Articles | Volume 15, issue 4
https://doi.org/10.5194/essd-15-1655-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1655-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A strontium isoscape of northern Australia
Patrice de Caritat
CORRESPONDING AUTHOR
Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
Anthony Dosseto
Wollongong Isotope Geochronology Laboratory, School of Earth,
Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Florian Dux
Wollongong Isotope Geochronology Laboratory, School of Earth,
Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Related authors
Anthony Dosseto, Florian Dux, Clement Bataille, and Patrice de Caritat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-277, https://doi.org/10.5194/essd-2025-277, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils that are taken up by plants and animals. These ratios vary depending on local geology and are useful for tracing the origins of people, animals, and food. By combining new data from across Australia with global datasets and a machine learning model, we produced a national prediction that supports research in archaeology, ecology, and forensic science.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research, 2, 315–327, https://doi.org/10.5194/ar-2-315-2024, https://doi.org/10.5194/ar-2-315-2024, 2024
Short summary
Short summary
Dust deposition flux was investigated in lutruwita / Tasmania, Australia, between 2016–2021. Results show that the use of direct measurements of aluminium, iron, thorium, and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Anthony Dosseto, Florian Dux, Clement Bataille, and Patrice de Caritat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-277, https://doi.org/10.5194/essd-2025-277, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils that are taken up by plants and animals. These ratios vary depending on local geology and are useful for tracing the origins of people, animals, and food. By combining new data from across Australia with global datasets and a machine learning model, we produced a national prediction that supports research in archaeology, ecology, and forensic science.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research, 2, 315–327, https://doi.org/10.5194/ar-2-315-2024, https://doi.org/10.5194/ar-2-315-2024, 2024
Short summary
Short summary
Dust deposition flux was investigated in lutruwita / Tasmania, Australia, between 2016–2021. Results show that the use of direct measurements of aluminium, iron, thorium, and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Cited articles
Åberg, G.: The use of natural strontium isotopes as tracers in
environmental studies, Wat. Air Soil Poll., 79, 309–322, https://doi.org/10.1007/BF01100444, 1995.
Åberg, G., Jacks, G., and Hamilton, P. J.: Weathering rates and
ratios: an isotopic approach, J. Hydrol., 109, 65–78,
https://doi.org/10.1016/0022-1694(89)90007-3, 1989.
Åberg, G., Wickman, T., and Mutvei, H.: Strontium isotope ratios in
mussel shells as indicators of acidification, Ambio, 24, 265–268, 1995.
Adams, S., Grün, R., McGahan, D., Zhao, J.-X., Feng, Y., Nguyen, A.,
Willmes, M., Quaresimin, M., Lobsey, B., Collard, M., and Westaway, M. C.: A
strontium isoscape of north-east Australia for human provenance and
repatriation, Geoarchaeol., 34, 231–251, https://doi.org/10.1002/gea.21728, 2019.
Ahmad, M. and Scrimgeour, I. R.: Geological framework, chap. 2, in: Geology
and Mineral Resources of the Northern Territory, edited by: Ahmad, M. and
Munson, T. J., Northern Territory Geol. Surv., Special Publication, 5,
2:1–2:16, https://geoscience.nt.gov.au/gemis/ntgsjspui/bitstream/1/81482/1/GNT_Ch02_GeolFrame.pdf (last access: 27 February 2023), 2013.
Andersson, P., Lofvendahl, R., and Åberg, G.: Major element chemistry,
δ2H, δ18O and in a snow
profile across central Sweden, Atmos. Environ., 24A, 2601–2608, https://doi.org/10.1016/0960-1686(90)90138-D, 1990.
Andersson, P. S., Wasserburg, G. J., and Ingri, J.: The sources and
transport of Sr and Nd isotopes in the Baltic Sea, Earth Planet. Sc. Lett.,
113, 459–472, https://doi.org/10.1016/0012-821X(92)90124-E,
1992.
Andersson, P. S., Wasserburg, G. J., Ingri, J., and Stordal, M. C.
Strontium, dissolved and particulate loads in fresh and brackish waters: the
Baltic Sea and Mississippi Delta, Earth Planet. Sc. Lett., 124, 195–210,
https://doi.org/10.1016/0012-821X(94)00062-X, 1994.
Australian Soil Resource Information System (ASRIS): Digital Atlas of
Australian Soils, ASRIS [data set], https://www.asris.csiro.au/themes/Atlas.html (last access: 27 February 2023), 2022a.
Australian Soil Resource Information System (ASRIS): ASRIS Map Viewer Tool,
Landcover Layer, Land Use 2001–2002, http://www.asris.csiro.au/mapping/viewer.htm (last access: 27 February 2023), 2022b.
Bagheri, R., Nadri, A., Raeisi, E., Eggenkamp, H. G. M., Kazemi, G. A., and
Montaseri, A.: Hydrochemical and isotopic (δ18O, δ2H, , δ37Cl and δ81Br)
evidence for the origin of saline formation water in a gas reservoir, Chem.
Geol., 384, 62–75, https://doi.org/10.1016/j.chemgeo.2014.06.017, 2014.
Bastrakov, E. N. and Main, P. T.: Northern Australia Geochemical Survey: a
review of regional soil geochemical patterns, in: Exploring for the Future:
Extended Abstracts, edited by: Czarnota, K., Roach, I., Abbott, S., Haynes,
M., Kositcin, N., Ray, A., and Slatter, E., Geoscience Australia, Canberra,
1–4, https://doi.org/10.11636/134367, 2020.
Bataille, C. P. and Bowen, G. J.: Mapping variations in
bedrock and water for large scale provenance studies, Chem. Geol., 304,
39–52, https://doi.org/10.1016/j.chemgeo.2012.01.028, 2012.
