Articles | Volume 15, issue 4
https://doi.org/10.5194/essd-15-1655-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1655-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A strontium isoscape of northern Australia
Patrice de Caritat
CORRESPONDING AUTHOR
Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
Anthony Dosseto
Wollongong Isotope Geochronology Laboratory, School of Earth,
Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Florian Dux
Wollongong Isotope Geochronology Laboratory, School of Earth,
Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
Related authors
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-352, https://doi.org/10.5194/essd-2024-352, 2024
Preprint under review for ESSD
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce northern-hemisphere bias in future global strontium isotope models. Other potential applications of the new data include mineralisation, hydrology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-21, https://doi.org/10.5194/ar-2024-21, 2024
Preprint under review for AR
Short summary
Short summary
Dust deposition flux was investigated in lutruwita/Tasmania, Australia, between 2016 and 2021. Results show that the use of direct measurement of aluminium, iron, thorium and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-352, https://doi.org/10.5194/essd-2024-352, 2024
Preprint under review for ESSD
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce northern-hemisphere bias in future global strontium isotope models. Other potential applications of the new data include mineralisation, hydrology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-21, https://doi.org/10.5194/ar-2024-21, 2024
Preprint under review for AR
Short summary
Short summary
Dust deposition flux was investigated in lutruwita/Tasmania, Australia, between 2016 and 2021. Results show that the use of direct measurement of aluminium, iron, thorium and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Holly L. Taylor, Isaac J. Kell Duivestein, Juraj Farkas, Martin Dietzel, and Anthony Dosseto
Clim. Past, 15, 635–646, https://doi.org/10.5194/cp-15-635-2019, https://doi.org/10.5194/cp-15-635-2019, 2019
Short summary
Short summary
Approximately 600 million years ago, major environmental changes set the course for the emergence of animal life. Lithium (Li) isotopes in calcium carbonates can be used as a proxy to understand changes in the palaeo-environment. We conducted experiments that allow us to use Li isotopes in dolostones to extend our understanding of palaeo-environmental changes deeper into the geological record, where other calcium carbonates archives are not present.
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019, https://doi.org/10.5194/cp-15-389-2019, 2019
Anthony Dosseto, Holly L. Taylor, Juraj Farkaš, Grant M. Cox, Andrew Kingston, Andrew Lorrey, Alexander J. Corrick, and Bing Shen
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-119, https://doi.org/10.5194/cp-2018-119, 2018
Revised manuscript not accepted
Short summary
Short summary
Life experienced a big boost in complexity ~ 600 million years ago. This step forward in evolution happened not long after the largest glaciations experienced in Earth's history. This study shows that following the last major
Snowball Earth, the planet's surface rapidly recovered and the first animals emerged in an environment maybe not that different from our modern oceans.
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
MUDA: dynamic geophysical and geochemical MUltiparametric DAtabase
A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania (Italy): statistical combination of different predictions for spatial estimation of thickness
The China Active Faults Database (CAFD) and its web system
A regolith lead isoscape of Australia
High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen
Integration by design: Driving mineral system knowledge using multi modal, collocated, scale-consistent characterization
High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia
A global zircon U–Th–Pb geochronological database
Subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy)
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
IESDB – the Iberian Evaporite Structure Database
Spectral Library of European Pegmatites, Pegmatite Minerals and Pegmatite Host-Rocks – the GREENPEG project database
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Digital soil mapping of lithium in Australia
A multi-dimensional dataset of Ordovician to Silurian graptolite specimens for virtual examination, global correlation, and shale gas exploration
Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks
A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy
Pan-Arctic soil element bioavailability estimations
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
OCTOPUS database (v.2)
A national landslide inventory for Denmark
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and MUDA working group
Earth Syst. Sci. Data, 16, 4843–4867, https://doi.org/10.5194/essd-16-4843-2024, https://doi.org/10.5194/essd-16-4843-2024, 2024
Short summary
Short summary
MUDA (geophysical and geochemical MUltiparametric DAtabase) is a new infrastructure of the National Institute of Geophysics and Volcanology serving geophysical and geochemical multiparametric data. MUDA collects information from different sensors, such as seismometers, accelerometers, hydrogeochemical sensors, meteorological stations and sensors for the flux of carbon dioxide and radon gas, with the aim of making correlations between seismic phenomena and variations in environmental parameters.
