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Abstract. With a higher demand for lithium (Li), a better understanding of its concentration and spatial distri-
bution is important to delineate potential anomalous areas. This study uses a digital soil mapping framework to
combine data from recent geochemical surveys and environmental covariates that affect soil formation to predict
and map aqua-regia-extractable Li content across the 7.6×106 km2 area of Australia. Catchment outlet sediment
samples (i.e. soils formed on alluvial parent material) were collected by the National Geochemical Survey of
Australia at 1315 sites, with both top (0–10 cm depth) and bottom (on average ∼ 60–80 cm depth) catchment
outlet sediments sampled. We developed 50 bootstrap models using a cubist regression tree algorithm for each
depth. The spatial prediction models were validated on an independent Northern Australia Geochemical Sur-
vey dataset, showing a good prediction with a root mean square error of 3.32 mgkg−1 (which is 44.2 % of the
interquartile range) for the top depth. The model for the bottom depth has yet to be validated. The variables
of importance for the models indicated that the first three Landsat 30+ Barest Earth bands (red, green, blue)
and gamma radiometric dose have a strong impact on the development of regression-based Li prediction. The
bootstrapped models were then used to generate digital soil Li prediction maps for both depths, which could
identify and delineate areas with anomalously high Li concentrations in the regolith. The predicted maps show
high Li concentration around existing mines and other potentially anomalous Li areas that have yet to be verified.
The same mapping principles can potentially be applied to other elements. The Li geochemical data for calibra-
tion and validation are available from de Caritat and Cooper (2011b; https://doi.org/10.11636/Record.2011.020)
and Main et al. (2019; https://doi.org/10.11636/Record.2019.002), respectively. The covariate data used for this
study were sourced from the Terrestrial Ecosystem Research Network (TERN) infrastructure, which is en-
abled by the Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS; https:
//esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/, last access: 6 December 2022;
TERN, 2019). The final predictive map is available at https://doi.org/10.5281/zenodo.7895482 (Ng et al., 2023).

1 Introduction

Minerals have become essential commodities in modern hu-
man society. Many minerals are fundamental to technologi-
cal and industrial advancement, particularly those utilised in
renewable energy systems, electric vehicles, consumer elec-
tronics, and telecommunications (Kabata-Pendias, 2010).
These minerals can be considered critical in the sense that
they are of high importance and have a high risk of supply

disruption. Methods for quantifying mineral criticality are
discussed in detail in Graedel et al. (2012).

Lithium (Li) is an important chemical element as the world
transitions towards a lower-carbon economy. It has been
listed as a critical element by various countries, including
Australia, Canada, the European Union, Japan, the Repub-
lic of Korea, and the United States of America (Mudd et al.,
2018; David Huston, Geoscience Australia, personal com-
munication, March 2022). Australia is endowed with sig-
nificant resources of many of the critical elements and the
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critical minerals hosting them, including Li. Currently, Aus-
tralia’s ranking for economic resources of Li is second, but it
ranks first for its production (Senior et al., 2022), with poten-
tial for additional discoveries. According to a recent survey
(Senior et al., 2022), Australia produced 40 kt (kilotons) of Li
(in terms of spodumene, LiAlSi2O6, concentrates; assuming
6 % of Li2O in spodumene concentrates) in 2020, or 49 % of
the global production; a significant increase from 21.3 kt of
Li in 2017 (Champion, 2019).

The two primary sources for Li are brine stores and min-
eral deposits, where Li is hosted mainly in spodumene. A
2013 investigation by Geoscience Australia found that the
potential of Li-rich salt lakes in Australia was relatively low
in comparison to those, for instance, in the Americas (Jaireth
et al., 2013; Mernagh et al., 2013, 2016). Most of the Li in
Australia exists as mineral deposits (Champion, 2019). De-
spite Australia’s current position as the world’s leading sup-
plier of Li, it has limited prospects for immediate expansion
as the potential for similar deposits in Australia has not yet
been fully investigated (Mudd et al., 2018). This study aims
to contribute to filling this knowledge gap by providing the
first digital map of Li concentration in Australian soils.

Lithium values range from < 1–15 mgkg−1 in ultramafic
rocks and 5.5–17 mgkg−1 in mafic rocks, whereas felsic
rocks (granite, rhyolite, and phonolite) contain higher Li con-
centrations, between 30–70 mgkg−1 (de Vos et al., 2006).
Lithium concentration in clay minerals ranges between 7–
6000 mgkg−1 (Starkey, 1982). With developments in tech-
nology, a process of extracting Li as Li-carbonate from
certain minerals, other than spodumene, such as lepidolite
(KLi2Al(Si4O10)(F,OH)2) and petalite (LiAlSi4O10), has
been identified (Sitando and Crouse, 2012; Vieceli et al.,
2018). Lower Li concentration is found in salt lake brine
(0.17–1.5 mgkg−1) (Grosjean et al., 2012). Extraction of Li
from salt lake brine is in the form of Li-chloride, which needs
to undergo an energy-intensive process to be converted to Li-
carbonate from the Li metal forms for use in batteries.

Lithium is found in trace amounts in all soil types, pri-
marily in the clay fraction, with slightly lower concentra-
tions in the organic soil fraction (Kabata-Pendias, 2010).
Possible means by which Li is bound to clay have been
reviewed elsewhere (Starkey, 1982). Across Europe, val-
ues of Li ranging from 0.28–271 mgkg−1 have been re-
ported (Salminen et al., 2006), with smaller concentration
ranges in agricultural soil (0.161–136 mgkg−1) and graz-
ing soil (0.1–153 mgkg−1) (Reimann et al., 2014). Négrel
et al. (2019) reported an aqua-regia-soluble Li concentra-
tion of 11.3 mgkg−1 in European agricultural soil. In New
Zealand, a study of Li concentration in soil reported a range
between 0.08–92 mgkg−1 (Robinson et al., 2018). de Cari-
tat and Reimann (2012) reported median Li concentrations
(after aqua regia digestion) of 12 and 5.7 mgkg−1 in Euro-
pean agricultural topsoils and Australian surface sediments,
respectively, both in the coarse (< 2 mm) fraction. Subse-
quently, Reimann and de Caritat (2017) published the first

continental map (Supplement; Fig. 2SM) of Li in Australian
soils, based on National Geochemical Survey of Australia
(NGSA) data, showing that regions of high and low concen-
trations are found across all Australian states. The amount of
soil-available Li has been found to be relatively low, about
3 %–5 % of the total Li content in the surface layers both
in the southeastern USA (Anderson et al., 1988) and Siberia
(Gopp et al., 2018), ranging from 0.24–0.68 mgkg−1. A to-
tal Li concentration within a range of 5.27–400 mgkg−1 had
been reported for catchment sediment samples in China (Liu
et al., 2020) and within a range of < 1–300 mgkg−1 in the
US topsoils (Smith et al., 2019).

Higher concentrations of Li are often found in the deeper
layers of soil profiles (Merian and Clarkson, 1991). Typi-
cally, Li enters the soil profile through the weathering of sed-
imentary minerals in the underlying saprolite and bedrock
(Aral and Vecchio-Sadus, 2008). Because clay minerals pre-
dominantly drive the mineralisation and dissolution of Li, the
clay fraction will play a significant role in determining the
Li concentration. The Li content of soil is controlled more
by the soil formation conditions than by the composition of
the parent materials (Kabata-Pendias, 2010). Similar obser-
vations are found in Négrel et al. (2019), where the aqua-
regia-extractable Li concentrations can be linked with known
mineralisation processes observed within Europe. This was
also shown in the study by Luecke (1984), who explored the
use of information on enriched elements (Rb, Ba, Sr, Cu, and
Zn among others) to aid in predicting the distribution of Li
pegmatites.

Mineral exploration aims to find ore deposits for mining
purposes. Therefore, delineating target areas for mineral ex-
ploration through a series of mapping activities is a crucial
initial stage leading to discovery (Carranza, 2011). Mineral
prospectivity mapping (or modelling; MPM) is a method to
quantify the probability of mineralisation in a selected area
for mineral exploration purposes (Zuo, 2020). This prioritisa-
tion allows for the selection of smaller, higher-potential areas
for detailed prospecting investment to minimise exploration
costs, e.g. the number of drillholes.

Two common paradigms for creating MPM are
knowledge-driven and data-driven models (Carranza,
2011). Knowledge-driven models do not require any data
on mineral deposits but rely on expert knowledge of
spatial associations between mineral deposits and geo-
logical features, field experience, and conceptual models
to develop evidential maps that enable the discovery of
mineral deposits (Carranza, 2008). Conversely, data-driven
models utilise existing knowledge on the location of mineral
occurrences, various survey datasets, and spatial statistical
methods to represent the likelihood of mineral occurrence
within prospective areas (Carranza, 2008). Numerous
data-driven models have been derived for the detection of
anomalous mineral occurrences. Benedikt (2018) utilised
Tellus regional stream sediment geochemistry to screen for
anomalous metal abundances within minerals in southeast
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Ireland. Roshanravan et al. (2023) and Harris et al. (2023)
also implemented a data-driven machine learning model to
develop predictive maps of gold prospects.