Bataille, C. P., Brennan, S. R., Hartmann, J., Moosdorf, N., Wooller, M. J.,
and Bowen, G. J.: A geostatistical framework for predicting variability in
strontium concentrations and isotope ratios in Alaskan rivers, Chem. Geol.,
389, 1–15, https://doi.org/10.1016/j.chemgeo.2014.08.030,
2014.
Bataille, C. P., von Holstein, I. C. C., Laffoon, J. E., Willmes, M., Liu,
X.-M., and Davies, G. R.: A bioavailable strontium isoscape for Western
Europe: a machine learning approach, PLoS ONE, 13, e0197386, https://doi.org/10.1371/journal.pone.0197386, 2018.
Bataille, C. P., Crowley, B. E., Wooller, M. J., and Bowen, G. J.: Advances
in global bioavailable strontium isoscapes, Palaeogeogr. Palaeocl.
Palaeoecol., 555, 109849, https://doi.org/10.1016/j.palaeo.2020.109849, 2020.
Bathgate, H., Lovett, A., Clarke, J., Ueckermann, H., and Hoogewerff, J.:
The use of ratios, trace elements and biological
profiling for forensic provenancing of soils, Eur. Geoph. Union Gen.
Assembly 2011, 3–8 April 2011, Vienna, Austria, Geophys. Res. Abstr., 13, EGU2011-6592, 2011.
Bennett, R. and Gellatly, D. C.: Rb-Sr age determinations of some rocks from
the West Kimberley Region, Western Australia, Bur. Min. Res. Geol. Geoph.
Record, 1970/20, 14 pp., https://d28rz98at9flks.cloudfront.net/12433/Rec1970_020.pdf
(last access: 27 February 2023), 1970.
Betts, P. G., Giles, D., Lister, G. S., and Frick, L. R.: Evolution of the
Australian lithosphere, Austral. J. Earth Sci., 49, 661–695, https://doi.org/10.1046/j.1440-0952.2002.00948.x, 2002.
Black, L. P.: Tables of Isotopic Ages from the Georgetown Inlier, North
Queensland, Bur. Min. Res. Geol. Geoph. Record, 1973/50, 2 pp., http://pid.geoscience.gov.au/dataset/ga/12874 (last access: 27 February 2023), 1973.
Black, L. P., Shaw, R. D., and Stewart, A. J.: Rb-Sr geochronology of
Proterozoic events in the Arunta inlier, central Australia, Bur. Min. Res.
J. Austral. Geol. Geoph., 8, 129–137, 1983.
Blake, D. H. and Kilgour, B.: Geological Regions of Australia 1:5 000 000
scale, Geosci. Austral., Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/32366 (last access: 27 February 2023), 1998.
Blewett, R. (Ed.): Shaping a Nation – A Geology of Australia, Geosci.
Austral. and ANU E Press, Canberra, https://doi.org/10.22459/SN.08.2012, 2012.
Blum, J. D. and Erel, Y.: A silicate weathering mechanism linking increases
in marine with global glaciation, Nature, 373, 415–418,
https://doi.org/10.1038/373415a0, 1995.
Blum, J. D., Erel, Y., and Brown, K.: ratios of Sierra
Nevada stream waters: implications for relative mineral weathering rates,
Geochim. Cosmochim. Ac., 57, 5019–5025, https://doi.org/10.1016/S0016-7037(05)80014-6, 1994.
Bolonin, A.: Oxygen and carbon isotope composition in primary carbonatites
of the world: data summary and linear trends. Open J. Geol., 9, 424–439,
https://doi.org/10.4236/ojg.2019.98028, 2019.
Braun, J., Dooley, J., Goleby, B., van der Hilst, R., and Klootwijk, C.
(Eds.): Structure and Evolution of the Australian Plate, Am. Geoph. Union,
Geodyn. Series, 26, ISBN 9780875905280, https://doi.org/10.1029/GD026, 1998.
Bullen, T., White, A., Blum, A., Harden, J., and Schulz, M.: Chemical
weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic
and isotopic constraints on the behavior of strontium, Geochim. Cosmochim.
Ac., 61, 291–306, https://doi.org/10.1016/S0016-7037(96)00344-4, 1997.
Bullen, T. D., Blum, A. E., White, A. F., and Schulz, M. S.: A model for the
temporal evolution of of the cation exchange pool in a
simple granitoid weathering system: approach and implications, Eos, 75,
280–281, 1994.
Bureau of Meteorology (BOM): Climate classification maps, http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp?maptype=_tmp_zones#maps (last access: 27 February 2023), 2022a.
Bureau of Meteorology (BOM): Map of Climate Zones of Australia, http://www.bom.gov.au/climate/how/newproducts/images/zones.shtml (last
access: 27 February 2023), 2022b.
Bureau of Meteorology (BOM): Decadal and multi-decadal temperature,
http://www.bom.gov.au/jsp/ncc/climate_averages/decadal-temperature/index.jsp?maptype=1&period=9605 (last access: 27 February 2023), 2022c.
Bureau of Meteorology (BOM): Recent and historical rainfall maps, http://www.bom.gov.au/climate/maps/rainfall/?variable=rainfall&map=totals&period=48month®ion=nat&year=2009&month=11&day=30 (last access: 27 February 2023), 2022d.
Cartwright, I., Weaver, T., and Petrides, B.: Controls on
ratios of groundwater in silicate-dominated aquifers: SE
Murray Basin, Australia, Chem. Geol., 246, 107–123, https://doi.org/10.1016/j.chemgeo.2007.09.006, 2007.
Chadwick, O. A., Derry, L. A., Bern, C. R., and Vitousek, P. M.: Changing
sources of strontium to soils and ecosystems across the Hawaiian Islands,
Chem. Geol., 267, 64–76, https://doi.org/10.1016/j.chemgeo.2009.01.009, 2009.