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024, https://doi.org/10.5194/essd-16-4817-2024, 2024
Short summary
Short summary
In this study, we present the largest publicly available landslide dataset, Globally Distributed Coseismic Landslide Dataset (GDCLD), which includes multi-sensor high-resolution images from various locations around the world. We test GDCLD with seven advanced algorithms and show that it is effective in achieving reliable landslide mapping across different triggers and environments, with great potential in enhancing emergency response and disaster management.
Pooria Ebrahimi, Fabio Matano, Vincenzo Amato, Raffaele Mattera, and Germana Scepi
Earth Syst. Sci. Data, 16, 4161–4188, https://doi.org/10.5194/essd-16-4161-2024, https://doi.org/10.5194/essd-16-4161-2024, 2024
Short summary
Short summary
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly influence landscape evolution, hydrology, erosion, and slope stability processes. Accurate mapping of the spatial-thickness variations of these fallout pyroclastic deposits over large hillslope areas remains a knowledge gap. We attempt to bridge this gap by applying statistical techniques to a field-based thickness measurement dataset of fallout pyroclastic deposits.
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024, https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Short summary
This study presents a national-scale database (1:4000 000) of active faults in China and its adjacent regions in tandem with an associated web-based query system. This database integrates regional-scale studies and surveys conducted over the past 2 decades (at reference scales from 1:250 000 to 1:50 000). Our system hosts this nation-scale database accessible through a Web Geographic Information System (GIS) application.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
James Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-464, https://doi.org/10.5194/essd-2023-464, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Cloncurry METAL aims to shift the “Big Data” paradigm in mineral system science by developing a quantitative, fully integrated, multi-modal, scale-consistent methodology for system characterisation. The data comprises collocated petrophysical-mineralogical-geochemical-structural-metasomatic characterisation of 23 deposits from a highly complex mineral system. This approach allows translation of mineral system processes into physics, providing a framework for smarter geophysics-based exploration.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Yujing Wu, Xianjun Fang, and Jianqing Ji
Earth Syst. Sci. Data, 15, 5171–5181, https://doi.org/10.5194/essd-15-5171-2023, https://doi.org/10.5194/essd-15-5171-2023, 2023
Short summary
Short summary
We introduce a zircon U‒Th‒Pb chronological database of the global continental crust. This database provides comprehensive research materials for Earth system science in deep time and space due to its large amount of data (~2 million records), long time span (4.4 billion years), global sampling range, comprehensive zircon samples, and various dating instruments.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Kristen Chiama, Morgan Gabor, Isabella Lupini, Randolph Rutledge, Julia Ann Nord, Shuang Zhang, Asmaa Boujibar, Emma S. Bullock, Michael J. Walter, Kerstin Lehnert, Frank Spear, Shaunna M. Morrison, and Robert M. Hazen
Earth Syst. Sci. Data, 15, 4235–4259, https://doi.org/10.5194/essd-15-4235-2023, https://doi.org/10.5194/essd-15-4235-2023, 2023
Short summary
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Joana Cardoso-Fernandes, Douglas Santos, Cátia Rodrigues de Almeida, Alexandre Lima, Ana C. Teodoro, and GREENPEG project team
Earth Syst. Sci. Data, 15, 3111–3129, https://doi.org/10.5194/essd-15-3111-2023, https://doi.org/10.5194/essd-15-3111-2023, 2023
Short summary
Short summary
GREENPEG aims to develop tools for pegmatite exploration and to enhance European databases, adding new data on pegmatite properties, such as the spectral signature. Samples comprise pegmatites and wall rocks from Austria, Ireland, Norway, Portugal, and Spain. A detailed description of the spectral database is presented as well as reflectance spectra, photographs, and absorption features. Its European scale comprises pegmatites with distinct characteristics, providing a reference for exploration.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Hong-He Xu, Zhi-Bin Niu, Yan-Sen Chen, Xuan Ma, Xiao-Jing Tong, Yi-Tong Sun, Xiao-Yan Dong, Dan-Ni Fan, Shuang-Shuang Song, Yan-Yan Zhu, Ning Yang, and Qing Xia
Earth Syst. Sci. Data, 15, 2213–2221, https://doi.org/10.5194/essd-15-2213-2023, https://doi.org/10.5194/essd-15-2213-2023, 2023
Short summary
Short summary
A multi-dimensional and integrated dataset of fossil specimens is described. The dataset potentially contributes to a range of scientific activities and provides easy access to and virtual examination of fossil specimens in a convenient and low-cost way. It will greatly benefit paleontology in research, teaching, and science communication.