With the development of machine learning and technology
(computer hardware, software, and geographic information
system (GIS) technology), there have been growing applica-
tions of MPM in recent decades (Carranza, 2011; Porwal et
al., 2015; Zuo, 2020). Several studies have demonstrated the
use of remote sensing to explore various deposit types, such
as gold (Au) deposits (Crósta et al., 2010), copper (Cu) de-
posits (Pour and Hashim, 2015), and iron (Fe) ores (Ducart et
al., 2016). The application of remote sensing for Li deposits
has also emerged. Gopp et al. (2018) explored the use of a
normalised difference vegetation index (NDVI) to develop a
predicted map of the plant available content of Li in south-
western Siberian soil. Cardoso-Fernandes et al. (2018, 2020)
evaluated the potential use of Sentinel-2 in Li mapping in
the Fregeneda–Almendra region across the Spain–Portugal
border. Similarly, Köhler et al. (2021) further explored the
use of combined geological data and Sentinel-2 data for Li
potential mapping in Portugal. Antezana Lopez et al. (2023)
used Sentinel-2, ASTER, Jilin GP, and PROBA CHRIS satel-
lite data to study surface reflectance, as well as soil physic-
ochemical properties, to predict Li concentration in Bolivian
salt flats.

In soil science, digital soil mapping (DSM) has been
widely used to produce quantitative maps of soil attributes
based on the known distributions of environmental covariates
(i.e. rainfall, parent material, vegetation, and landforms) that
affect soil formation. The DSM framework is derived from
the conceptual model developed by McBratney et al. (2003)
in which a certain soil attribute results from the interaction of
soil-forming factors. These factors are modified from Jenny
(1941) and include soil (s), climate (c), organisms (o), re-
lief (r), parent material (p), age/time (a), and spatial posi-
tion (n), or “scorpan”. The factors are measured or approxi-
mated from various data types, including point observations,
maps (polygons), survey data, and remote sensing data, as
well as derivatives thereof (e.g. gradients, buffer distances);
these can be numerical or categorical data types.

In this study, we attempt to model Li distribution in the sur-
face and subsurface soils of Australia by invoking the NGSA
soil geochemistry dataset and various environmental covari-
ates commonly used in DSM related to soil formation in Aus-
tralia. In detail, the objectives of this study are thus to

1. evaluate the use of a DSM framework to predict Li con-
centrations in Australian soils and

2. delineate anomalous areas potentially attractive for Li
exploration and discuss their interpretations.

2 Materials and methods

2.1 Li measurement

This study used two soil datasets, referred to as the cali-
bration and validation datasets. The calibration dataset was
used to build the spatial prediction model, and the validation
dataset was used to test the prediction quality of the cali-
brated model.

The calibration dataset data were generated as part
of the NGSA project (https://www.ga.gov.au/about/
projects/resources/national-geochemical-survey, last access:
5 May 2023), a collaborative project between Geoscience
Australia and the Australian states and Northern Territory
between 2007–2011, which aimed to document the soil geo-
chemical concentration levels and patterns across Australia.
Details on the project, analysis, sampling methods, and the
measurement of other parameters can be found in de Caritat
and Cooper (2011b, 2015) and de Caritat (2022).

The NGSA collected samples at 1315 sites (including field
duplicates) at or near the outlet of large catchments with a
total area coverage of 6.17× 106 km2 and an average sam-
pling density of one site for every 5200 km2 (de Caritat and
Cooper, 2011b). The target sampling medium was floodplain
sediments away from river channels, though in various places
in Australia, aeolian modification of floodplain sediments
can be important; thus, the medium was called “catchment
outlet sediment” rather than floodplain sediment. These ge-
omorphological entities are typically vegetated and biolog-
ically active (plants, worms, ants, etc.), thereby making the
collected materials true soils (e.g. SSSA, 2022), albeit soils
all developed on transported alluvium parent material. Due
to limitations to access, samples from some parts of South
Australia and Western Australia could not be obtained.

Samples were collected from two depths, namely “top out-
let sediment” (TOS) from 0–10 cm depth, and “bottom outlet
sediment” (BOS) from, on average, ∼ 60–80 cm depth. All
of the samples were air-dried, homogenised, and dry sieved
to < 2 mm and < 75 µm prior to various analyses for 60 plus
elements (see de Caritat et al., 2009, 2010, for a full descrip-
tion of the NGSA sample preparation and analytical meth-
ods, respectively).

In this contribution, we use Li concentrations after aqua
regia digestion, as the NGSA did not report total Li. A
0.50± 0.02 g aliquot of sample (< 2 mm) was digested in
aqua regia (1.8 mL of HCl + 0.6 mL of HNO3) at 90± 3 ◦C
for 2 h to leach acid-soluble components. Once the sample
had cooled to room temperature, 17.5 mL of diluent was
added, and the sample was inverted 10 times to homogenise
the content. The sample was further diluted 50 times prior to
analysis, using inductively coupled plasma mass spectrome-
try (ICP-MS) in a commercial laboratory (de Caritat et al.,
2010). For the remainder of the paper, any reference to Li
concentrations is understood to mean aqua-regia-extractable
Li unless otherwise noted. Any Li measurements that fell be-
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low the detection limit (0.1 mgkg−1) were replaced with half
the detection limit (0.05 mgkg−1). A detailed quality assess-
ment of the NGSA data is given in de Caritat and Cooper
(2011a), where a relative analytical precision (repeat analy-
sis of TILL-1 Certified Reference Materials (CRM)) of 12 %
and a relative overall precision (based on field duplicates) of
39 % were reported. The distribution of sampling sites and
Li concentration levels for both TOS and BOS are shown in
Fig. 1.

As an independent validation dataset, we used the geo-
chemical dataset from the Northern Australia Geochemical
Survey (NAGS) project (Main et al., 2019). This dataset con-
tains 773 observations located in the Tennant Creek–Mount
Isa region in the Northern Territory and Queensland, with an
approximate sampling density of one sample every 500 km2

and collection in 2017. The distribution of these samples is
also shown in Fig. 1. These samples were collected, prepared,
and analysed following the NGSA protocols (de Caritat and
Cooper, 2011b), albeit at a higher sampling density. How-
ever, only TOS samples were collected in NAGS. Further-
more, these NAGS samples were collected at a different time
and analysed in a different laboratory compared to the NGSA
dataset. To address the analytical variation that could poten-
tially arise, a levelling method was applied using the TILL-1
CRM standards (Main and Champion, 2022). First, the sub-
set of the NGSA dataset that covers the spatial area of the
NAGS dataset was extracted. Then a Kolmogorov–Smirnov
test was used to verify if the samples from the two datasets
(subset of the NGSA and NAGS) were similar. A correction
factor to relate the two datasets based on the TILL-1 CRM
standards was then calculated and applied as a multiplier to
the NAGS dataset to level its data to the NGSA dataset.

2.2 Environmental covariates

A total of 19 environmental covariates (Table 1) characteris-
ing the factors of climate, parent material, soil, and topogra-
phy, which contribute to soil formation, were considered in
this study.

The first factor is climate. Water (humidity) and tempera-
ture affect the rate of mineral weathering and thus soil forma-
tion. Hence, we included precipitation, evaporation, and tem-
perature data (Harwood, 2019), along with the topographic
wetness index (TWI) data (Gallant and Austin, 2012b), in-
forming about the relative wetness within a landscape. In
short, the TWI was derived from the partial contributing
area product, which was computed from a hydrologically en-
forced digital elevation model, and from the percent slope
product, which was computed from the smoothed digital el-
evation model (DEM-S; Gallant and Austin, 2012b).

The second factor is parent material (i.e. degree of weath-
ering and mineralogical composition), including gamma-ray
radiometric and total magnetic intensity. Gamma-ray radio-
metric surveys provide estimates for the concentrations of
gamma-ray-emitting radio-elements like potassium (K), ura-

nium (U), and thorium (Th) at/near the soil surface. The
gamma-ray radiometric data were measured from airborne
surveys throughout most of Australia (Poudjom Djomani et
al., 2019). In this study, we used a complete gamma-ray sur-
vey grid where gaps in the airborne coverage were filled in
using covariate machine learning (Wilford and Kroll, 2020).
Gamma-ray radiometric data have been found to be a use-
ful covariate in identifying surface processes such as sedi-
ment transport and weathering (Wilford, 2012; Wilford et al.,
1997) and detecting radioactive mineral deposits and occur-
rences (Alhumimidi et al., 2021; Dickson et al., 1996; Dick-
son and Scott, 1997; Wilford et al., 2009). Total magnetic in-
tensity (TMI), which measures variations in the Earth’s mag-
netic field intensity caused by the contrasting content of vari-
ous rock-forming minerals in the crust (Poudjom Djomani et
al., 2019), could also potentially identify geological features
and processes.

