Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2465-2023
https://doi.org/10.5194/essd-15-2465-2023
Data description paper
 | 
14 Jun 2023
Data description paper |  | 14 Jun 2023

Digital soil mapping of lithium in Australia

Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford

Related authors

The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020,https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary

Related subject area

Domain: ESSD – Land | Subject: Geology and geochemistry
Integration by design: driving mineral system knowledge using multi-modal, collocated, scale-consistent characterisation
James R. Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina D. Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data, 16, 5027–5067, https://doi.org/10.5194/essd-16-5027-2024,https://doi.org/10.5194/essd-16-5027-2024, 2024
Short summary
MUDA: dynamic geophysical and geochemical MUltiparametric DAtabase
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and MUDA working group
Earth Syst. Sci. Data, 16, 4843–4867, https://doi.org/10.5194/essd-16-4843-2024,https://doi.org/10.5194/essd-16-4843-2024, 2024
Short summary
A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024,https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania (Italy): statistical combination of different predictions for spatial estimation of thickness
Pooria Ebrahimi, Fabio Matano, Vincenzo Amato, Raffaele Mattera, and Germana Scepi
Earth Syst. Sci. Data, 16, 4161–4188, https://doi.org/10.5194/essd-16-4161-2024,https://doi.org/10.5194/essd-16-4161-2024, 2024
Short summary
The China Active Faults Database (CAFD) and its web system
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024,https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary

Cited articles

Alhumimidi, M. S., Aboud, E., Alqahtani, F., Al-Battahien, A., Saud, R., Alqahtani, H. H., Aljuhani, N., Alyousif, M. M., and Alyousef, K. A.: Gamma-ray spectrometric survey for mineral exploration at Baljurashi area, Saudi Arabia, Journal of Radiation Research and Applied Sciences, 14, 82–90, https://doi.org/10.1080/16878507.2020.1856600, 2021. 
Anderson, M. A., Bertsch, P. M., and Miller, W. P.: The distribution of lithium in selected soils and surface waters of the southeastern USA, Appl. Geochem., 3, 205–212, 1988. 
Antezana Lopez, F. P., Zhou, G., Paye Vargas, L., Jing, G., Oscori Marca, M. E., Villalobos Quispe, M., Antonio Ticona, E., Mollericona Tonconi, N. M., and Orozco Apaza, E.: Lithium quantification based on random forest with multi-source geoinformation in Coipasa salt flats, Bolivia, Int. J. Appl. Earth Obs., 117, 103184, https://doi.org/10.1016/j.jag.2023.103184, 2023. 
Aral, H. and Vecchio-Sadus, A.: Toxicity of lithium to humans and the environment – a literature review, Ecotoxicol. Environ. Safe., 70, 349–356, https://doi.org/10.1016/j.ecoenv.2008.02.026, 2008. 
Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J. M., and McBratney, A.: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, Trac-Trend. Anal. Chem., 29, 1073–1081, https://doi.org/10.1016/j.trac.2010.05.006, 2010. 
Download
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Altmetrics
Final-revised paper
Preprint