Samuel W. Scott, Léa Lévy, Cari Covell, Hjalti Franzson, Benoit Gibert, Ágúst Valfells, Juliet Newson, Julia Frolova, Egill Júlíusson, and María Sigríður Guðjónsdóttir
Earth Syst. Sci. Data, 15, 1165–1195, https://doi.org/10.5194/essd-15-1165-2023, https://doi.org/10.5194/essd-15-1165-2023, 2023
Short summary
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical, and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, these data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Cited articles
Åberg, G.: The use of natural strontium isotopes as tracers in
environmental studies, Wat. Air Soil Poll., 79, 309–322, https://doi.org/10.1007/BF01100444, 1995.
Åberg, G., Jacks, G., and Hamilton, P. J.: Weathering rates and
ratios: an isotopic approach, J. Hydrol., 109, 65–78,
https://doi.org/10.1016/0022-1694(89)90007-3, 1989.
Åberg, G., Wickman, T., and Mutvei, H.: Strontium isotope ratios in
mussel shells as indicators of acidification, Ambio, 24, 265–268, 1995.
Adams, S., Grün, R., McGahan, D., Zhao, J.-X., Feng, Y., Nguyen, A.,
Willmes, M., Quaresimin, M., Lobsey, B., Collard, M., and Westaway, M. C.: A
strontium isoscape of north-east Australia for human provenance and
repatriation, Geoarchaeol., 34, 231–251, https://doi.org/10.1002/gea.21728, 2019.
Ahmad, M. and Scrimgeour, I. R.: Geological framework, chap. 2, in: Geology
and Mineral Resources of the Northern Territory, edited by: Ahmad, M. and
Munson, T. J., Northern Territory Geol. Surv., Special Publication, 5,
2:1–2:16, https://geoscience.nt.gov.au/gemis/ntgsjspui/bitstream/1/81482/1/GNT_Ch02_GeolFrame.pdf (last access: 27 February 2023), 2013.
Andersson, P., Lofvendahl, R., and Åberg, G.: Major element chemistry,
δ2H, δ18O and in a snow
profile across central Sweden, Atmos. Environ., 24A, 2601–2608, https://doi.org/10.1016/0960-1686(90)90138-D, 1990.
Andersson, P. S., Wasserburg, G. J., and Ingri, J.: The sources and
transport of Sr and Nd isotopes in the Baltic Sea, Earth Planet. Sc. Lett.,
113, 459–472, https://doi.org/10.1016/0012-821X(92)90124-E,
1992.
Andersson, P. S., Wasserburg, G. J., Ingri, J., and Stordal, M. C.
Strontium, dissolved and particulate loads in fresh and brackish waters: the
Baltic Sea and Mississippi Delta, Earth Planet. Sc. Lett., 124, 195–210,
https://doi.org/10.1016/0012-821X(94)00062-X, 1994.
Australian Soil Resource Information System (ASRIS): Digital Atlas of
Australian Soils, ASRIS [data set], https://www.asris.csiro.au/themes/Atlas.html (last access: 27 February 2023), 2022a.
Australian Soil Resource Information System (ASRIS): ASRIS Map Viewer Tool,
Landcover Layer, Land Use 2001–2002, http://www.asris.csiro.au/mapping/viewer.htm (last access: 27 February 2023), 2022b.
Bagheri, R., Nadri, A., Raeisi, E., Eggenkamp, H. G. M., Kazemi, G. A., and
Montaseri, A.: Hydrochemical and isotopic (δ18O, δ2H, , δ37Cl and δ81Br)
evidence for the origin of saline formation water in a gas reservoir, Chem.
Geol., 384, 62–75, https://doi.org/10.1016/j.chemgeo.2014.06.017, 2014.