The third factor is the soil itself, particularly the relevant
physical soil properties. As previous studies, e.g. by Kabata-
Pendias (1995) and Robinson et al. (2018), highlighted the
high correlation between Li and clay content of soil, soil tex-
ture was used as a covariate. The soil texture spatial infor-
mation (sand and clay contents) was derived from Malone
and Searle (2021), which contained updated information on
soil texture across Australia derived using a digital soil map-
ping approach. The sand and clay fractions were developed
by integrating field morphological (n= 180498) and labo-
ratory measurements of soil texture fractions (n= 17367)
from the Soil and Landscape Grid of Australia (SLGA). The
SLGA is based on a comprehensive compilation of soil at-
tributes across Australia, including the NGSA dataset. These
sand and clay content maps (Malone and Searle, 2021) were
for specific depth intervals (0–5, 5–15, 15–30, 30–60, 60–
100, and 100–200 cm). They were converted to the depths
corresponding to the NGSA Li measurement (0–10 and ∼
60–80 cm) using the mass-preserving spline function, de-
scribed in Bishop et al. (1999) and modified by Malone et al.
(2009). Soil reflectance in the visible, near-infrared (NIR),
and shortwave–infrared (SWIR) spectra captured by remote
sensing images provides information on soil composition.
However, the unprocessed images consist of a mixture of
soil, bedrock, vegetation, and clouds. By removing the influ-
ence of seasonal vegetation, Roberts et al. (2019) were able
to document the “barest” state of soil, so critical in mapping
the physical characteristics of soil and rock. This was done
by combining Landsat 5, 7, and 8 observations of the past
30 years to remove the contamination by seasonal vegeta-
tion, cloud cover, shadows, detector saturation and pixel sat-
uration. The model used to develop the Barest Earth product
was validated using the NGSA spectral archive (Lau et al.,
2016).

Finally, topography is represented by elevation and slope.
These factors also play an important role, as they affect how
water is added to and/or lost from soil. The elevation was de-
rived from the DEM-S which was obtained from the 1 arcsec
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Figure 1. Distribution of sampling sites from the National Geochemical Survey of Australia (NGSA, black circles) for both depths: top
outlet sediment (TOS) 0–10 cm (a) and bottom outlet sediment (BOS) ∼ 60–80 cm (b). Distribution of sampling sites from the Northern
Australia Geochemical Survey (NAGS, blue plus signs) for TOS only (a). All data refer to the coarse fractions (< 2 mm). Aqua-regia-soluble
Li concentrations (mgkg−1) are categorised in five quantile classes. Regions discussed in the text are highlighted in various shades of green.
Projection: Australian Albers equal area (EPSG:3577). Data sources: de Caritat and Cooper (2011b), Hughes (2020), and Main et al. (2019).

resolution Shuttle Radar Topography Mission (SRTM) data
acquired by NASA in February 2000 (Gallant et al., 2011).
The slope covariate was also calculated from DEM-S using
the finite difference method (Wilson and Gallant, 2000). The
different spacing in the E–W and N–S directions due to the
geographic projection of the data was accounted for by us-
ing the actual spacing in metres of the grid points calculated
from the latitude.

All covariates were reprojected to EPSG: 3577 (GDA94
datum; Australian Albers equal area projection) and resam-
pled to a common spatial resolution of 3 km prior to any anal-
ysis. All the environmental covariates used are shown in Ta-
ble 1.

The correlation matrix of the Li concentrations to all the
other element concentrations and environmental covariates
was generated using Pearson’s correlation method. Strong
correlation was defined as > 0.5, moderate was defined as
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Table 1. Environmental covariates used for digital soil mapping of Li.

Covariate Description Source Original resolution

PTA Annual precipitation (mm) Harwood (2019) 90 m
EPA Annual potential evaporation (mm) Harwood (2019) 90 m
TRA Annual temperature range (◦C) Harwood (2019) 90 m
Dose Radiometrics: filtered dose (nGyh−1) Wilford and Kroll (2020) 0.001◦

K Radiometrics: filtered K element concentrations (%) Wilford and Kroll (2020) 0.001◦

Th Radiometrics: filtered Th element concentrations (ppm) Wilford and Kroll (2020) 0.001◦

Th/K Radiometrics: derived Th to K ratio (ppm%−1) Wilford and Kroll (2020) 0.001◦

TMI Total magnetic intensity (nTm−1) Poudjom Djomani et al. (2019) 90 m
Sand Sand content (%) Malone and Searle (2021) 90 m
Clay Clay content (%) Malone and Searle (2021) 90 m
Landsat band 1∗ Blue (450–510 nm) Wilford and Roberts (2019) 25 m
Landsat band 2∗ Green (530–590 nm) Wilford and Roberts (2019) 25 m
Landsat band 3∗ Red (640–670 nm) Wilford and Roberts (2019) 25 m
Landsat band 4∗ Near-infrared NIR (850–880 nm) Wilford and Roberts (2019) 25 m
Landsat band 5∗ Shortwave infrared SWIR1 (1570–1650 nm) Wilford and Roberts (2019) 25 m
Landsat band 6∗ Shortwave infrared SWIR2 (2110–2290 nm) Wilford and Roberts (2019) 25 m
Elevation 3 s DEM – Shuttle Radar Topography Mission

(m a.s.l.)
Gallant et al. (2011) 1 arcsec

Slope Elevation gradient (%) Gallant and Austin (2012a) 90 m
TWI Topographic wetness index (dimensionless) Gallant and Austin (2012b) 30 m

∗ All Landsat bands referred to here are from the Landsat 30+ Barest Earth products.

0.35 to 0.5, and weak correlation was defined as < 0.35. Note
that this classification was generated to facilitate interpreta-
tion of this dataset only and is not implied to be a general
rule.

2.3 Modelling

Here, we used the machine learning model “cubist” to re-
late soil observations to the environmental covariates. Cubist
is a tree-based regression algorithm based on the M5 the-
ory (Quinlan, 1993). This algorithm creates partitions of data
with similar spectral characteristics and creates one or more
rules for each partition. If the partition rules are satisfied, then
the linear regression of that partition is used to create the pre-
diction (Eq. 1). Each rule can be defined as follows:

If [condition is true], then [regression], else [apply next rule]. (1)

The cubist model has two tuning parameters: committees
(number of sequential models included in the ensemble) and
neighbours (number of training instances that are used to ad-
just the model-based prediction). A comprehensive combina-
tion of committees (5, 10, 20, 30, 40, 50) and neighbours (0,
1, 5, 9) was tested to tune the cubist model. To obtain the best
estimates of optimum parameters, a 10-fold cross-validation
approach was utilised. Based on the optimum parameters,
50 bootstrap models (“sampling with replacement”) were
trained. The flowchart of the process is shown in Fig. 2.

The performance of the prediction models was then eval-
uated using both an internal evaluation and the external, in-
dependent validation dataset. An internal evaluation of the

model was conducted using “out of bag” samples, which
were not used during the development of the bootstrap mod-
els. The NAGS dataset was used to evaluate the performance
on the independent dataset (top depth only). The following
metrics, briefly explained below, were used: adjusted coef-
ficient of determination (R2

adj), Lin’s concordance correla-
tion coefficient (LCCC) (Lin, 1989), root mean square er-
ror (RMSE), bias, and ratio of performance to interquartile
distance (RPIQ). R2

adj is a measure of the linear association
between observed and predicted values; LCCC measures the
agreement between the observed and predicted values in re-
lation to the 1 : 1 line while accounting for the magnitude of
the differences; RMSE is a measure of the differences be-
tween the observed and predicted values; bias is the mea-
sure of the difference between the mean of the observed and
the mean of the predicted values; and RPIQ is a measure of
performance that takes into account the distribution of the
values and can be calculated as a fraction of the interquar-
tile range of the observed values (Q3−Q1) and the RMSE
(RPIQ= (Q3−Q1)/RMSE) (Bellon-Maurel et al., 2010).

Variable importance analysis was also conducted to eval-
uate the contributions of each covariate to the Li prediction.
The relative variable importance is measured as the percent-
age of times the environmental covariate is used either as
conditions for a rule or as predictors (usages) within the lin-
ear regression model when certain conditions are met. These
bootstrap models were then used to generate output maps
with the same extent and resolution. The final map output
was derived based on the mean prediction of the bootstrap
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Figure 2. Flowchart of cubist model training to generate Li prediction map along with model validation.

models; similarly, the standard deviation map was obtained
based on the standard deviation of the prediction from the
bootstrap models.

2.4 Data processing and statistical computing

All the data analytics, modelling, and mapping procedures
in this study were conducted in the R statistical open-source
software (R Core Team, 2021). Besides the base R function-
ality, the R packages used in this study included “cubist”
(Kuhn and Quinlan, 2021) for fitting cubist models, “caret”
(Kuhn, 2022) for tuning the hyperparameter of the cubist
model, and “raster” (Hijmans, 2021) for handling raster lay-
ers and generating soil map predictions. All soil maps were
produced in ArcMap version 10.8 (ESRI, 2019) using the Al-
bers equal area projection (EPSG:3577).