Christensen, J. N., Dafflon, B., Shiel, A. E., Tokunaga, T. K., Wan, J.,
Faybishenko, B., Dong, W., Williams, K. H., Hobson, C., Brown, S. T., and
Hubbard, S. S.: Using strontium isotopes to evaluate the spatial variation
of groundwater recharge, Sci. Total Environ., 637–638, 672–685, https://doi.org/10.1016/j.scitotenv.2018.05.019, 2018.
Cooper, M., de Caritat, P., Burton, G., Fidler, R., Green, G., House, E.,
Strickland, C., Tang, J., and Wygralak, A.: National Geochemical Survey of
Australia: Field Data, Record, 2010/18, Geosci. Austral., Canberra,
https://doi.org/10.11636/Record.2011.020, 2010.
Daneshvar, N., Azizi, H., Asahara, Y., Tsuboi, M., and Hosseini, M.: Rare
earth elements and Sr isotope ratios of large apatite crystals in Ghareh
Bagh mica mine, NW Iran: tracing for petrogenesis and mineralization,
Minerals, 10, 833, https://doi.org/10.3390/min10090833, 2020.
Dart, R. C., Barovich, K. M., Chittleborough, D. J., and Hill, S. M.:
Calcium in regolith carbonates of central and southern Australia: its source
and implications for the global carbon cycle, Palaeogeogr. Palaeocl.
Palaeoecol., 249, 322–334, https://doi.org/10.1016/j.palaeo.2007.02.005, 2007.
de Almeida, B. S.: Isotopic Characterization as a Tool
for the Designation of Origin and Geographical Indication: Application to
Volcanic Rocks, Soils, Grapes and Wines from Brazil and Italy, Doctoral
Thesis, University Frederic II of Naples, 106 pp., https://doi.org/10.13140/RG.2.2.15861.70882, 2021.
de Caritat, P.: The National Geochemical Survey of Australia: review and
impact. Geochemistry: Exploration, Environment, Analysis, geochem2022-032,
https://doi.org/10.1144/geochem2022-032, 2022.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia: The
Geochemical Atlas of Australia, Record, 2011/20, Geosci. Austral., Canberra,
https://doi.org/10.11636/Record.2011.020, 2011a.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia:
Data Quality Assessment, Record, 2011/21, Geosci. Austral., Canberra,
http://pid.geoscience.gov.au/dataset/ga/71971 (last access: 27 February 2023), 2011b.
de Caritat, P. and Cooper, M.: A continental-scale geochemical atlas for
resource exploration and environmental management: the National Geochemical
Survey of Australia, Geochem. Explo. Env. Anal., 16, 3–13, https://doi.org/10.1144/geochem2014-322, 2016.
de Caritat, P., Kirste, D., Carr, G., and McCulloch, M.: Groundwater in the
Broken Hill region, Australia: recognising interaction with bedrock and
mineralisation using S, Sr and Pb isotopes, Appl. Geochem., 20, 767–787,
https://doi.org/10.1016/j.apgeochem.2004.11.003, 2005.
de Caritat, P., Cooper, M., Lech, M., McPherson, A., and Thun, C.: National
Geochemical Survey of Australia: Sample Preparation Manual, Record, 2009/08,
Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/68657 (last access: 27 February 2023), 2009.
de Caritat, P., Cooper, M., Pappas, W., Thun, C., and Webber, E.: National
Geochemical Survey of Australia: Analytical Methods Manual, Record, 2010/15,
Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/70369 (last access: 27 February 2023), 2010.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern
Australia, Geosci. Austral., Canberra [data set], https://doi.org/10.26186/147473, 2022a.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of inland southeastern Australia, Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, 2022b.
De Deckker, P.: OZ-3 northern Western Australia sampling trip and analysis:
strontium, rubidium and neodymium isotopes, Pangaea [data set], https://doi.org/10.1594/PANGAEA.907689, 2019.
De Deckker, P.: Airborne dust traffic from Australia in modern and Late
Quaternary times, Global Planet. Change, 184, 103056, https://doi.org/10.1016/j.gloplacha.2019.103056, 2020.
De Deckker, P., Munday, C. I., Brocks, J., O'loingsigh, T., Allison, G. E.,
Hope, J., Norman, M., Stuut, J.-B. W., Tapper, N. J., and van der Kaars,
S.: Characterisation of the major dust storm that traversed over eastern
Australia in September 2009; a multidisciplinary approach, Aeol. Res., 15,
133–149, https://doi.org/10.1016/j.aeolia.2014.07.003, 2014.
Denison, R. E., Koepnick, R. B., Burke, W. H., Hetherington, E. A., and
Fletcher, A.: Construction of the Mississippian, Pennsylvanian and Permian
seawater curve, Chem. Geol., 112, 145–167, https://doi.org/10.1016/0009-2541(94)90111-2, 1994a.
Denison, R. E., Koepnick, R. B., Fletcher, A., Howell, M. W., and Callaway,
W. S.: Criteria for the retention of original seawater
in ancient shelf limestones, Chem. Geol., 112, 131–143, https://doi.org/10.1016/0009-2541(94)90110-4, 1994b.
Department of Industry, Science, Energy and Resources (DISER): 2022 Critical
Minerals Strategy, Aust. Gov., Canberra, https://www.industry.gov.au/publications/critical-minerals-strategy-2022,
last access: 27 February 2023, 2022.
Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R.,
Fabani, M. P., Badini, R. G., Inga, M., Ostera, H. A., Cagnoni, M.,
Gallegos, E., Gautier, E., Peral-Garcia, P., Hoogewerff, J., and Wunderlin,
D. A.: Fingerprints for main varieties of Argentinean wines: terroir
differentiation by inorganic, organic, and stable isotopic analyses coupled
to chemometrics, J. Ag. Food Chem., 59, 7854–7865, https://doi.org/10.1021/jf2007419, 2011.