Bastrakov, E. N. and Main, P. T.: Northern Australia Geochemical Survey: a
review of regional soil geochemical patterns, in: Exploring for the Future:
Extended Abstracts, edited by: Czarnota, K., Roach, I., Abbott, S., Haynes,
M., Kositcin, N., Ray, A., and Slatter, E., Geoscience Australia, Canberra,
1–4, https://doi.org/10.11636/134367, 2020.
Bataille, C. P. and Bowen, G. J.: Mapping variations in
bedrock and water for large scale provenance studies, Chem. Geol., 304,
39–52, https://doi.org/10.1016/j.chemgeo.2012.01.028, 2012.
Bataille, C. P., Brennan, S. R., Hartmann, J., Moosdorf, N., Wooller, M. J.,
and Bowen, G. J.: A geostatistical framework for predicting variability in
strontium concentrations and isotope ratios in Alaskan rivers, Chem. Geol.,
389, 1–15, https://doi.org/10.1016/j.chemgeo.2014.08.030,
2014.
Bataille, C. P., von Holstein, I. C. C., Laffoon, J. E., Willmes, M., Liu,
X.-M., and Davies, G. R.: A bioavailable strontium isoscape for Western
Europe: a machine learning approach, PLoS ONE, 13, e0197386, https://doi.org/10.1371/journal.pone.0197386, 2018.
Bataille, C. P., Crowley, B. E., Wooller, M. J., and Bowen, G. J.: Advances
in global bioavailable strontium isoscapes, Palaeogeogr. Palaeocl.
Palaeoecol., 555, 109849, https://doi.org/10.1016/j.palaeo.2020.109849, 2020.
Bathgate, H., Lovett, A., Clarke, J., Ueckermann, H., and Hoogewerff, J.:
The use of ratios, trace elements and biological
profiling for forensic provenancing of soils, Eur. Geoph. Union Gen.
Assembly 2011, 3–8 April 2011, Vienna, Austria, Geophys. Res. Abstr., 13, EGU2011-6592, 2011.
Bennett, R. and Gellatly, D. C.: Rb-Sr age determinations of some rocks from
the West Kimberley Region, Western Australia, Bur. Min. Res. Geol. Geoph.
Record, 1970/20, 14 pp., https://d28rz98at9flks.cloudfront.net/12433/Rec1970_020.pdf
(last access: 27 February 2023), 1970.
Betts, P. G., Giles, D., Lister, G. S., and Frick, L. R.: Evolution of the
Australian lithosphere, Austral. J. Earth Sci., 49, 661–695, https://doi.org/10.1046/j.1440-0952.2002.00948.x, 2002.
Black, L. P.: Tables of Isotopic Ages from the Georgetown Inlier, North
Queensland, Bur. Min. Res. Geol. Geoph. Record, 1973/50, 2 pp., http://pid.geoscience.gov.au/dataset/ga/12874 (last access: 27 February 2023), 1973.
Black, L. P., Shaw, R. D., and Stewart, A. J.: Rb-Sr geochronology of
Proterozoic events in the Arunta inlier, central Australia, Bur. Min. Res.
J. Austral. Geol. Geoph., 8, 129–137, 1983.
Blake, D. H. and Kilgour, B.: Geological Regions of Australia 1:5 000 000
scale, Geosci. Austral., Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/32366 (last access: 27 February 2023), 1998.
Blewett, R. (Ed.): Shaping a Nation – A Geology of Australia, Geosci.
Austral. and ANU E Press, Canberra, https://doi.org/10.22459/SN.08.2012, 2012.
Blum, J. D. and Erel, Y.: A silicate weathering mechanism linking increases
in marine with global glaciation, Nature, 373, 415–418,
https://doi.org/10.1038/373415a0, 1995.
Blum, J. D., Erel, Y., and Brown, K.: ratios of Sierra
Nevada stream waters: implications for relative mineral weathering rates,
Geochim. Cosmochim. Ac., 57, 5019–5025, https://doi.org/10.1016/S0016-7037(05)80014-6, 1994.
Bolonin, A.: Oxygen and carbon isotope composition in primary carbonatites
of the world: data summary and linear trends. Open J. Geol., 9, 424–439,
https://doi.org/10.4236/ojg.2019.98028, 2019.
Braun, J., Dooley, J., Goleby, B., van der Hilst, R., and Klootwijk, C.