3 Results and discussion

3.1 Descriptive analysis

The distribution of 1315 aqua-regia-soluble Li concentra-
tion values (NGSA dataset; de Caritat and Cooper, 2011b)
was positively skewed (Fig. 3) with concentrations ranging
from 0.05–67.4 and 0.05–56 mgkg−1 for TOS and BOS, re-
spectively. Only limited observations above 20 mgkg−1 of
Li concentrations were found in this study for both TOS
(n= 76) and BOS (n= 95). The mean concentration of
TOS (7.6 mgkg−1) was slightly lower than that of BOS
(8.8 mgkg−1). These concentrations were lower than those

observed for the mean aqua-regia-soluble Li concentrations
in European soil at 11.3 mgkg−1 (Négrel et al., 2019), as well
as those found in upper continental crust (both in loess and
shales) at 35 mgkg−1 total Li (Teng et al., 2004). A soil geo-
chemical survey in the USA shows total soil Li concentra-
tions with a range of < 1–300 mgkg−1 (median 20 mgkg−1)
for soils from 0–5 cm and a range of < 1–280 mgkg−1 (me-
dian 24 mgkg−1) for soil samples from the C horizon (Smith
et al., 2019). Similarly, total Li concentrations of up to
400 mgkg−1 have been reported in China (Liu et al., 2020).
These latter Li concentrations, measured using an extraction
of four acids, were considerably higher than the aqua regia
extraction data from the NGSA dataset.

Based on the data collected by the NGSA project, the high-
est concentrations of Li for both TOS and BOS were found in
northernmost Queensland (Cape York Peninsula), as shown
in Fig. 1 and Table 2. Other regions that have elevated con-
centrations of Li were located in the Goldfields–Esperance
region (Table 2) in Western Australia, which has been recog-
nised as one of the most resource-rich areas on the planet
(Champion, 2019), and the region around the Victoria–New
South Wales border (Fig. 1). Some of the findings correlate
well with the existing Li mine sites in Australia (red trian-
gles in Fig. 1). The largest deposit of Li found in Australia
is the Greenbushes deposit, south of Perth. Other regions in-
clude Mount Marion and Earl Grey in the Yilgarn Craton and
Pilgangoora in the Pilbara Craton (Champion, 2019; see Ta-
ble 1). In July 2019, Strategic Metals Australia (SMA) found
a new Li exploration target near Cairns, in the Georgetown
province of north Queensland (Gluyas, 2019). However, this
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Figure 3. Histograms of Li concentrations for both NGSA depths: top outlet sediment (TOS) 0–10 cm (a), bottom outlet sediment (BOS)
∼ 60–80 cm (b), and NAGS (c). Data source: de Caritat and Cooper (2011b) and Main et al. (2019).

discovery has not been updated in the data collected by Geo-
science Australia because considerable work such as drilling,
modelling, resource calculation, and feasibility studies are
needed to bring the discovery to the feasibility stage.

3.1.1 Correlation between Li with other measured
properties

Despite other studies reporting strong correlations between
Li and Mg (Kashin, 2019; Robinson et al., 2018) and be-
tween Li and other elements elsewhere, including Al, B, Fe,
K, Mn, and Zn, the NGSA data only show strong correla-
tions (as defined above) between Li and Al (Pearson’s cor-
relation coefficient r = 0.74), Ga (r = 0.69), Cs (r = 0.68),
and Rb (r = 0.66) for TOS and slightly lower correlations
for BOS: Al (r = 0.69), Ga (r = 0.64), Cs (r = 0.62), and
Rb (r = 0.61). Correlations between Li and K and Mg were
only moderate for both TOS (r = 0.48 and 0.43) and BOS
(r = 0.46 and 0.33). de Vos et al. (2006) also observed good
correlations (r > 0.4) between total Li and Al, Ga, and Rb
within the floodplain sediment samples. Similarly, Cardoso-
Fernandes et al. (2022) found strong correlation between to-
tal Li and Sn, B, Rb, Cs, and F in stream sediment samples
using geochemical pathfinder analysis. More details on the
correlation between Li and other geochemical properties are
included in Table S1 in the Supplement.

The Li concentration in soil was (strongly) negatively cor-
related with measured sand content from the NGSA dataset
(r =−0.55) and (moderately) positively correlated with clay
content (r = 0.44). This is consistent with the findings of
Kabata-Pendias (2010) and Robinson et al. (2018), who
noted the tendency of clay minerals to concentrate Li. It has
been suggested that Li may be located internally within clay
minerals – mainly kaolinite, illite, and smectites including
hectorite, palygorskite, and sepiolites – in ditrigonal cavities
via isomorphous substitution rather than on exchange sites

(Anderson et al., 1988; Starkey, 1982) as a result of sub-
solidus cation exchange reactions with residual pegmatitic
fluids (London and Burt, 1982).

3.1.2 Correlation with environmental covariates

Overall, the correlation between Li concentration and the en-
vironmental covariates was weak (Fig. 4). The correlation
with sand and clay content derived from digital soil maps
was lower in comparison to the measured (NGSA) values
discussed above, with r =−0.28 and 0.25, respectively, for
TOS and r =−0.23 and 0.22, respectively, for BOS.

For TOS, the Landsat bands 3 (red), 5 (SWIR1), and 6
(SWIR2) had similar (weak) negative correlations with Li
content (r =−0.15 to −0.17). For gamma-ray radiometric
data, both total dose and K content had weak correlations
with Li (r = 0.10 to 0.14). These positive correlations are
expected as the associations of Li deposits and felsic rocks
(high in both total dose and K) due to the observed incom-
patibility in mineral structures (Benson et al., 2017). Pre-
cipitation had a weak positive correlation (r = 0.12), while
both temperature and elevation had weak negative correla-
tions (r =−0.12) with Li content. TWI and slope had negli-
gible correlation with Li content (r =−0.02 to 0.05).

For BOS, similar observations on the correlations between
Li content and environmental covariates were found where
temperature and Landsat bands 3, 5, and 6 had (weak) nega-
tive correlations (r =−0.11 to −0.16) with Li, while radio-
metric K (r = 0.10) and dose (r = 0.09) had (weak) positive
correlation with Li. Similarly, TWI and slope showed negli-
gible correlation with Li (r =−0.01 to 0.05).

3.2 Model evaluation

The final cubist model was tuned with 20 committees and
9 neighbours, which resulted in the lowest RMSE compared
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Table 2. Aqua-regia-extractable lithium concentrations across various regions of Australia.

Region (n = number of samples) Range (mgkg−1) Median (mgkg−1)

Pilbara Craton (n= 12) 1.2–15.7 6.80
Yilgarn Craton (n= 101) 0.05–32.7 3.50
Eucla Basin (n= 29) 1.6–22.6 12.40
Cape York (n= 20) 0.3–67.4 3.95
Goldfields (n= 78) 0.1–32.7 5.80

Figure 4. Pearson’s correlation coefficient (r) between Li content and the environmental covariates (scorpan) for both NGSA depths: top
outlet sediment (TOS) 0–10 cm (a) and bottom outlet sediment (BOS)∼ 60–80 cm (b). Data sources: de Caritat and Cooper (2011b), Gallant
et al. (2011), Gallant and Austin (2012a, b), Harwood (2019), Wilford and Roberts (2019), Poudjom Djomani et al. (2019), Wilford and
Kroll (2020), Malone and Searle (2021). See Table 1 for abbreviations. ∗∗∗ Correlation is significant at the 0.001 level. ∗∗ Correlation is
significant at the 0.05 level. ∗ Correlation is significant at the 0.01 level.

to the other combinations of hyperparameters, indicating an
optimised cubist model.

3.2.1 Internal evaluation

Validation statistics based on internal evaluation using the
out-of-bag data for the Li predictions are presented in
Table 3. There was a slightly lower accuracy on the
prediction for BOS (R2

adj = 0.12; LCCC= 0.29; RMSE=
7.28 mgkg−1) compared to TOS (R2

adj = 0.20; LCCC=
0.36; RMSE= 6.29 mgkg−1). This is expected as most of
the environmental covariates reflected soil surface condi-
tions. To the best of our knowledge, the machine learning
models developed in most mineral exploration studies were
assessed based on classification accuracy (i.e. presence or
absence of specific minerals in the sample) instead of re-
gression accuracy (Jooshaki et al., 2021). In addition, remote
sensing studies on mapping Li minerals are rarely validated

(e.g. Cardoso-Fernandes et al., 2019). Hence, no comparison
can be made with other studies.

3.2.2 Independent validation dataset

The predictive model performance was also externally eval-
uated using an independent dataset (NAGS, TOS only) that
was not part of the calibration dataset. To address the analyti-
cal variation that could potentially arise from the use of a pre-
dictive model from the NGSA dataset for the NAGS dataset,
a levelling method was implemented. A subset of the NGSA
dataset within the extent of the NAGS dataset was extracted
(range = 0.05–28.7 mgkg−1; median = 4.15 mgkg−1) and
compared to the NAGS dataset (range = 0.1–19.5 mgkg−1;
median = 3 mgkg−1) using a two-sample Kolmogorov–
Smirnov test (D = 0.24, p < 0.01). Because the samples
were not deemed to have a similar distribution at a 1 % signif-
icance, a correction factor was calculated to level the NAGS
dataset to the NGSA dataset using TILL-1 CRM standards.
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Table 3. Internal model evaluation and validation results for the prediction of Li concentrations using cubist model for both NGSA depths:
top outlet sediment (TOS) 0–10 cm and bottom outlet sediment (BOS) ∼ 60–80 cm. External independent validation is based on comparing
predictions to the NAGS dataset Li concentrations.

