2-315-2024, https://doi.org/10.5194/ar-2-315-2024, 2024
Short summary
Short summary
Dust deposition flux was investigated in lutruwita / Tasmania, Australia, between 2016–2021. Results show that the use of direct measurements of aluminium, iron, thorium, and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333, https://doi.org/10.5194/essd-2024-333, 2024
Preprint withdrawn
Short summary
Short summary
PEATGRIDS, the first dataset containing maps of global peat thickness and carbon stock at 1 km resolution. The dataset has been publicly available at Zenodo to support further analyses and modelling of peatlands across the globe. This work employed the random forest machine learning model to provide spatially explicit peat carbon stock at pixel basis.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Frisa Irawan Ginting, Rudiyanto Rudiyanto, Fatchurahman, Ramisah Mohd Shah, Norhidayah Che Soh, Sunny Goh Eng Giap, Dian Fiantis, Budi Indra Setiawan, Sam Schiller, Aaron Davitt, and Budiman Minasny
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-90, https://doi.org/10.5194/essd-2024-90, 2024
Preprint withdrawn
Short summary
Short summary
This study is the first to map rice cropping intensity and the harvested area across Southeast Asia at a spatial resolution of 10 m (SEA-Rice-Ci10). We have developed a geospatial inventory of paddy rice parcels and rice cropping intensity by integrating Sentinel-1 and 2 time-series data in a framework called LUCK-PALM, based on local phenological expert interpretation. According to our best knowledge, it is the finest-resolution and most accurate database of paddy rice in Southeast Asia.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73, https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Short summary
Soil organic carbon sequestration is considered an attractive technology to partially mitigate climate change. Here, we show how the SOC storage potential varies globally. The estimated additional SOC storage potential in the topsoil of global croplands (29–67 Pg C) equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.
Edward J. Jones, Patrick Filippi, Rémi Wittig, Mario Fajardo, Vanessa Pino, and Alex B. McBratney
SOIL, 7, 33–46, https://doi.org/10.5194/soil-7-33-2021, https://doi.org/10.5194/soil-7-33-2021, 2021
Short summary
Short summary
Soil physical health is integral to maintaining functional agro-ecosystems. A novel method of assessing soil physical condition using a smartphone app has been developed – SLAKES. In this study the SLAKES app was used to investigate aggregate stability in a mixed agricultural landscape. Cropping areas were found to have significantly poorer physical health than similar soils under pasture. Results were mapped across the landscape to identify problem areas and pinpoint remediation efforts.
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020, https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Short summary
The number of samples utilised to create predictive models affected model performance. This research compares the number of samples needed by a deep learning model to outperform the traditional machine learning models using visible near-infrared spectroscopy data for soil properties predictions. The deep learning model was found to outperform machine learning models when the sample size was above 2000.
Cited articles
Alhumimidi, M. S., Aboud, E., Alqahtani, F., Al-Battahien, A., Saud, R., Alqahtani, H. H., Aljuhani, N., Alyousif, M. M., and Alyousef, K. A.: Gamma-ray spectrometric survey for mineral exploration at Baljurashi area, Saudi Arabia, Journal of Radiation Research and Applied Sciences, 14, 82–90, https://doi.org/10.1080/16878507.2020.1856600, 2021.
Anderson, M. A., Bertsch, P. M., and Miller, W. P.: The distribution of lithium in selected soils and surface waters of the southeastern USA, Appl. Geochem., 3, 205–212, 1988.
Antezana Lopez, F. P., Zhou, G., Paye Vargas, L., Jing, G., Oscori Marca, M. E., Villalobos Quispe, M., Antonio Ticona, E., Mollericona Tonconi, N. M., and Orozco Apaza, E.: Lithium quantification based on random forest with multi-source geoinformation in Coipasa salt flats, Bolivia, Int. J. Appl. Earth Obs., 117, 103184, https://doi.org/10.1016/j.jag.2023.103184, 2023.