(Eds.): Structure and Evolution of the Australian Plate, Am. Geoph. Union,
Geodyn. Series, 26, ISBN 9780875905280, https://doi.org/10.1029/GD026, 1998.
Bullen, T., White, A., Blum, A., Harden, J., and Schulz, M.: Chemical
weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic
and isotopic constraints on the behavior of strontium, Geochim. Cosmochim.
Ac., 61, 291–306, https://doi.org/10.1016/S0016-7037(96)00344-4, 1997.
Bullen, T. D., Blum, A. E., White, A. F., and Schulz, M. S.: A model for the
temporal evolution of of the cation exchange pool in a
simple granitoid weathering system: approach and implications, Eos, 75,
280–281, 1994.
Bureau of Meteorology (BOM): Climate classification maps, http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp?maptype=_tmp_zones#maps (last access: 27 February 2023), 2022a.
Bureau of Meteorology (BOM): Map of Climate Zones of Australia, http://www.bom.gov.au/climate/how/newproducts/images/zones.shtml (last
access: 27 February 2023), 2022b.
Bureau of Meteorology (BOM): Decadal and multi-decadal temperature,
http://www.bom.gov.au/jsp/ncc/climate_averages/decadal-temperature/index.jsp?maptype=1&period=9605 (last access: 27 February 2023), 2022c.
Bureau of Meteorology (BOM): Recent and historical rainfall maps, http://www.bom.gov.au/climate/maps/rainfall/?variable=rainfall&map=totals&period=48month®ion=nat&year=2009&month=11&day=30 (last access: 27 February 2023), 2022d.
Cartwright, I., Weaver, T., and Petrides, B.: Controls on
ratios of groundwater in silicate-dominated aquifers: SE
Murray Basin, Australia, Chem. Geol., 246, 107–123, https://doi.org/10.1016/j.chemgeo.2007.09.006, 2007.
Chadwick, O. A., Derry, L. A., Bern, C. R., and Vitousek, P. M.: Changing
sources of strontium to soils and ecosystems across the Hawaiian Islands,
Chem. Geol., 267, 64–76, https://doi.org/10.1016/j.chemgeo.2009.01.009, 2009.
Christensen, J. N., Dafflon, B., Shiel, A. E., Tokunaga, T. K., Wan, J.,
Faybishenko, B., Dong, W., Williams, K. H., Hobson, C., Brown, S. T., and
Hubbard, S. S.: Using strontium isotopes to evaluate the spatial variation
of groundwater recharge, Sci. Total Environ., 637–638, 672–685, https://doi.org/10.1016/j.scitotenv.2018.05.019, 2018.
Cooper, M., de Caritat, P., Burton, G., Fidler, R., Green, G., House, E.,
Strickland, C., Tang, J., and Wygralak, A.: National Geochemical Survey of
Australia: Field Data, Record, 2010/18, Geosci. Austral., Canberra,
https://doi.org/10.11636/Record.2011.020, 2010.
Daneshvar, N., Azizi, H., Asahara, Y., Tsuboi, M., and Hosseini, M.: Rare
earth elements and Sr isotope ratios of large apatite crystals in Ghareh
Bagh mica mine, NW Iran: tracing for petrogenesis and mineralization,
Minerals, 10, 833, https://doi.org/10.3390/min10090833, 2020.
Dart, R. C., Barovich, K. M., Chittleborough, D. J., and Hill, S. M.:
Calcium in regolith carbonates of central and southern Australia: its source
and implications for the global carbon cycle, Palaeogeogr. Palaeocl.
Palaeoecol., 249, 322–334, https://doi.org/10.1016/j.palaeo.2007.02.005, 2007.
de Almeida, B. S.: Isotopic Characterization as a Tool
for the Designation of Origin and Geographical Indication: Application to
Volcanic Rocks, Soils, Grapes and Wines from Brazil and Italy, Doctoral
Thesis, University Frederic II of Naples, 106 pp., https://doi.org/10.13140/RG.2.2.15861.70882, 2021.
de Caritat, P.: The National Geochemical Survey of Australia: review and
impact. Geochemistry: Exploration, Environment, Analysis, geochem2022-032,
https://doi.org/10.1144/geochem2022-032, 2022.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia: The
Geochemical Atlas of Australia, Record, 2011/20, Geosci. Austral., Canberra,
https://doi.org/10.11636/Record.2011.020, 2011a.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia:
Data Quality Assessment, Record, 2011/21, Geosci. Austral., Canberra,
http://pid.geoscience.gov.au/dataset/ga/71971 (last access: 27 February 2023), 2011b.