Depth R2
adj LCCC RMSE Bias RPIQ

NGSA – TOS (0–10 cm) 0.20 0.36 6.29 −0.80 1.20
NGSA – BOS (∼ 60–80 cm) 0.12 0.29 7.28 −0.76 1.14
Independent validation: NAGS – TOS (0–10 cm) 0.36 0.45 3.32 2.18 1.03

Figure 5. Goodness-of-fit plot showing observed vs. predicted Li
concentrations based on the independent validation dataset (NAGS,
TOS only). The dashed red line is the 1 : 1 line.

Upon levelling, the two datasets were deemed to have a simi-
lar distribution to the two-sample Kolmogorov–Smirnov test
(D = 0.18, p = 0.012).

We reported the performance of model validation the
same way the model evaluation was conducted (Table 3 and
Fig. 5). The model validation resulted in higher accuracy
(R2
= 0.36; LCCC= 0.45). The RMSE was also slightly

lower (RMSE= 3.32mgkg−1) than that observed in the
TOS model evaluation (RMSE= 6.29mgkg−1), most likely
due to lower observation values within the NAGS validation
dataset.

3.3 Variable importance analysis

From the cubist model, we can infer the relative importance
of the covariates by calculating the percentage of times a co-
variate is being used in the model. The variables used by the
cubist model can be further split in terms of “importance as
conditions within rule” and “frequency of usage as predictors
in models”.

For Li prediction in TOS, the variables clay, PTA, TRA,
and EPA are of higher importance in the conditions than
other variables (Fig. 6). This implies that the model separates
out prediction values based on climate covariates along with
clay content. However, within the regression models, the top
five variables most frequently used in the regression were the
Landsat band 2, band 6, band 1, band 3, and gamma radio-
metric total dose. The first three Landsat bands (red, green,
and blue) and band 6 (SWIR2) have been commonly used
to predict soil properties, delineate geological boundaries,
and differentiate between vegetation zones (Khorram et al.,
2012), while the gamma radiometric dose discriminated the
various soil types and their mineral make-up. The next set of
covariates were annual precipitation and clay and sand con-
tents, indicating they have lower importance as predictors.
As indicated in the correlation analysis, slope was not signif-
icant.

For the BOS model, the TRA variable had the highest im-
portance in the conditions of the model (Fig. 6) for Li predic-
tions, separating high and low values. EPA, clay content, and
PTA also affect model conditions. Overall, parameters that
were more frequently used as predictors in the BOS model
were similar to those for TOS, i.e. the top five are gamma
radiometric dose and Landsat bands 2, 1, 6, and 3. In the
BOS model, however, there was a higher importance of the
clay content (sixth most used) compared to the TOS model
(ninth). The usage of slope covariate as predictor is similarly
low (last) for both TOS and BOS.

3.4 Li prediction maps

The cubist model led to the generation of spatial predictions
of aqua-regia-soluble Li concentration in alluvium-derived
soils across Australia at two depths (Fig. 7). So far, there are
only five known Li mines in Australia (mostly in Western
Australia), all of which are located within areas that were
predicted to have a higher background concentrations of soil
Li, especially for the BOS model (>∼ 8 mgkg−1) (Fig. 8).

In Australia, the largest producer of spodumene is the
Greenbushes Li operation, located approximately 250 km
south-southeast of Perth. In the most recent public report,
the company reported combined measured and indicated re-
sources of 118.4× 106 t (Mt) of ore at 2.4 % Li2O con-
taining proved and probable reserves of 61.5 Mt at 2.8 %

Earth Syst. Sci. Data, 15, 2465–2482, 2023 https://doi.org/10.5194/essd-15-2465-2023



W. Ng et al.: Digital soil mapping of lithium in Australia 2475

Figure 6. Variable importance of covariates in terms of importance as conditions (dotted red lines) and frequency of usage as predictors (grey
lines) by the cubist algorithm for both NGSA depths: top outlet sediment (TOS) 0–10 cm (a) and bottom outlet sediment (BOS) ∼ 60–80 cm
(b). Covariates are sorted in order of decreasing frequency of usage.

Figure 7. Spatial distributions of predicted aqua-regia-soluble Li concentrations (mgkg−1) in coarse-fraction (< 2 mm) alluvial soils across
Australia (a, c) and standard deviations (mgkg−1) (b, d) for both National Geochemical Survey of Australia (NGSA) depths: top outlet
sediment (TOS) 0–10 cm (a, b) and bottom outlet sediment (BOS) ∼ 60–80 cm (c, d).
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Figure 8. Distribution of Li mines on the digital soil map of Li in Australia for bottom outlet sediment (BOS) ∼ 60–80 cm depth.

Li2O (Champion, 2019). Other locations explored for Li in-
clude Mount Cattlin and Mount Marion in the Goldfields–
Esperance region and Pilgangoora of East Pilbara. In a re-
cent review (Champion, 2019), these projects’ reports esti-
mated Li resources ranging from 11.8 to 71.3 Mt at 1.01 %
to 1.37 % Li2O. The predicted soil Li concentrations at the
known Li mine sites range from 4.5 to 7.3 mgkg−1 for TOS
and from 7.1 to 12.6 mgkg−1 for BOS. The highest TOS and
BOS concentrations of Li proximal to a known mine site are
for the Mount Marion deposit in Western Australia.

Although most Li exploration to date has been conducted
in Western Australia, our map indicates that other regions
in Australia are potentially anomalous in Li (Fig. 7). These
areas are located for instance within the central western
region of Queensland and visually correspond to areas of
widespread black cracking (smectite-rich) soils or Vertosols
(Isbell, 2021). An elevated concentration of Li was also ob-
served over parts of the Eucla Basin, which has a widespread

distribution of Fe-oxide-rich regolith with carbonate accu-
mulations (Johnson, 2015; Wilford et al., 2015). The sources
of carbonate include weathered Proterozoic and Palaeozoic
carbonate bedrock, vast marine sediments that extend across
the low-lying and offshore areas associated with Cenozoic
sedimentary basins, and abundant widespread pedogenic car-
bonates (Johnson, 2015). This is in line with de Vos et al.’s
(2006) observations, where higher Li concentrations of up
to 56 mgkg−1 were identified in calcareous soil (high car-
bonate accumulation) in comparison to those of organic soil
(1.3 mgkg−1). The Fe in the Fe-oxides and oxyhydroxides
that help retain Li may be released from oxidation of primary
minerals during weathering (Kabata-Pendias, 2010). The ul-
timate origin of Li within these clay-, iron-, and carbonate-
rich soils remains to be established in the case of Australia.
Other regions of potential interest occurring in different soil
types are located in southern New South Wales and parts of
Victoria.
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We further explored the correlation of Li concentration
against soil orders (Searle, 2021). Figure 9 shows the range
of Li concentrations across various soil types identified at
the sampling locations. The Li concentration tended to be
slightly higher in Vertosols, Calcarosols, and Dermosols.
These observations indicate Li accumulated in a more uni-
form soil profile with less differentiation between top and
subsoils. In addition, clay soils (Vertosols) and soils with
high CaCO3 (Calcarosols) appeared to have larger Li con-
centrations. These observations supported the anomalous Li
predictions in various parts of Australia mentioned earlier.

The highest predicted values on the Li digital soil maps are
28 and 22 mgkg−1 in TOS and BOS, respectively. Although
a higher Li concentration was expected to be observed in the
deeper layer, the model used in this study was not able to
support such predictions yet. This is most likely because the
covariates used within the model represent observations from
TOS instead of BOS. The variance of covariates within BOS
was not obtained, hence yielding lower-accuracy predictions.

3.5 Study limitations

While we have successfully modelled soil Li distribution
in Australia and validated it using an independent sample
dataset, we recognise that there are limitations to this study’s
approach. (1) The NGSA data used apply to catchment outlet
sediment representing the local accumulation of mainly de-
trital minerals. Therefore, strictly speaking, the predictions
developed herein apply only to similar alluvial soils. (2) The
NGSA data were measured using an aqua regia digestion that
only extracts a portion of the total Li found in soil. The results
could potentially be improved if total Li was measured. Most
of the observations collected had a relatively low concentra-
tion; having more representative samples at higher concen-
trations might improve the prediction accuracy. (3) Despite
the large amount and spread of data, the NGSA does not
cover the whole of Australia. Notably, there is a data gap in
parts of Western Australia and South Australia. However, no
more extensive geochemical dataset than the NGSA exists in
Australia. (4) The environmental covariates used in the study
were selected based on our understanding of relevant soil-
forming processes. (5) There is also limited information on
how the covariates vary with depth except for the soil texture
(sand and clay content) data. The inclusion of more envi-
ronmental covariates related to depth and soil mineralogical
information may improve the predictive capability of these
machine learning models. Note that quantitative mineralogi-
cal data are currently being acquired on the NGSA samples,
both as X-ray diffraction data on whole sediment samples
and clay fractions (de Caritat and Troitzsch, 2021) and as au-
tomated mineralogy using energy dispersive spectrometry on
heavy mineral fractions (de Caritat et al., 2022a, b, c).