Dogramaci, S. S. and Herczeg, A. L.: Strontium and carbon isotope
constraints on carbonate-solution interactions and inter-aquifer mixing in
groundwaters of the semi-arid Murray Basin, Australia, J. Hydrol., 262,
50–67, https://doi.org/10.1016/S0022-1694(02)00021-5, 2002.
Douglas, G. B., Gray, C. M., Hart, B. T., and Beckett, R.: A strontium
isotopic investigation of the origin of suspended particulate matter (SPM)
in the Murray-Darling River system, Australia, Geochim. Cosmochim. Ac., 59,
3799–3815, https://doi.org/10.1016/0016-7037(95)00266-3, 1995.
Evans, J. A., Montgomery, J., Wildman, G., and Boulton, N.: Spatial
variations in biosphere in Britain, J. Geol. Soc., 167,
1–4, https://doi.org/10.1144/0016-76492009-090, 2010.
Faure, G. and Felder, R. P.: Isotopic composition of strontium and sulfur in
secondary gypsum crystals, Brown Hills, Transantarctic Mountains, J. Geoch.
Explo., 14, 265–270, https://doi.org/10.1016/0375-6742(81)90116-3, 1981.
Flecker, R., de Villiers, S., and Ellam, R. M.: Modelling the effect of
evaporation on the salinity- relationship in modern and
ancient marginal-marine systems: the Mediterranean Messinian Salinity
Crisis, Earth Planet. Sc. Lett., 203, 221–233, https://doi.org/10.1016/S0012-821X(02)00848-8, 2002.
Frei, R. and Frei, K. M.: The geographic distribution of Sr isotopes from
surface waters and soil extracts over the island of Bornholm (Denmark) – A
base for provenance studies in archeology and agriculture, Appl. Geochem.,
38, 147–160, https://doi.org/10.1016/j.apgeochem.2013.09.007,
2013.
Geoscience Australia (GA): Australia's River Basins 1997 – Product User
Guide, Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/42343 (last access: 27 February 2023), 1997.
Geoscience Australia (GA): 9 Second Digital Elevation Model of Australia
Version 3, Geosci. Austral., Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/89580 (last access: 27 February 2023), 2008.
Geoscience Australia (GA): Australian Operating Mines Map 2021 Data, Geosci.
Austral., Canberra [data set], https://doi.org/10.26186/147010 (last access: 27 February 2023), 2022a.
Geoscience Australia: Geoscience Australia Portal: Geochronology and
Isotopes – Isotopes – Rb-Sr Isotope – Points, Australian Government [data
set], https://portal.ga.gov.au/metadata/geochronology-and-isotopes/isotopes/rbsr-isotope-points/4cacd9e8-3340-4c27-99fe-48d404e67ca8
(last access: 27 February 2023), 2022b.
Geoscience Australia: Geochronology and Isotopes Data Portal, https://portal.ga.gov.au/restore/cd686f2d-c87b-41b8-8c4b-ca8af531ae7e, Geoscience Australia [data set],
last access: 27 February 2023.
Gingele, F. X. and De Deckker, P.: Clay mineral, geochemical and
Sr-Nd-isotopic fingerprinting of sediments in the Murray-Darling fluvial
system, southeast Australia, Aust. J. Earth Sci., 52, 965–974, https://doi.org/10.1080/08120090500302301, 2005.
Gosselin, D. C., Harvey, F. E., Frost, C., Stotler, R., and Macfarlane, P.
A.: Strontium isotope geochemistry of groundwater in the central part of the
Dakota (Great Plains) aquifer, USA, Appl. Geochem., 19, 359–377, https://doi.org/10.1016/S0883-2927(03)00132-X, 2004.
Gosz, J. R., Brookins, D. G., and Moore, D. I.: Using strontium isotope ratios
to estimate inputs to ecosystems, Bioscience, 33, 23–30, https://doi.org/10.2307/1309240, 1983.
Graustein, W. C.: ratios measure the sources and flow of
strontium in terrestrial ecosystems, chap. 28, in: Stable Isotopes in
Ecological Research, edited by: Rundel, P. W., Ehleringer, J. R., and Nagy,
K. A., Springer-Verlag, New York, 491–512, https://doi.org/10.1007/978-1-4612-3498-2_28, 1989.
Green, G. P., Bestland, E. A., and Walker, G. S.: Distinguishing sources of
base cations in irrigated and natural soils: evidence from strontium
isotopes, Biogeochem., 68, 199–225, https://doi.org/10.1023/B:BIOG.0000025743.34079.d3, 2004.
Griffin, T. J., Page, R., Sheppard, S., and Tyler, I.: Tectonic implications
of Palaeoproterozoic post-collisional, high-K felsic igneous rocks from the
Kimberley region of northwestern Australia, Precambrian Res., 101,
1–23, https://doi.org/10.1016/S0301-9268(99)00084-4, 2000.
Grobe, M., Machel, H. G., and Heuser, H.: Origin and evolution of saline
groundwater in the Münsterland Cretaceous Basin, Germany: oxygen,
hydrogen, and strontium isotope evidence, J. Geoch. Explo., 69–70, 5–9,
https://doi.org/10.1016/S0375-6742(00)00009-1, 2000.
Gruszczynski, M., Hoffman, A., Krzysztof, M., and Veizer, J.: Seawater
strontium isotopic perturbation at the Permian-Triassic boundary, west
Spitsbergen, and its implications for the interpretation of strontium
isotopic data, Geology, 20, 779–782, https://doi.org/10.1130/0091-7613(1992)020<0779:SSIPAT>2.3.CO;2,
1992.