Aral, H. and Vecchio-Sadus, A.: Toxicity of lithium to humans and the environment – a literature review, Ecotoxicol. Environ. Safe., 70, 349–356, https://doi.org/10.1016/j.ecoenv.2008.02.026, 2008.
Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., and McBratney, A.: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, Trac-Trend. Anal. Chem., 29, 1073–1081, https://doi.org/10.1016/j.trac.2010.05.006, 2010.
Benedikt, S.: Using Tellus stream sediment geochemistry to fingerprint regional geology and mineralisation systems in Southeast Ireland, Irish J. Earth Sci., 36, 45–61, https://doi.org/10.3318/ijes.2018.36.45, 2018.
Benson, T. R., Coble, M. A., Rytuba, J. J., and Mahood, G. A.: Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins, Nat. Commun., 8, 270, https://doi.org/10.1038/s41467-017-00234-y, 2017.
Bishop, T. F. A., McBratney, A. B., and Laslett, G. M.: Modelling soil attribute depth functions with equal-area quadratic smoothing splines, Geoderma, 91, 27–45, https://doi.org/10.1016/S0016-7061(99)00003-8, 1999.
Cardoso-Fernandes, J., Lima, A., and Teodoro, A.: Potential of Sentinel-2 data in the detection of Lithium (Li)-bearing pegmatites: a study case, SPIE Remote Sensing, Berlin, Germany, https://doi.org/10.1117/12.2326285, 2018.
Cardoso-Fernandes, J., Teodoro, A. C., and Lima, A.: Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites, Int. J. Appl. Earth Obs., 76, 10–25, https://doi.org/10.1016/j.jag.2018.11.001, 2019.
Cardoso-Fernandes, J., Teodoro, A. C., Lima, A., and Roda-Robles, E.: Semi-Automatization of Support Vector Machines to Map Lithium (Li) Bearing Pegmatites, Remote Sens.-Basel, 12, 2319, https://doi.org/10.3390/rs12142319, 2020.
Cardoso-Fernandes, J., Lima, J., Lima, A., Roda-Robles, E., Kohler, M., Schaefer, S., Barth, A., Knobloch, A., Goncalves, M. A., Goncalves, F., and Teodoro, A. C.: Stream sediment analysis for Lithium (Li) exploration in the Douro region (Portugal): A comparative study of the spatial interpolation and catchment basin approaches, J. Geochem. Explor., 236, 106978, https://doi.org/10.1016/j.gexplo.2022.106978, 2022.
Carranza, E. J. M.: Handbook of Exploration and Environmental Geochemistry, Elsevier Science B. V., 189–247, https://doi.org/10.1016/S1874-2734(09)70011-7, 2008.
Carranza, E. J. M.: Geocomputation of mineral exploration targets, Comput. Geosci., 37, 1907–1916, https://doi.org/10.1016/j.cageo.2011.11.009, 2011.
Champion, D.: Australian Resource Reviews: Lithium 2018, Geoscience Australia, Canberra [data set], https://doi.org/10.11636/9781925848281, 2019.
Crósta, A. P., De Souza Filho, C. R., Azevedo, F., and Brodie, C.: Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis, Int. J. Remote Sens., 24, 4233–4240, https://doi.org/10.1080/0143116031000152291, 2010.
de Caritat, P.: The National Geochemical Survey of Australia: review and impact, Geochemistry: Exploration, Environment, Analysis, 22, https://doi.org/10.1144/geochem2022-032, 2022.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia: Data Quality Assessment, Record 2011/021, https://pid.geoscience.gov.au/dataset/ga/71971 (last access: 11 January 2023), 2011a.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia: The Geochemical Atlas of Australia. Record 2011/020, Geoscience Australia [data set], https://doi.org/10.11636/Record.2011.020, 2011b.