The final product was only validated in one area within
Australia (Tennant Creek–Mount Isa region in the Northern
Territory and Queensland). Despite our predictions of ele-

vated soil Li in parts of Queensland, New South Wales, and
Victoria, ground-truthing is required to confirm them, and
further work is necessary to determine the origin of the con-
tained Li.

4 Data availability

The Li geochemical data for calibration and validation are
available at https://doi.org/10.11636/Record.2011.020
(de Caritat and Cooper, 2011b) and
https://doi.org/10.11636/Record.2019.002 (Main et al.,
2019), respectively. The covariate data used for this
study were sourced from the Terrestrial Ecosystem
Research Network (TERN) infrastructure, which is
enabled by the Australian Government’s National Col-
laborative Research Infrastructure Strategy (NCRIS;
https://esoil.io/TERNLandscapes/Public/Products/TERN/
Covariates/Mosaics/90m/, last access: 6 December 2022;
TERN, 2019). The final predictive map is available at
https://doi.org/10.5281/zenodo.7895482 (Ng et al., 2023).

5 Conclusions

Spatial prediction models have been increasingly utilised to
help minimise risk and thus cost of mineral exploration. In
this study, digital soil mapping of Li concentrations at two
different depths (TOS: 0–10 cm; BOS: ∼ 60–80 cm) based
on the cubist model was carried out across Australia using the
National Geochemical Survey of Australia dataset and pub-
licly available environmental covariates. Geology and min-
eralogy are of high importance in predicting soil Li anoma-
lies, as demonstrated by the reliance of the model on the
Landsat and gamma-ray radiometric covariates. Despite most
mineral exploration for Li being conducted in Western Aus-
tralia, other regions (such as Queensland, New South Wales,
and Victoria) have elevated predicted Li concentrations and
could become potential areas of interest. The model accu-
racy tested on the independent Northern Australia Geochem-
ical Survey (TOS only) was reasonable compared to the cali-
bration model performance. Overall, the model performance
was on the low side, and the inclusion of the results into a
prospectivity framework needs to consider the model uncer-
tainties. This approach provides an estimate of the environ-
mental background concentration of Li, which is reflecting a
range of processes including source rock geochemistry from
which the sediments were derived, weathering (including pe-
dogenesis), and geomorphic processes. The work provides
a framework to better understand the processes controlling
the Li concentration at the surface (as revealed through the
covariate relationships), and the modelling effectively delin-
eates regions with locally higher Li background. Despite the
low prediction accuracy, this paper demonstrates a step for-
ward in the development of machine learning in generating
predictive geochemical maps. It also highlights the impor-
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Figure 9. Boxplots of Li concentration in both TOS and BOS across various soil orders based on the Australian Soil Classification (ASC)
system. The boxes indicate the interquartile interval, the bold black lines in the middle of the boxes represent the median, and the values
outside 1.5 times the interquartile interval are indicated by circles. The dashed red line represents the median values of Li across both TOS
and BOS depths.

tance of the establishment of national geochemical survey
databases enabling the exploration of various elements and
minerals nationally and globally, as well as not being limited
to Li. Future work should include obtaining other relevant
environmental covariates and new mineralogy data, which
could further improve model performance; ground-truthing
anomalous regions; and investigating ultimate Li sources. As
more survey data are collected, the use of more complex
models can also be explored, including the use of Li con-
centrations in bedrock materials.
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Ander, E. L., Jordan, G., Ďuriš, M., Klein, P., Locutura, J., Bel-
lan, A., Pasieczna, A., Lis, J., Mazreku, A., Gilucis, A., Heitz-
mann, P., Klaver, G. T., and Petersell, V.: Geochemical atlas of
Europe. Part 2, Interpretation of geochemical maps, additional
tables, figures, maps, and related publications, ISBN 951-690-
960-4, 2006.

Dickson, B. L. and Scott, K. M.: Interpretation of aerial gamma-
ray surveys – adding the geochemical factors, AGSO Journal of
Australian Geology and Geophysics, 17, 187–200, 1997.

Dickson, B. L., Fraser, S. J., and Kinsey-Henderson, A.: In-
terpreting aerial gamma-ray surveys utilising geomorphologi-
cal and weathering models, J. Geochem. Explor., 57, 75–88,
https://doi.org/10.1016/S0375-6742(96)00017-9, 1996.

Ducart, D. F., Silva, A. M., Toledo, C. L. B., and de Assis,
L. M.: Mapping iron oxides with Landsat-8/OLI and EO-
1/Hyperion imagery from the Serra Norte iron deposits in the
Carajas Mineral Province, Brazil, Braz. J. Geol., 46, 331–349,
https://doi.org/10.1590/2317-4889201620160023, 2016.

ESRI: ArcGIS Desktop: Release 10.8, Environmental Sys-
tems Research Institute, https://www.esri.com/ (last access:
15 March 2022), 2019.

Gallant, J. and Austin, J.: Slope derived from 1′′ SRTM DEM-S. v4,
CSIRO [data set], https://doi.org/10.4225/08/5689DA774564A,
2012a.

Gallant, J. and Austin, J.: Topographic Wetness Index de-
rived from 1′′ SRTM DEM-H. v2, CSIRO [data set],
https://doi.org/10.4225/08/57590B59A4A08, 2012b.

Gallant, J., Wilson, N., Dowling, T., Read, A., and Inskeep, C.:
SRTM-derived 1 Second Digital Elevation Models Version 1.0.
Record 1, Geoscience Australia, https://pid.geoscience.gov.au/
dataset/ga/72759 (last access: 11 January 2023), 2011.

Gluyas, A.: Explorer makes significant Lithium discovery in North
Queensland, https://www.australianmining.com.au/news/
explorer-makes-significant-lithium-discovery-in-north-
queensland/ (last access: 14 March 2022), 2019.

Gopp, N. V., Savenkov, O. A., Nechaeva, T. V., and Smirnova,
N. V.: The Use of NDVI in Digital Mapping of the Content
of Available Lithium in the Arable Horizon of Soils in South-
western Siberia, Izv. Atmos. Ocean. Phys+., 54, 1152–1157,
https://doi.org/10.1134/S0001433818090165, 2018.

Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christof-
fersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N. T.,
Schechner, D., Warren, S., Yang, M. Y., and Zhu, C.: Method-
ology of metal criticality determination, Environ. Sci. Technol.,
46, 1063–1070, https://doi.org/10.1021/es203534z, 2012.

Grosjean, C., Miranda, P. H., Perrin, M., and Poggi, P.: Assess-
ment of world lithium resources and consequences of their ge-
ographic distribution on the expected development of the elec-
tric vehicle industry, Renew. Sust. Energ. Rev., 16, 1735–1744,
https://doi.org/10.1016/j.rser.2011.11.023, 2012.

Harris, J. R., Ayer, J., Naghizadeh, M., Smith, R., Snyder, D.,
Behnia, P., Parsa, M., Sherlock, R., and Trivedi, M.: A study
of faults in the Superior province of Ontario and Quebec
using the random forest machine learning algorithm: Spa-
tial relationship to gold mines, Ore Geol. Rev., 157, 105403,
https://doi.org/10.1016/j.oregeorev.2023.105403, 2023.

Harwood, T.: 9 s climatology for continental Australia 1976–2005:
BIOCLIM variable suite. v1, Data Access Portal [data set],
https://doi.org/10.25919/5dce30cad79a8, 2019.

Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, R
package version 3.5-2, CRAN [code], https://CRAN.R-project.
org/package=raster (last access: 8 December 2022), 2021.

Hughes, A.: Australian Operating Mines Map 2019, Geoscience
Australia, Canberra [data set], http://pid.geoscience.gov.au/
dataset/ga/133033 (last access: 11 January 2023), 2020.

Isbell, R.: Australian Soil Classification, CSIRO
Publishing, Melbourne, Victoria, 192 pp.,
https://doi.org/10.1071/9781486314782, 2021.

Jaireth, S., Bastrakov, E. N., Wilford, J., English, P., Magee, J.,
Clarke, J., de Caritat, P., Mernagh, T. P., McPherson, A., and
Thomas, M.: Map of Salt Lake Systems Prospective for Lithium
Deposits, Geoscience Australia, Canberra, http://pid.geoscience.
gov.au/dataset/ga/75878 (last access: 11 January 2023), 2013.

Jenny, H.: Factors of Soil Formation: A System of Quantitative
Pedology, McGraw-Hill, New York, NY, ISBN 0486681289,
1941.

Johnson, A. K.: Regolith and associated mineral systems of the Eu-
cla Basin, South Australia, Department of Geology and Geo-
physics, Adelaide University, https://hdl.handle.net/2440/95312
(last access: 8 May 2022), 2015.

Jooshaki, M., Nad, A., and Michaux, S.: A Systematic Review on
the Application of Machine Learning in Exploiting Mineralog-
ical Data in Mining and Mineral Industry, Minerals, 11, 816,
https://doi.org/10.3390/min11080816, 2021.