Hagedorn, B., Cartwright, I., Raveggi, M., and Maas, R.: Rare earth element
and strontium geochemistry of the Australian Victorian Alps drainage system:
Evaluating the dominance of carbonate vs. aluminosilicate weathering under
varying runoff, Chem. Geol., 284, 105–126, https://doi.org/10.1016/j.chemgeo.2011.02.013, 2011.
Harrington, G. A. and Herczeg, A. L.: The importance of silicate weathering
of a sedimentary aquifer in arid Central Australia indicated by very high
ratios, Chem. Geol., 199, 281–292, https://doi.org/10.1016/S0009-2541(03)00128-1, 2003.
Hoogewerff, J. A., Reimann, C., Ueckermann, H., Frei, R., Frei, K. M., van
Aswegen, T., Stirling, C., Reid, M., Clayton, A., Ladenberger, A., and The
GEMAS Project Team: Bioavailable in European soils: a
baseline for provenancing studies, Sci. Total Environ., 672, 1033–1044,
https://doi.org/10.1016/j.scitotenv.2019.03.387, 2019.
Huston, D. L., Maas, R., Cross, A., Hussey, K. J., Mernagh, T. P., Fraser,
G., and Champion, D. C.: The Nolans Bore rare-earth
element-phosphorus-uranium mineral system: geology, origin and
post-depositional modifications, Miner. Deposita, 51, 797–822, https://doi.org/10.1007/s00126-015-0631-y, 2016.
Huston, D. L., Champion, D. C., Czarnota, K., Duan, J., Hutchens, M.,
Paradis, S., Hoggard, M., Ware, B., Gibson, G. M., Doublier, M. P., Kelley,
K., McCafferty, A., Hayward, N., Richards, F., Tessalina, S., and Carr, G.:
Zinc on the edge–isotopic and geophysical evidence that cratonic edges
control world-class shale-hosted zinc-lead deposits, Miner. Deposita, 58, 707–729,
https://doi.org/10.1007/s00126-022-01153-9, 2022.
Isbell, R. F. and National Committee on Soil and Terrain: The Australian
Soil Classification, third edn., CSIRO Publishing, Melbourne, Victoria, 181
pp., https://ebooks.publish.csiro.au/content/australian-soil-classification-9781486314782
(last access: 27 February 2023), 2021.
Jacks, G., Åberg, G., and Hamilton, P. J.: Calcium budgets for
catchments as interpreted by strontium isotopes, Hydrol. Res., 20, 85–96,
https://doi.org/10.2166/nh.1989.0007, 1989.
Jomori, Y., Minami, M., Sakurai-Goto, A., and Ohta, A.: Comparing the
of the bulk and exchangeable fractions in stream
sediments: implications for mapping in provenance
studies, Appl. Geochem., 86, 70–83, https://doi.org/10.1016/j.apgeochem.2017.09.004, 2017.
Jweda, J., Bolge, L., Class, C., and Goldstein, S. L.: High precision
Sr-Nd-Hf-Pb isotopic compositions of USGS reference material BCR-2,
Geostand. Geoanal. Res., 40, 101–115, https://doi.org/10.1111/j.1751-908X.2015.00342.x, 2016.
Kennedy, M. J., Hedin, L. O., and Derry, L. A.: Decoupling of unpolluted
temperate forests from rock nutrient sources revealed by natural
and 84Sr tracer addition, P. Nat. Acad. Sci. USA,
99, 9639–9644, https://doi.org/10.1073/pnas.152045499, 2002.
Knudson, K. J., Webb, E., White, C., and Longstaffe, F. J.: Baseline data
for Andean paleomobility research: a radiogenic strontium isotope study of
modern Peruvian agricultural soils, Archaeol. Anthropol. Sci., 6, 205–219,
https://doi.org/10.1007/s12520-013-0148-1, 2014.
Le Bas, M., Spiro, B., and Yang, X.: Oxygen, carbon and strontium isotope
study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit,
Inner Mongolia, N China, Mineral. Mag., 61, 531–541, https://doi.org/10.1180/minmag.1997.061.407.05, 1997.
Lech, M. E., de Caritat, P., and Mcpherson, A. A.: National Geochemical
Survey of Australia: Field Manual, Record, 2007/08, Geosci. Austral.,
Canberra, http://pid.geoscience.gov.au/dataset/ga/65234 (last
access: 27 February 2023), 2007.
Lugli, F., Cipriani, A., Bruno, L., Ronchetti, F., Cavazzuti, C., and
Benazzi, S.: A strontium isoscape of Italy for provenance studies, Chem.
Geol., 587, 120624, https://doi.org/10.1016/j.chemgeo.2021.120624, 2022.
Lyons, W. B., Tyler, S. W., Gaudette, H. E., and Long, D. T.: The use of
strontium isotopes in determining groundwater mixing and brine fingering in
a playa spring zone, Lake Tyrrell, Australia, J. Hydrol., 167, 225–239,
https://doi.org/10.1016/0022-1694(94)02601-7, 1995.
McArthur, J. M., Howarth, R. J., and Shields, G. A.: Strontium Isotope
Stratigraphy, Chap. 7 in: The Geologic Time Scale, edited by: F. M., Ogg, J.
G., Schmitz, M., and Ogg, G., Elsevier BV, 127–144, https://doi.org/10.1016/B978-0-12-824360-2.00007-3, 2012.
McNutt, R. H.: Strontium Isotopes, in: Environmental Tracers in Subsurface
Hydrology, edited by: Cook P. G. and Herczeg A. L., Springer, Boston, MA,
https://doi.org/10.1007/978-1-4615-4557-6_8,
2000.