de Caritat, P. and Cooper, M.: A continental-scale geochemical atlas for
resource exploration and environmental management: the National Geochemical
Survey of Australia, Geochem. Explo. Env. Anal., 16, 3–13, https://doi.org/10.1144/geochem2014-322, 2016.
de Caritat, P., Kirste, D., Carr, G., and McCulloch, M.: Groundwater in the
Broken Hill region, Australia: recognising interaction with bedrock and
mineralisation using S, Sr and Pb isotopes, Appl. Geochem., 20, 767–787,
https://doi.org/10.1016/j.apgeochem.2004.11.003, 2005.
de Caritat, P., Cooper, M., Lech, M., McPherson, A., and Thun, C.: National
Geochemical Survey of Australia: Sample Preparation Manual, Record, 2009/08,
Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/68657 (last access: 27 February 2023), 2009.
de Caritat, P., Cooper, M., Pappas, W., Thun, C., and Webber, E.: National
Geochemical Survey of Australia: Analytical Methods Manual, Record, 2010/15,
Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/70369 (last access: 27 February 2023), 2010.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of northern
Australia, Geosci. Austral., Canberra [data set], https://doi.org/10.26186/147473, 2022a.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of inland southeastern Australia, Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, 2022b.
De Deckker, P.: OZ-3 northern Western Australia sampling trip and analysis:
strontium, rubidium and neodymium isotopes, Pangaea [data set], https://doi.org/10.1594/PANGAEA.907689, 2019.
De Deckker, P.: Airborne dust traffic from Australia in modern and Late
Quaternary times, Global Planet. Change, 184, 103056, https://doi.org/10.1016/j.gloplacha.2019.103056, 2020.
De Deckker, P., Munday, C. I., Brocks, J., O'loingsigh, T., Allison, G. E.,
Hope, J., Norman, M., Stuut, J.-B. W., Tapper, N. J., and van der Kaars,
S.: Characterisation of the major dust storm that traversed over eastern
Australia in September 2009; a multidisciplinary approach, Aeol. Res., 15,
133–149, https://doi.org/10.1016/j.aeolia.2014.07.003, 2014.
Denison, R. E., Koepnick, R. B., Burke, W. H., Hetherington, E. A., and
Fletcher, A.: Construction of the Mississippian, Pennsylvanian and Permian
seawater curve, Chem. Geol., 112, 145–167, https://doi.org/10.1016/0009-2541(94)90111-2, 1994a.
Denison, R. E., Koepnick, R. B., Fletcher, A., Howell, M. W., and Callaway,
W. S.: Criteria for the retention of original seawater
in ancient shelf limestones, Chem. Geol., 112, 131–143, https://doi.org/10.1016/0009-2541(94)90110-4, 1994b.
Department of Industry, Science, Energy and Resources (DISER): 2022 Critical
Minerals Strategy, Aust. Gov., Canberra, https://www.industry.gov.au/publications/critical-minerals-strategy-2022,
last access: 27 February 2023, 2022.
Di Paola-Naranjo, R. D., Baroni, M. V., Podio, N. S., Rubinstein, H. R.,
Fabani, M. P., Badini, R. G., Inga, M., Ostera, H. A., Cagnoni, M.,
Gallegos, E., Gautier, E., Peral-Garcia, P., Hoogewerff, J., and Wunderlin,
D. A.: Fingerprints for main varieties of Argentinean wines: terroir
differentiation by inorganic, organic, and stable isotopic analyses coupled
to chemometrics, J. Ag. Food Chem., 59, 7854–7865, https://doi.org/10.1021/jf2007419, 2011.
Dogramaci, S. S. and Herczeg, A. L.: Strontium and carbon isotope
constraints on carbonate-solution interactions and inter-aquifer mixing in
groundwaters of the semi-arid Murray Basin, Australia, J. Hydrol., 262,
50–67, https://doi.org/10.1016/S0022-1694(02)00021-5, 2002.