Kabata-Pendias, A.: Biogeochemistry of Lithium, Proc. Int. Symp.
Lithium in the Trophic Chain Soil-Plant-Animal-Man, 13–14
September 1995, Warsaw, 9–15, 1995.

Kabata-Pendias, A.: Trace elements in soils and plants, 4th edn.,
CRC press, ISBN 042919112X, 2010.

Kashin, V. K.: Lithium in Soils and Plants of West-
ern Transbaikalia, Eurasian Soil Sci+., 52, 359–369,
https://doi.org/10.1134/S1064229319040094, 2019.

Khorram, S., Koch, F. H., van der Wiele, C. F., and Nelson, S. A. C.:
Remote Sensing, Springer, New York, ISBN 9781461431039,
2012.

Köhler, M., Hanelli, D., Schaefer, S., Barth, A., Knobloch, A.,
Hielscher, P., Cardoso-Fernandes, J., Lima, A., and Teodoro,
A. C.: Lithium Potential Mapping Using Artificial Neural Net-
works: A Case Study from Central Portugal, Minerals-Basel, 11,
1046, https://doi.org/10.3390/min11101046, 2021.

Kuhn, M.: Classification and Regression Training, R package ver-
sion 6.0-93, https://CRAN.R-project.org/package=caret (last ac-
cess: 8 December 2022), 2022.

Kuhn, M. and Quinlan, R.: Cubist: Rule- And Instance-Based
Regression Modeling, R package version 0.3.0, https://CRAN.
R-project.org/package=Cubist, (last access: 8 December 2022),
2021.

Lau, I., Bateman, R., Beattie, E., de Caritat, P., Thomas,
M., Ong, C., Laukamp, C., Caccetta, M., Wang, R., and
Cudahy, T.: National Geochemical Survey of Australia re-
flectance spectroscopy measurements. v4, CSIRO, Data Collec-
tion, https://doi.org/10.25919/5cdba18939c29, 2016.

Lin, L. I.: A concordance correlation coefficient to
evaluate reproducibility, Biometrics, 45, 255–268,
https://doi.org/10.2307/2532051, 1989.

Earth Syst. Sci. Data, 15, 2465–2482, 2023 https://doi.org/10.5194/essd-15-2465-2023

https://doi.org/10.1016/S0375-6742(96)00017-9
https://doi.org/10.1590/2317-4889201620160023
https://www.esri.com/
https://doi.org/10.4225/08/5689DA774564A
https://doi.org/10.4225/08/57590B59A4A08
https://pid.geoscience.gov.au/dataset/ga/72759
https://pid.geoscience.gov.au/dataset/ga/72759
https://www.australianmining.com.au/news/explorer-makes-significant-lithium-discovery-in-north-queensland/
https://www.australianmining.com.au/news/explorer-makes-significant-lithium-discovery-in-north-queensland/
https://www.australianmining.com.au/news/explorer-makes-significant-lithium-discovery-in-north-queensland/
https://doi.org/10.1134/S0001433818090165
https://doi.org/10.1021/es203534z
https://doi.org/10.1016/j.rser.2011.11.023
https://doi.org/10.1016/j.oregeorev.2023.105403
https://doi.org/10.25919/5dce30cad79a8
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
http://pid.geoscience.gov.au/dataset/ga/133033
http://pid.geoscience.gov.au/dataset/ga/133033
https://doi.org/10.1071/9781486314782
http://pid.geoscience.gov.au/dataset/ga/75878
http://pid.geoscience.gov.au/dataset/ga/75878
https://hdl.handle.net/2440/95312
https://doi.org/10.3390/min11080816
https://doi.org/10.1134/S1064229319040094
https://doi.org/10.3390/min11101046
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=Cubist
https://CRAN.R-project.org/package=Cubist
https://doi.org/10.25919/5cdba18939c29
https://doi.org/10.2307/2532051


W. Ng et al.: Digital soil mapping of lithium in Australia 2481

Liu, H., Wang, X., Zhang, B., Wang, W., Han, Z., Chi, Q.,
Zhou, J., Nie, L., Xu, S., Yao, W., Liu, D., Liu, Q., and
Liu, J.: Concentration and distribution of lithium in catch-
ment sediments of China: Conclusions from the China Geo-
chemical Baselines project, J. Geochem. Explor., 215, 106540,
https://doi.org/10.1016/j.gexplo.2020.106540, 2020.

London, D. and Burt, D. M.: Chemical-Models for Lithium Alumi-
nosilicate Stabilities in Pegmatites and Granites, Am. Mineral.,
67, 494–509, 1982.

Luecke, W.: Soil Geochemistry above a Lithium Pegmatite Dyke at
Aclare, Southeast Ireland, Irish J. Earth Sci., 6, 205–211, 1984.

Main, P. T. and Champion, D. C.: Levelling of multi-generational
and spatially isolated geochemical surveys, J. Geochem. Explor.,
240, 107028, https://doi.org/10.1016/j.gexplo.2022.107028,
2022.

Main, P. T., Bastrakov, E. N., Wygralak, A. S., and Khan,
M.: Northern Australia Geochemical Survey: Data Release
2 – Total (coarse fraction), Aqua Regia (coarse and fine
fraction), and Fire Assay (coarse and fine fraction) ele-
ment contents, Geoscience Australia, Canberra [data set],
https://doi.org/10.11636/Record.2019.002, 2019.

Malone, B. and Searle, R.: Updating the Australian digi-
tal soil texture mapping (Part 2), Soil Res., 59, 435–451,
https://doi.org/10.1071/sr20284, 2021.

Malone, B. P., McBratney, A. B., Minasny, B., and Laslett, G.
M.: Mapping continuous depth functions of soil carbon stor-
age and available water capacity, Geoderma, 154, 138–152,
https://doi.org/10.1016/j.geoderma.2009.10.007, 2009.

McBratney, A. B., Santos, M. L. M., and Minasny,
B.: On digital soil mapping, Geoderma, 117, 3–52,
https://doi.org/10.1016/S0016-7061(03)00223-4, 2003.

Merian, E. and Clarkson, T. W.: Metals and their compounds in the
environment, VCH, Weinheim, ISBN 0895735628, 1991.

Mernagh, T. P., Bastrakov, E. N., Clarke, J. D. A., de Caritat, P., En-
glish, P. M., Howard, F. J. F., Jaireth, S., Magee, J. W., McPher-
son, A. A., Roach, I. C., Schroder, I. F., Thomas, M., and Wil-
ford, J. R.: A review of Australian salt lakes and assessment of
their potential for strategic resources, Geoscience Australia, Can-
berra, http://pid.geoscience.gov.au/dataset/ga/76454 (last access:
11 January 2023), 2013.

Mernagh, T. P., Bastrakov, E. N., Jaireth, S., de Caritat, P., English,
P. M., and Clarke, J. D. A.: A review of Australian salt lakes
and associated mineral systems, Aust. J. Earth Sci., 63, 131–157,
https://doi.org/10.1080/08120099.2016.1149517, 2016.

Mudd, G. M., Werner, T. T., Weng, Z.-H., Yellishetty, M., Yuan,
Y., McAlpine, S. R. B., Skirrow, R., and Czarnota, K.: Critical
Minerals in Australia: A Review of Opportunities and Research
Needs, Record 2018/51, Geoscience Australia, Canberra [data
set], https://doi.org/10.11636/Record.2018.051, 2018.

Négrel, P., Ladenberger, A., Reimann, C., Birke, M., Deme-
triades, A., and Sadeghi, M.: GEMAS: Geochemical back-
ground and mineral potential of emerging tech-critical
elements in Europe revealed from low-sampling den-
sity geochemical mapping, Appl. Geochem., 111, 104425,
https://doi.org/10.1016/j.apgeochem.2019.104425, 2019.

Ng, W., Minasny, B., McBratney, A., de Caritat, P.,
and Wilford, J.: Predicted aqua regia-extractable
lithium concentration in Australia, Zenodo [data set],
https://doi.org/10.5281/zenodo.7895482, 2023.

Porwal, A., Das, R. D., Chaudhary, B., Gonzalez-Alvarez,
I., and Kreuzer, O.: Fuzzy inference systems for prospec-
tivity modeling of mineral systems and a case-study for
prospectivity mapping of surficial Uranium in Yeelirrie
Area, Western Australia, Ore Geol. Rev., 71, 839–852,
https://doi.org/10.1016/j.oregeorev.2014.10.016, 2015.

Poudjom Djomani, Y., Minty, B. R. S., Hutchens, M., and Lane, R.
J. L.: Total Magnetic Intensity (TMI) Grid of Australia 2019 –
seventh edition – 80 m cell size, Geoscience Australia, Canberra
[data set], https://doi.org/10.26186/5e9cf3f2c0f1d, 2019.

Pour, A. B. and Hashim, M.: Hydrothermal alteration map-
ping from Landsat-8 data, Sar Cheshmeh copper min-
ing district, south-eastern Islamic Republic of Iran,
Journal of Taibah University for Science, 9, 155–166,
https://doi.org/10.1016/j.jtusci.2014.11.008, 2015.