McNutt, R. H., Frape, S. K., and Dollar, P.: A strontium, oxygen and
hydrogen isotopic composition of brines, Michigan and Appalachian Basins,
Ontario and Michigan, Appl. Geochem., 2, 495–505, https://doi.org/10.1016/0883-2927(87)90004-7, 1987.
Moffat, I., Rudd, R., Willmes, M., Mortimer, G., Kinsley, L., McMorrow, L., Armstrong, R., Aubert, M., and Grün, R.: Bioavailable soil and rock strontium isotope data from Israel, Earth Syst. Sci. Data, 12, 3641–3652, https://doi.org/10.5194/essd-12-3641-2020, 2020.
Mountjoy, E. W., Qing, H., and McNutt, R. H.: Strontium isotopic composition
of Devonian dolomites, Western Canada Sedimentary Basin: significance of
sources of dolomitizing fluids, Appl. Geochem., 7, 59–75, 1992.
Nebel, O. and Stammeier, J. A.: Strontium Isotopes, in: Encycl. Geochem., Encycl.
Earth Sci. Series, edited by: White W. M., Springer, Cham, https://doi.org/10.1007/978-3-319-39312-4_137, 2018.
Négrel, P. and Grosbois, C.: Changes in chemical and
signature distribution patterns of suspended matter and bed sediments in the
upper Loire river basin (France), Chem. Geol., 156, 231–249, https://doi.org/10.1016/S0009-2541(98)00182-X, 1999.
Négrel, P. and Pauwels, H.: Interaction between different groundwaters
in Brittany catchments (France): characterizing multiple sources through
strontium- and sulphur isotope tracing, Wat. Air Soil Poll., 151, 261–285,
https://doi.org/10.1023/B:WATE.0000009912.04798.b7, 2004.
Oishi, Y.: Is the Sr isotope ratio of mosses a good indicator for Asian dust
(Kosa)?, Landscape Ecol. Eng., 18, 11–17, https://doi.org/10.1007/s11355-021-00476-5, 2021.
Ojiambo, S. B., Lyons, W. B., Welch, K. A., Poreda, R. J., and Johannesson,
K. H.: Strontium isotopes and rare earth elements as tracers of
groundwater-lake water interactions, Lake Naivasha, Kenya, Appl. Geochem.,
18, 1789–1805, https://doi.org/10.1016/S0883-2927(03)00104-5,
2003.
Oliver, L., Harris, N., Bickle, M., Chapman, H., Dise, N., and Horstwood,
M.: Silicate weathering rates decoupled from the ratio
of the dissolved load during Himalayan erosion, Chem. Geol., 201, 119–139,
https://doi.org/10.1016/S0009-2541(03)00236-5, 2003.
Ollier, C. D.: The regolith in Australia, Earth-Sci. Rev., 25, 355–361,
https://doi.org/10.1016/0012-8252(88)90003-7, 1988.
Pacheco-Forés, S. I., Gordon, G. W., and Knudson, K. J.: Expanding
radiogenic strontium isotope baseline data for central Mexican paleomobility
studies, PLoS ONE, 15, e0229687, https://doi.org/10.1371/journal.pone.0229687, 2020.
Page, R. W., Needham, R. S., and Compston, W.: Geochronology and evolution
of the Late-Archaean basement and Proterozoic rocks in the Alligator Rivers
uranium field, Northern Territory, Australia, in: Proc. Int. Uranium Symp.,
Pine Creek Geosyncline (Sydney, New South Wales, 4–8 June 1979), edited by:
Ferguson, J. and Goleby, A. B., Int. Atom. En. Agency, Vienna, Austria,
39–68, https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/629/12629252.pdf, last access: 27 February 2023, 1980.
Pain, C., Gregory, L., Wilson, P., and McKenzie, N.: The Physiographic
Regions of Australia – Explanatory Notes, Australian Collaborative Land
Evaluation Program (ACLEP) and National Committee on Soil and Terrain
(NCST), Canberra, 30 pp., https://publications.csiro.au/rpr/pub?pid=csiro%3AEP113843 (last access: 27 February 2023), 2011.
Palmer, M. R., Helvaci, C., and Fallick, A. E.: Sulphur, sulphate oxygen and
strontium isotope composition of Cenozoic Turkish evaporates, Chem. Geol.,
209, 341–356, https://doi.org/10.1016/j.chemgeo.2004.06.027,
2004.
Plumlee, G.: Basalt, Columbia River, BCR-2, Prelim. U.S. Geol. Surv. Cert.
Anal., https://cpb-us-w2.wpmucdn.com/muse.union.edu/dist/c/690/files/2021/07/usgs-bcr2-1.pdf
(last access: 27 February 2023), 1998.
Price, G. J., Ferguson, K. J., Webb, G. E., Feng, Y. X., Higgins, P.,
Nguyen, A. D., Zhao, J. X., Joannes-Boyau, R., and Louys, J.: Seasonal
migration of marsupial megafauna in Pleistocene Sahul (Australia-New
Guinea), P. Roy. Soc. B-Biol. Sci., 284, 20170785, https://doi.org/10.1098/rspb.2017.0785, 2017.
Probst, A., El Gh'Mari, A., Aubert, D., Fritz, B., and McNutt, R.: Strontium
as a tracer of weathering processes in a silicate catchment polluted by acid
atmospheric inputs, Strengbach, France, Chem. Geol., 170, 203–219,
https://doi.org/10.1016/S0009-2541(99)00248-X, 2000.
Quade, J., Chivas, A. R., and McCulloch, M. T.: Strontium and carbon isotope
tracers and the origins of soil carbonate in South Australia and Victoria,
Palaeogeogr. Palaeocl. Palaeoecol., 113, 103–117, https://doi.org/10.1016/0031-0182(95)00065-T, 1995.