de Caritat, P. and Cooper, M.: A continental-scale geochemical atlas for resource exploration and environmental management: the National Geochemical Survey of Australia, Geochem.-Explor. Env. A., 16, 3–13, https://doi.org/10.1144/geochem2014-322, 2015.
de Caritat, P. and Reimann, C.: Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values, Earth Planet. Sc. Lett., 319–320, 269–276, https://doi.org/10.1016/j.epsl.2011.12.033, 2012.
de Caritat, P. and Troitzsch, U.: Towards a Regolith Mineralogy Map of the Australian Continent – A Feasibility Study in the Darling-Curnamona-Delamerian Region. Record 2021/35, https://doi.org/10.11636/Record.2021.035, 2021.
de Caritat, P., Cooper, M., Lech, M., McPherson, A., and Thun, C.: National Geochemical Survey of Australia: Sample Preparation Manual, Record 2009/08, http://pid.geoscience.gov.au/dataset/ga/68657 (last access: 11 January 2023), 2009.
de Caritat, P., Cooper, M., Pappas, W., Thun, C., and Webber, E.: National Geochemical Survey of Australia: Analytical Methods Manual, Record 2010/15, http://pid.geoscience.gov.au/dataset/ga/70369 (last access: 11 January 2023), 2010.
de Caritat, P., Bastrakov, E., Walker, A. T., and McInnes, B. I. A.: The Heavy Mineral Map of Australia Project. Data Release 2. The Barkly Isa Georgetown Region, https://doi.org/10.11636/Record.2022.043, 2022a.
de Caritat, P., McInnes, B., Walker, A., Bastrakov, E., Rowins, S., and Prent, A.: The Heavy Mineral Map of Australia: Vision and Pilot Project, 12, 961, https://doi.org/10.3390/min12080961, 2022b.
de Caritat, P., Walker, A. T., Bastrakov, E., and McInnes, B. I. A.: The Heavy Mineral Map of Australia Project – Data Release 1: The Darling-Curnamona-Delamerian Region, https://doi.org/10.11636/Record.2022.031, 2022c.
de Vos, W., Tarvainen, T., Salminen, R., Reeder, S., Vivo, B. D., Demetriades, A., Pirc, S., Batista, M. J., Marsina, K., Ottesen, R. T., O'Connor, P., Bidovec, M., Lima, A., Siewers, U., Smith, B., Taylor, H., Shaw, R., Salpeteur, I., Gregorauskienė, V., Halamić, J., Slaninka, I., Lax, K., Gravesen, P., Birke, M., Breward, N., Ander, E. L., Jordan, G., Ďuriš, M., Klein, P., Locutura, J., Bel-lan, A., Pasieczna, A., Lis, J., Mazreku, A., Gilucis, A., Heitzmann, P., Klaver, G. T., and Petersell, V.: Geochemical atlas of Europe. Part 2, Interpretation of geochemical maps, additional tables, figures, maps, and related publications, ISBN 951-690-960-4, 2006.
Dickson, B. L. and Scott, K. M.: Interpretation of aerial gamma-ray surveys – adding the geochemical factors, AGSO Journal of Australian Geology and Geophysics, 17, 187–200, 1997.
Dickson, B. L., Fraser, S. J., and Kinsey-Henderson, A.: Interpreting aerial gamma-ray surveys utilising geomorphological and weathering models, J. Geochem. Explor., 57, 75–88, https://doi.org/10.1016/S0375-6742(96)00017-9, 1996.
Ducart, D. F., Silva, A. M., Toledo, C. L. B., and de Assis, L. M.: Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajas Mineral Province, Brazil, Braz. J. Geol., 46, 331–349, https://doi.org/10.1590/2317-4889201620160023, 2016.
ESRI: ArcGIS Desktop: Release 10.8, Environmental Systems Research Institute, https://www.esri.com/ (last access: 15 March 2022), 2019.
Gallant, J. and Austin, J.: Slope derived from 1′′ SRTM DEM-S. v4, CSIRO [data set], https://doi.org/10.4225/08/5689DA774564A, 2012a.