Quinlan, J. R.: C4.5: Programs for Machine Learning, Mor-
gan Kaufmann Publishers Inc., San Mateo, California,
ISBN 9781558602380, 1993.

R Core Team: R: A language and environment for statistical com-
puting, R Foundation for Statistical Computing, https://www.
R-project.org (last access: 15 March 2022), 2021.

Reimann, C. and de Caritat, P.: Establishing geochemical back-
ground variation and threshold values for 59 elements in
Australian surface soil, Sci. Total Environ., 578, 633–648,
https://doi.org/10.1016/j.scitotenv.2016.11.010, 2017.

Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., and
O’Connor, P.: Chemistry of Europe’s Agricultural Soils – Part
A: methodology and interpretation of the GEMAS dataset,
Schweizerbarth, Stuttgart, 9783510968466, 2014.

Roberts, D., Wilford, J., and Ghattas, O.: Exposed soil and min-
eral map of the Australian continent revealing the land at its
barest, Nat. Commun., 10, 5297, https://doi.org/10.1038/s41467-
019-13276-1, 2019.

Robinson, B. H., Yalamanchali, R., Reiser, R., and Dickinson,
N. M.: Lithium as an emerging environmental contaminant:
Mobility in the soil-plant system, Chemosphere, 197, 1–6,
https://doi.org/10.1016/j.chemosphere.2018.01.012, 2018.

Roshanravan, B., Kreuzer, O. P., Buckingham, A., Keykhay-
Hosseinpoor, M., and Keys, E.: Mineral potential modelling of
orogenic gold systems in the granites-tanami Orogen, Northern
Territory, Australia: A multi-technique approach, Ore Geol. Rev.,
152, 105224, https://doi.org/10.1016/j.oregeorev.2022.105224,
2023.

Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., Vivo, B.
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miă, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P.,
Lis, J. z., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P.,
Olsson, S. Å., Ottesen, R. T., Petersell, V., Plant, J. A., Reeder, S.,
Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., and Tar-
vainen, T.: Geochemical Atlas of Europe. Part 1 – Background
information, methodology and maps, ISBN 9516909132, 2006.

Searle, R.: Australian Soil Classification Map. Version
1.0.0, Terrestrial Ecosystem Research Network [data set],
https://doi.org/10.25901/edyr-wg85, 2021.

Senior, A., Britt, A. F., Summerfield, D., Hughes, A., Hitch-
man, A., Cross, A., Sexton, M., Pheeney, J., Teh, M., Hill, J.,
and Cooper, M.: Australia’s Identified Mineral Resources 2021,
Geoscience Australia, Canberra, https://doi.org/10.11636/1327-
1466.2021, 2022.

https://doi.org/10.5194/essd-15-2465-2023 Earth Syst. Sci. Data, 15, 2465–2482, 2023

https://doi.org/10.1016/j.gexplo.2020.106540
https://doi.org/10.1016/j.gexplo.2022.107028
https://doi.org/10.11636/Record.2019.002
https://doi.org/10.1071/sr20284
https://doi.org/10.1016/j.geoderma.2009.10.007
https://doi.org/10.1016/S0016-7061(03)00223-4
http://pid.geoscience.gov.au/dataset/ga/76454
https://doi.org/10.1080/08120099.2016.1149517
https://doi.org/10.11636/Record.2018.051
https://doi.org/10.1016/j.apgeochem.2019.104425
https://doi.org/10.5281/zenodo.7895482
https://doi.org/10.1016/j.oregeorev.2014.10.016
https://doi.org/10.26186/5e9cf3f2c0f1d
https://doi.org/10.1016/j.jtusci.2014.11.008
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1016/j.scitotenv.2016.11.010
https://doi.org/10.1038/s41467-019-13276-1
https://doi.org/10.1038/s41467-019-13276-1
https://doi.org/10.1016/j.chemosphere.2018.01.012
https://doi.org/10.1016/j.oregeorev.2022.105224
https://doi.org/10.25901/edyr-wg85
https://doi.org/10.11636/1327-1466.2021
https://doi.org/10.11636/1327-1466.2021


2482 W. Ng et al.: Digital soil mapping of lithium in Australia

Sitando, O. and Crouse, P. L.: Processing of a Zimbabwean petalite
to obtain lithium carbonate, Int. J. Miner. Process., 102, 45–50,
https://doi.org/10.1016/j.minpro.2011.09.014, 2012.

Smith, D. B., Solano, F., Woodruff, L. G., Cannon, W. F., and Ellef-
sen, K. J.: Geochemical and mineralogical maps, with interpre-
tation, for soils of the conterminous United States, Reston, VA,
Report 2017–5118, https://doi.org/10.3133/sir20175118, 2019.

SSSA: Soil Science Society of America Glossary, https://www.
soils.org/publications/soils-glossary, last access: 7 September
2022.

Starkey, H. C.: The Role of Clays in Fixing Lithium, Report 1278F,
https://doi.org/10.3133/b1278F, 1982.

Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpe, C.,
Tomascak, P. B., Chappell, B. W., and Gao, S.: Lithium
isotopic composition and concentration of the upper con-
tinental crust, Geochim. Cosmochim. Ac., 68, 4167–4178,
https://doi.org/10.1016/j.gca.2004.03.031, 2004.

TERN: TERN Landscape Covariates 90m, Terrestrial Ecosystem
Research Network [data set], https://esoil.io/TERNLandscapes/
Public/Products/TERN/Covariates/Mosaics/90m/ (last access:
10 March 2022), 2019.

Vieceli, N., Nogueira, C. A., Pereira, M. F. C., Durão, F. O.,
Guimarães, C., and Margarido, F.: Recovery of lithium carbon-
ate by acid digestion and hydrometallurgical processing from
mechanically activated lepidolite, Hydrometallurgy, 175, 1–10,
https://doi.org/10.1016/j.hydromet.2017.10.022, 2018.

Wilford, J.: A weathering intensity index for the Aus-
tralian continent using airborne gamma-ray spectrome-
try and digital terrain analysis, Geoderma, 183, 124–142,
https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.

Wilford, J. and Roberts, D.: Landsat 30+ Barest Earth, Geo-
science Australia, Canberra [data set], http://pid.geoscience.gov.
au/dataset/ga/131897 (last access: 11 January 2023), 2019.

Wilford, J., Worrall, L., and Minty, B.: Radiometric map of Aus-
tralia provides new insights into uranium prospectivity, Ausgeo
News, 95, 1–4, 2009.

Wilford, J., de Caritat, P., and Bui, E.: Modelling the abundance of
soil calcium carbonate across Australia using geochemical sur-
vey data and environmental predictors, Geoderma, 259, 81–92,
https://doi.org/10.1016/j.geoderma.2015.05.003, 2015.

Wilford, J. R. and Kroll, A.: Complete Radiometric Grid of Aus-
tralia (Radmap) v4 2019 with modelled infill, Geoscience Aus-
tralia, Canberra [data set], http://pid.geoscience.gov.au/dataset/
ga/144413 (last access: 11 January 2023), 2020.

Wilford, J. R., Bierwirth, P. N., and Craig, M. A.: Application of
airborne gamma-ray spectrometry in soil/regolith mapping and
applied geomorphology, AGSO Journal of Australian Geology
and Geophysics, 17, 201–216, 1997.

Wilson, J. and Gallant, J.: Primary topographic attributes, in:
Terrain Analysis: Principles and Applications, edited by: Wil-
son, J. P., and Gallant, J. C., John Wiley & Sons, 51–85,
ISBN 0471321885, 2000.

Zuo, R. G.: Geodata Science-Based Mineral Prospectivity Map-
ping: A Review, Natural Resour. Res., 29, 3415–3424,
https://doi.org/10.1007/s11053-020-09700-9, 2020.

Earth Syst. Sci. Data, 15, 2465–2482, 2023 https://doi.org/10.5194/essd-15-2465-2023

https://doi.org/10.1016/j.minpro.2011.09.014
https://doi.org/10.3133/sir20175118
https://www.soils.org/publications/soils-glossary
https://www.soils.org/publications/soils-glossary
https://doi.org/10.3133/b1278F
https://doi.org/10.1016/j.gca.2004.03.031
https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/
https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/
https://doi.org/10.1016/j.hydromet.2017.10.022
https://doi.org/10.1016/j.geoderma.2010.12.022
http://pid.geoscience.gov.au/dataset/ga/131897
http://pid.geoscience.gov.au/dataset/ga/131897
https://doi.org/10.1016/j.geoderma.2015.05.003
http://pid.geoscience.gov.au/dataset/ga/144413
http://pid.geoscience.gov.au/dataset/ga/144413
https://doi.org/10.1007/s11053-020-09700-9

	Abstract
	Introduction
	Materials and methods
	Li measurement
	Environmental covariates
	Modelling
	Data processing and statistical computing

	Results and discussion
	Descriptive analysis
	Correlation between Li with other measured properties
	Correlation with environmental covariates

	Model evaluation
	Internal evaluation
	Independent validation dataset

	Variable importance analysis
	Li prediction maps
	Study limitations

	Data availability
	Conclusions
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