Raymond, O. L., Gallagher, R., Shaw, R., Yeates, A. N., Doutch,
H. F., Palfreyman, W. D., Blake, D. H., and Highet, L.: Surface Geology of
Australia 1 : 2.5 million scale dataset 2012 edition, edited by: Raymond, O. L. and Gallagher, R., Geosci. Austral.,
Canberra [data set], https://doi.org/10.26186/5c636e559cbe1,
2012.
Revel-Rolland, M., De Deckker, P., Delmonte, B., Hesse, P. P., Magee, J. W.,
Basile-Doelsch, I., Grousset, F., and Bosch, D.: Eastern Australia: a
possible source of dust in East Antarctica interglacial ice, Earth Planet.
Sc. Lett., 249, 1–13, https://doi.org/10.1016/j.epsl.2006.06.028, 2006.
Riley, G. H.: Granite ages in the Pine Creek Geosyncline, in: Proc. Int.
Uranium Symp., Pine Creek Geosyncline, 4–8 June 1979, Sydney, New South Wales, edited by: Ferguson, J. and Goleby, A. B., Int. Atom. En. Agency,
Vienna, Austria, 69–72, https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/629/12629252.pdf, last access: 27 February 2023, 1980.
Romaniello, S. J., Field, M. P., Smith, H. B., Gordon, G. W., Kim, M. H.,
and Anbar, A. D.: Fully automated chromatographic purification of Sr and Ca
for isotopic analysis, J. Anal. Atomic Spectro., 30, 1906–1912, https://doi.org/10.1039/C5JA00205B, 2015.
Rotenberg, E., Davis, D. W., Amelin, Y., Ghosh, S., and Bergquist, B. A.:
Determination of the decay-constant of 87Rb by laboratory accumulation
of 87Sr, Geochim. Cosmochim. Ac., 85, 41–57, https://doi.org/10.1016/j.gca.2012.01.016, 2012.
Rundberg, Y. and Smalley, P. C.: High-resolution dating of Cenozoic
sediments from northern North Sea using stratigraphy,
Am. Assoc. Petrol. Geol. Bull., 73, 298–308, https://doi.org/10.1306/703C9B77-1707-11D7-8645000102C1865D, 1989.
Schaltegger, U., Stille, P., Rais, N., Pique, A., and Clauer, N.: Neodymium
and strontium isotopic dating of diagenesis and low-grade metamorphism of
argillaceous sediments, Geochim. Cosmochim. Ac., 58, 1471–1481, https://doi.org/10.1016/0016-7037(94)90550-9, 1994.
Schoneveld, L., Spandler, C., and Hussey, K.: Genesis of the central zone of
the Nolans Bore rare earth element deposit, Northern Territory, Australia,
Contrib. Mineral. Petrol., 170, 11, https://doi.org/10.1007/s00410-015-1168-x, 2015.
Schultz, J. L., Boles, J. R., and Tilton, G. R.: Tracking calcium in the San
Joaquin basin, California: a strontium isotopic study of carbonate cements
at North Coles Levee, Geochim. Cosmochim. Ac., 53, 1991–1999, https://doi.org/10.1016/0016-7037(89)90319-0, 1989.
Shewan, L. G., Armstrong, R. A., and O'Reilly, D.: Baseline bioavailable
strontium isotope values for the investigation of residential mobility and
resource-acquisition strategies in prehistoric Cambodia, Archaeom., 62,
810–826, https://doi.org/10.1111/arcm.12557, 2020.
Shields, G. A.: A normalised seawater strontium isotope curve and the
Neoproterozoic-Cambrian chemical weathering event, eEarth Discuss., 2, 69–84, 2007.
Shin, W.-J., Ryu, J.-S., Kim, R.-H., and Min, J.-S.: First strontium
isotope map of groundwater in South Korea: applications for identifying the
geographical origin, Geosci. J., 25, 173–181, https://doi.org/10.1007/s12303-020-0013-z, 2021.
Simandl, G. J. and Paradis, S.: Vanadium as a critical material: economic
geology with emphasis on market and the main deposit types, Appl. Earth
Sci., 131, 218–236, https://doi.org/10.1080/25726838.2022.2102883, 2022.
Smalley, P. C., Råheim, A., Rundberg, Y., and Johansen, H.:
Strontium-isotope stratigraphy: applications in basin modelling and
reservoir correlation, chap. 3, in: Correlation in Hydrocarbon Exploration,
Norwegian Petrol. Soc., Graham and Trotman, 23–31, https://doi.org/10.1007/978-94-009-1149-9_3, 1989.
Smalley, P. C., Lønøy, A., and Råheim, A.: Spatial
variations in formation water and calcite from the
Ekofisk chalk oil field: implications for reservoir connectivity and fluid
composition, Appl. Geochem., 7, 341–350, https://doi.org/10.1016/0883-2927(92)90024-W, 1992.
Stueber, A. M., Pushkar, P., and Hetherington, E. A.: A strontium isotopic
study of formation waters from the Illinois basin, USA, Appl. Geochem.,
2, 477–494, https://doi.org/10.1016/0883-2927(87)90003-5,
1987.
Sullivan, M. D., Haszeldine, R. S., and Fallick, A. E.: Linear coupling of
carbon and strontium isotopes in Rotliegend Sandstone, North Sea: evidence
for cross-formational fluid flow, Geology, 18, 1215–1218, https://doi.org/10.1130/0091-7613(1990)018<1215:LCOCAS>2.3.CO;2,
1990.
Swart, P. K., Ruiz, J., and Holmes, C. W.: Use of strontium isotopes to
constrain the timing and mode of dolomitization of upper Cenozoic sediments
in a core from San Salvador, Bahamas, Geology, 15, 262–265, https://doi.org/10.1130/0091-7613(1987)15<262:UOSITC>2.0.CO;2,
1987.