Gallant, J. and Austin, J.: Topographic Wetness Index derived from 1′′ SRTM DEM-H. v2, CSIRO [data set], https://doi.org/10.4225/08/57590B59A4A08, 2012b.
Gallant, J., Wilson, N., Dowling, T., Read, A., and Inskeep, C.: SRTM-derived 1 Second Digital Elevation Models Version 1.0. Record 1, Geoscience Australia, https://pid.geoscience.gov.au/dataset/ga/72759 (last access: 11 January 2023), 2011.
Gluyas, A.: Explorer makes significant Lithium discovery in North Queensland,
https://www.australianmining.com.au/news/
explorer-makes-significant-lithium-discovery-in-north-queensland/
(last access: 14 March 2022), 2019.
Gopp, N. V., Savenkov, O. A., Nechaeva, T. V., and Smirnova, N. V.: The Use of NDVI in Digital Mapping of the Content of Available Lithium in the Arable Horizon of Soils in Southwestern Siberia, Izv. Atmos. Ocean. Phys+., 54, 1152–1157, https://doi.org/10.1134/S0001433818090165, 2018.
Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N. T., Schechner, D., Warren, S., Yang, M. Y., and Zhu, C.: Methodology of metal criticality determination, Environ. Sci. Technol., 46, 1063–1070, https://doi.org/10.1021/es203534z, 2012.
Grosjean, C., Miranda, P. H., Perrin, M., and Poggi, P.: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renew. Sust. Energ. Rev., 16, 1735–1744, https://doi.org/10.1016/j.rser.2011.11.023, 2012.
Harris, J. R., Ayer, J., Naghizadeh, M., Smith, R., Snyder, D., Behnia, P., Parsa, M., Sherlock, R., and Trivedi, M.: A study of faults in the Superior province of Ontario and Quebec using the random forest machine learning algorithm: Spatial relationship to gold mines, Ore Geol. Rev., 157, 105403, https://doi.org/10.1016/j.oregeorev.2023.105403, 2023.
Harwood, T.: 9 s climatology for continental Australia 1976–2005: BIOCLIM variable suite. v1, Data Access Portal [data set], https://doi.org/10.25919/5dce30cad79a8, 2019.
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, R package version 3.5-2, CRAN [code], https://CRAN.R-project.org/package=raster (last access: 8 December 2022), 2021.
Hughes, A.: Australian Operating Mines Map 2019, Geoscience Australia, Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/133033 (last access: 11 January 2023), 2020.
Isbell, R.: Australian Soil Classification, CSIRO Publishing, Melbourne, Victoria, 192 pp., https://doi.org/10.1071/9781486314782, 2021.
Jaireth, S., Bastrakov, E. N., Wilford, J., English, P., Magee, J., Clarke, J., de Caritat, P., Mernagh, T. P., McPherson, A., and Thomas, M.: Map of Salt Lake Systems Prospective for Lithium Deposits, Geoscience Australia, Canberra, http://pid.geoscience.gov.au/dataset/ga/75878 (last access: 11 January 2023), 2013.
Jenny, H.: Factors of Soil Formation: A System of Quantitative Pedology, McGraw-Hill, New York, NY, ISBN 0486681289, 1941.
Johnson, A. K.: Regolith and associated mineral systems of the Eucla Basin, South Australia, Department of Geology and Geophysics, Adelaide University, https://hdl.handle.net/2440/95312 (last access: 8 May 2022), 2015.
Jooshaki, M., Nad, A., and Michaux, S.: A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical Data in Mining and Mineral Industry, Minerals, 11, 816, https://doi.org/10.3390/min11080816, 2021.
Kabata-Pendias, A.: Biogeochemistry of Lithium, Proc. Int. Symp. Lithium in the Trophic Chain Soil-Plant-Animal-Man, 13–14 September 1995, Warsaw, 9–15, 1995.
Kabata-Pendias, A.: Trace elements in soils and plants, 4th edn., CRC press, ISBN 042919112X, 2010.
Kashin, V. K.: Lithium in Soils and Plants of Western Transbaikalia, Eurasian Soil Sci+., 52, 359–369, https://doi.org/10.1134/S1064229319040094, 2019.
Khorram, S., Koch, F. H., van der Wiele, C. F., and Nelson, S. A. C.: Remote Sensing, Springer, New York, ISBN 9781461431039, 2012.
Köhler, M., Hanelli, D., Schaefer, S., Barth, A., Knobloch, A., Hielscher, P., Cardoso-Fernandes, J., Lima, A., and Teodoro, A. C.: Lithium Potential Mapping Using Artificial Neural Networks: A Case Study from Central Portugal, Minerals-Basel, 11, 1046, https://doi.org/10.3390/min11101046, 2021.
Kuhn, M.: Classification and Regression Training, R package version 6.0-93, https://CRAN.R-project.org/package=caret (last access: 8 December 2022), 2022.
Kuhn, M. and Quinlan, R.: Cubist: Rule- And Instance-Based Regression
Modeling, R package version 0.3.0, https://CRAN.R-project.org/package=Cubist, (last access: 8 December 2022), 2021.
Lau, I., Bateman, R., Beattie, E., de Caritat, P., Thomas, M., Ong, C., Laukamp, C., Caccetta, M., Wang, R., and Cudahy, T.: National Geochemical Survey of Australia reflectance spectroscopy measurements. v4, CSIRO, Data Collection, https://doi.org/10.25919/5cdba18939c29, 2016.
Lin, L. I.: A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255–268, https://doi.org/10.2307/2532051, 1989.
Liu, H., Wang, X., Zhang, B., Wang, W., Han, Z., Chi, Q., Zhou, J., Nie, L., Xu, S., Yao, W., Liu, D., Liu, Q., and Liu, J.: Concentration and distribution of lithium in catchment sediments of China: Conclusions from the China Geochemical Baselines project, J. Geochem. Explor., 215, 106540, https://doi.org/10.1016/j.gexplo.2020.106540, 2020.
London, D. and Burt, D. M.: Chemical-Models for Lithium Aluminosilicate Stabilities in Pegmatites and Granites, Am. Mineral., 67, 494–509, 1982.
Luecke, W.: Soil Geochemistry above a Lithium Pegmatite Dyke at Aclare, Southeast Ireland, Irish J. Earth Sci., 6, 205–211, 1984.
Main, P. T. and Champion, D. C.: Levelling of multi-generational
and spatially isolated geochemical surveys, J. Geochem. Explor.,
240, 107028, https://doi.org/10.1016/j.gexplo.2022.107028, 2022.
Main, P. T., Bastrakov, E. N., Wygralak, A. S., and Khan, M.: Northern Australia Geochemical Survey: Data Release 2 – Total (coarse fraction), Aqua Regia (coarse and fine fraction), and Fire Assay (coarse and fine fraction) element contents, Geoscience Australia, Canberra [data set], https://doi.org/10.11636/Record.2019.002, 2019.
Malone, B. and Searle, R.: Updating the Australian digital soil texture mapping (Part 2), Soil Res., 59, 435–451, https://doi.org/10.1071/sr20284, 2021.
Malone, B. P., McBratney, A. B., Minasny, B., and Laslett, G. M.: Mapping continuous depth functions of soil carbon storage and available water capacity, Geoderma, 154, 138–152, https://doi.org/10.1016/j.geoderma.2009.10.007, 2009.
McBratney, A. B., Santos, M. L. M., and Minasny, B.: On digital soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4, 2003.
Merian, E. and Clarkson, T. W.: Metals and their compounds in the
environment, VCH, Weinheim, ISBN 0895735628, 1991.