Tukey, J. W.: Exploratory Data Analysis, Addison-Wesley Publishing Company,
Reading, MA, 506 pp., 1977.
Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H., Nelson, D. R., and
Pike, G.: Geology and tectonic evolution of the Archean North Pilbara
Terrain, Pilbara Craton, Western Australia, Econ. Geol., 97, 695–732,
https://doi.org/10.2113/gsecongeo.97.4.695, 2002.
Veizer, J.: Strontium isotopes in seawater trough time, Ann. Rev. Earth
Planet. Sci., 17, 141–167, https://doi.org/10.1146/annurev.ea.17.050189.001041, 1989.
Vinciguerra, V., Stevenson, R., Pedneault, K., Poirer, A., Hélie, J.-F., and Widory, D.: Strontium isotope characterization of Wines from the
Quebec (Canada) Terroir, Proc. Earth Planet. Sci., 13, 252–255, https://doi.org/10.1016/j.proeps.2015.07.059, 2015.
Voerkelius, S., Lorenz, G. D., Rummel, S., Quétel, C. R., Heiss, G.,
Baxter, M., Brach-Papa, C., Deters-Itzelsberger, P., Hoelzl, S., Hoogewerff,
J., Ponzevera, E., Bocxstaele, M., and Van Ueckermann, H.: Strontium
isotopic signatures of natural mineral waters, the reference to a simple
geological map and its potential for authentication of food, Food Chem.,
118, 933–940, https://doi.org/10.1016/j.foodchem.2009.04.125,
2010.
Vorster, C., Greeff, L., and Coetzee, P. P.: The determination of
11B/10B and isotope ratios by quadrupole-based
ICP-MS for the fingerprinting of South African wine, South Afric. J. Chem.,
63, 207–214, 2010.
Washburn, E., Nesbitt, J., Ibarra, B., Fehren-Schmitz, L., and Oelze, V. M.:
A strontium isoscape for the Conchucos region of highland Peru and its
application to Andean archaeology, PLOS ONE 16, e0248209, https://doi.org/10.1371/journal.pone.0248209, 2021.
Wei, C.-W., Xu, C., Chakhmouradian, A. R., Brenna, M., Kynicky, J., and
Song, W.-L.: Carbon-strontium isotope decoupling in carbonatites from
Caotan (Qinling, China): implications for the origin of calcite carbonatite
in orogenic settings, J. Petrol., 61, egaa024, https://doi.org/10.1093/petrology/egaa024, 2020.
Wei, X., Wang, S., Ji, H., and Shi, Z.: Strontium isotopes reveal weathering
processes in lateritic covers in southern China with implications for
paleogeographic reconstructions, PLOS ONE, 13, e0191780, https://doi.org/10.1371/journal.pone.0191780, 2018.
Wickman, T. and Jacks, G.: Strontium isotopes in weathering budgeting. In:
Water-Rock Interaction, Proc. 7th Int. Symp. Water-Rock Interaction, 13–18 July 1992, Park
City, Utah, edited by: Kharaka, Y. K. and Maest, A. S.,
Balkema, Rotterdam, 1, 611–614, ISBN 9054100753, 1992.
Wilford, J.: A weathering intensity index for the Australian continent using
airborne gamma-ray spectrometry and digital terrain analysis, Geoderma,
183–184, 124–142, https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.
Willmes, M., McMorrow, L., Kinsley, L., Armstrong, R., Aubert, M., Eggins, S., Falguères, C., Maureille, B., Moffat, I., and Grün, R.: The IRHUM (Isotopic Reconstruction of Human Migration) database – bioavailable strontium isotope ratios for geochemical fingerprinting in France, Earth Syst. Sci. Data, 6, 117–122, https://doi.org/10.5194/essd-6-117-2014, 2014.
Willmes, M., Bataille, C. P., James, H. F., Moffat, I., McMorrow, L.,
Kinsley, L., Armstrong, R. A., Eggins, S., and Grün, R.: Mapping of
bioavailable strontium isotope ratios in France for archaeological
provenance studies, Appl. Geochem., 90, 75–86, https://doi.org/10.1016/j.apgeochem.2017.12.025, 2018.
Withnall, I. W., Hutton, L. J., Armit, R. J., Betts, P. G., Blewett, R. S.,
Champion, D. C., and Jell, P. A.: North Australian Craton. In: Geology of
Queensland, edited by: Jell, P. A., Geol. Surv. Queensland, Brisbane,
23–112, ISBN 9781921489761, https://www.business.qld.gov.au/industries/mining-energy-water/resources/geoscience-information/reports-news/geology-queensland-book-map
(last access: 27 February 2023), 2013.
Wyborn, L. A. I., Heinrich, C. A., and Jaques, A. L.: Australian Proterozoic
mineral systems: essential ingredients and mappable criteria, Austral. Inst.
Mining Metall. (AusIMM) Ann. Conf. Proc., 5–9
August 1994, Darwin, Northern Territory, 109–115, https://ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-f8a0-7506-e044-00144fdd4fa6
(last access: 27 February 2023), 1994.
Yang, C., Telmer, K., and Veizer, J.: Chemical dynamics of the “St.
Lawrence” riverine system: δD , δ18O ,
δ13CDIC, δ34Ssulfate, and dissolved
, Geochim. Cosmochim. Ac., 60, 851–866, https://doi.org/10.1016/0016-7037(95)00445-9, 1996.
Zhao, Z., Leach, D. L., Wei, J., Liang, S., and Pfaff, K.: Origin of the
Xitieshan Pb-Zn deposit, Qinghai, China: evidence from petrography and
S-C-O-Sr isotope geochemistry, Ore Geol. Rev., 139A, 104429, https://doi.org/10.1016/j.oregeorev.2021.104429, 2021.
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new...
Altmetrics
Final-revised paper
Preprint