Mernagh, T. P., Bastrakov, E. N., Clarke, J. D. A., de Caritat, P., English, P. M., Howard, F. J. F., Jaireth, S., Magee, J. W., McPherson, A. A., Roach, I. C., Schroder, I. F., Thomas, M., and Wilford, J. R.: A review of Australian salt lakes and assessment of their potential for strategic resources, Geoscience Australia, Canberra, http://pid.geoscience.gov.au/dataset/ga/76454 (last access: 11 January 2023), 2013.
Mernagh, T. P., Bastrakov, E. N., Jaireth, S., de Caritat, P., English, P. M., and Clarke, J. D. A.: A review of Australian salt lakes and associated mineral systems, Aust. J. Earth Sci., 63, 131–157, https://doi.org/10.1080/08120099.2016.1149517, 2016.
Mudd, G. M., Werner, T. T., Weng, Z.-H., Yellishetty, M., Yuan, Y., McAlpine, S. R. B., Skirrow, R., and Czarnota, K.: Critical Minerals in Australia: A Review of Opportunities and Research Needs, Record 2018/51, Geoscience Australia, Canberra [data set], https://doi.org/10.11636/Record.2018.051, 2018.
Négrel, P., Ladenberger, A., Reimann, C., Birke, M., Demetriades, A., and Sadeghi, M.: GEMAS: Geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping, Appl. Geochem., 111, 104425, https://doi.org/10.1016/j.apgeochem.2019.104425, 2019.
Ng, W., Minasny, B., McBratney, A., de Caritat, P., and Wilford, J.: Predicted aqua regia-extractable lithium concentration in Australia, Zenodo [data set], https://doi.org/10.5281/zenodo.7895482, 2023.
Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., and Kreuzer, O.: Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia, Ore Geol. Rev., 71, 839–852, https://doi.org/10.1016/j.oregeorev.2014.10.016, 2015.
Poudjom Djomani, Y., Minty, B. R. S., Hutchens, M., and Lane, R. J. L.: Total Magnetic Intensity (TMI) Grid of Australia 2019 – seventh edition – 80 m cell size, Geoscience Australia, Canberra [data set], https://doi.org/10.26186/5e9cf3f2c0f1d, 2019.
Pour, A. B. and Hashim, M.: Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran, Journal of Taibah University for Science, 9, 155–166, https://doi.org/10.1016/j.jtusci.2014.11.008, 2015.
Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Mateo, California, ISBN 9781558602380, 1993.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, https://www.R-project.org (last access: 15 March 2022), 2021.
Reimann, C. and de Caritat, P.: Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil, Sci. Total Environ., 578, 633–648, https://doi.org/10.1016/j.scitotenv.2016.11.010, 2017.
Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., and O'Connor, P.: Chemistry of Europe's Agricultural Soils – Part A: methodology and interpretation of the GEMAS dataset, Schweizerbarth, Stuttgart, 9783510968466, 2014.
Roberts, D., Wilford, J., and Ghattas, O.: Exposed soil and mineral map of the Australian continent revealing the land at its barest, Nat. Commun., 10, 5297, https://doi.org/10.1038/s41467-019-13276-1, 2019.
Robinson, B. H., Yalamanchali, R., Reiser, R., and Dickinson, N. M.: Lithium as an emerging environmental contaminant: Mobility in the soil-plant system, Chemosphere, 197, 1–6, https://doi.org/10.1016/j.chemosphere.2018.01.012, 2018.
Roshanravan, B., Kreuzer, O. P., Buckingham, A., Keykhay-Hosseinpoor, M., and Keys, E.: Mineral potential modelling of orogenic gold systems in the granites-tanami Orogen, Northern Territory, Australia: A multi-technique approach, Ore Geol. Rev., 152, 105224, https://doi.org/10.1016/j.oregeorev.2022.105224, 2023.
Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., Vivo, B. D., Vos, W. D., Ďuriš, M., Gilucis, A., Gregorauskienë, V., Halamiă, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J. z., Locutura, J., Marsina, K., Mazreku, A., O'Connor, P., Olsson, S. Å., Ottesen, R. T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., and Tarvainen, T.: Geochemical Atlas of Europe. Part 1 – Background information, methodology and maps, ISBN 9516909132, 2006.
Searle, R.: Australian Soil Classification Map. Version 1.0.0, Terrestrial Ecosystem Research Network [data set], https://doi.org/10.25901/edyr-wg85, 2021.
Senior, A., Britt, A. F., Summerfield, D., Hughes, A., Hitchman, A., Cross, A., Sexton, M., Pheeney, J., Teh, M., Hill, J., and Cooper, M.: Australia's Identified Mineral Resources 2021, Geoscience Australia, Canberra, https://doi.org/10.11636/1327-1466.2021, 2022.
Sitando, O. and Crouse, P. L.: Processing of a Zimbabwean petalite to obtain lithium carbonate, Int. J. Miner. Process., 102, 45–50, https://doi.org/10.1016/j.minpro.2011.09.014, 2012.
Smith, D. B., Solano, F., Woodruff, L. G., Cannon, W. F., and Ellefsen, K. J.: Geochemical and mineralogical maps, with interpretation, for soils of the conterminous United States, Reston, VA, Report 2017–5118, https://doi.org/10.3133/sir20175118, 2019.
SSSA: Soil Science Society of America Glossary, https://www.soils.org/publications/soils-glossary, last access: 7 September 2022.
Starkey, H. C.: The Role of Clays in Fixing Lithium, Report 1278F, https://doi.org/10.3133/b1278F, 1982.
Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpe, C., Tomascak, P. B., Chappell, B. W., and Gao, S.: Lithium isotopic composition and concentration of the upper continental crust, Geochim. Cosmochim. Ac., 68, 4167–4178, https://doi.org/10.1016/j.gca.2004.03.031, 2004.
TERN: TERN Landscape Covariates 90m, Terrestrial Ecosystem
Research Network [data set], https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/ (last access: 10 March 2022), 2019.
Vieceli, N., Nogueira, C. A., Pereira, M. F. C., Durão, F. O., Guimarães, C., and Margarido, F.: Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite, Hydrometallurgy, 175, 1–10, https://doi.org/10.1016/j.hydromet.2017.10.022, 2018.
Wilford, J.: A weathering intensity index for the Australian continent using airborne gamma-ray spectrometry and digital terrain analysis, Geoderma, 183, 124–142, https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.
Wilford, J. and Roberts, D.: Landsat 30+ Barest Earth, Geoscience Australia, Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/131897 (last access: 11 January 2023), 2019.
Wilford, J., Worrall, L., and Minty, B.: Radiometric map of Australia provides new insights into uranium prospectivity, Ausgeo News, 95, 1–4, 2009.
Wilford, J., de Caritat, P., and Bui, E.: Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors, Geoderma, 259, 81–92, https://doi.org/10.1016/j.geoderma.2015.05.003, 2015.
Wilford, J. R. and Kroll, A.: Complete Radiometric Grid of Australia (Radmap) v4 2019 with modelled infill, Geoscience Australia, Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/144413 (last access: 11 January 2023), 2020.
Wilford, J. R., Bierwirth, P. N., and Craig, M. A.: Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology, AGSO Journal of Australian Geology and Geophysics, 17, 201–216, 1997.
Wilson, J. and Gallant, J.: Primary topographic attributes, in: Terrain Analysis: Principles and Applications, edited by: Wilson, J. P., and Gallant, J. C., John Wiley & Sons, 51–85, ISBN 0471321885, 2000.
Zuo, R. G.: Geodata Science-Based Mineral Prospectivity Mapping: A Review, Natural Resour. Res., 29, 3415–3424, https://doi.org/10.1007/s11053-020-09700-9, 2020.
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
With a higher demand for lithium (Li), a better understanding of its concentration and spatial...
Altmetrics
Final-revised paper
Preprint