Douglas, G. B., Gray, C. M., Hart, B. T., and Beckett, R.: A strontium
isotopic investigation of the origin of suspended particulate matter (SPM)
in the Murray-Darling River system, Australia, Geochim. Cosmochim. Ac., 59,
3799–3815, https://doi.org/10.1016/0016-7037(95)00266-3, 1995.
Evans, J. A., Montgomery, J., Wildman, G., and Boulton, N.: Spatial
variations in biosphere in Britain, J. Geol. Soc., 167,
1–4, https://doi.org/10.1144/0016-76492009-090, 2010.
Faure, G. and Felder, R. P.: Isotopic composition of strontium and sulfur in
secondary gypsum crystals, Brown Hills, Transantarctic Mountains, J. Geoch.
Explo., 14, 265–270, https://doi.org/10.1016/0375-6742(81)90116-3, 1981.
Flecker, R., de Villiers, S., and Ellam, R. M.: Modelling the effect of
evaporation on the salinity- relationship in modern and
ancient marginal-marine systems: the Mediterranean Messinian Salinity
Crisis, Earth Planet. Sc. Lett., 203, 221–233, https://doi.org/10.1016/S0012-821X(02)00848-8, 2002.
Frei, R. and Frei, K. M.: The geographic distribution of Sr isotopes from
surface waters and soil extracts over the island of Bornholm (Denmark) – A
base for provenance studies in archeology and agriculture, Appl. Geochem.,
38, 147–160, https://doi.org/10.1016/j.apgeochem.2013.09.007,
2013.
Geoscience Australia (GA): Australia's River Basins 1997 – Product User
Guide, Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/42343 (last access: 27 February 2023), 1997.
Geoscience Australia (GA): 9 Second Digital Elevation Model of Australia
Version 3, Geosci. Austral., Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/89580 (last access: 27 February 2023), 2008.
Geoscience Australia (GA): Australian Operating Mines Map 2021 Data, Geosci.
Austral., Canberra [data set], https://doi.org/10.26186/147010 (last access: 27 February 2023), 2022a.
Geoscience Australia: Geoscience Australia Portal: Geochronology and
Isotopes – Isotopes – Rb-Sr Isotope – Points, Australian Government [data
set], https://portal.ga.gov.au/metadata/geochronology-and-isotopes/isotopes/rbsr-isotope-points/4cacd9e8-3340-4c27-99fe-48d404e67ca8
(last access: 27 February 2023), 2022b.
Geoscience Australia: Geochronology and Isotopes Data Portal, https://portal.ga.gov.au/restore/cd686f2d-c87b-41b8-8c4b-ca8af531ae7e, Geoscience Australia [data set],
last access: 27 February 2023.
Gingele, F. X. and De Deckker, P.: Clay mineral, geochemical and
Sr-Nd-isotopic fingerprinting of sediments in the Murray-Darling fluvial
system, southeast Australia, Aust. J. Earth Sci., 52, 965–974, https://doi.org/10.1080/08120090500302301, 2005.
Gosselin, D. C., Harvey, F. E., Frost, C., Stotler, R., and Macfarlane, P.
A.: Strontium isotope geochemistry of groundwater in the central part of the
Dakota (Great Plains) aquifer, USA, Appl. Geochem., 19, 359–377, https://doi.org/10.1016/S0883-2927(03)00132-X, 2004.
Gosz, J. R., Brookins, D. G., and Moore, D. I.: Using strontium isotope ratios
to estimate inputs to ecosystems, Bioscience, 33, 23–30, https://doi.org/10.2307/1309240, 1983.
Graustein, W. C.: ratios measure the sources and flow of
strontium in terrestrial ecosystems, chap. 28, in: Stable Isotopes in
Ecological Research, edited by: Rundel, P. W., Ehleringer, J. R., and Nagy,
K. A., Springer-Verlag, New York, 491–512, https://doi.org/10.1007/978-1-4612-3498-2_28, 1989.
Green, G. P., Bestland, E. A., and Walker, G. S.: Distinguishing sources of
base cations in irrigated and natural soils: evidence from strontium
isotopes, Biogeochem., 68, 199–225, https://doi.org/10.1023/B:BIOG.0000025743.34079.d3, 2004.
Griffin, T. J., Page, R., Sheppard, S., and Tyler, I.: Tectonic implications
of Palaeoproterozoic post-collisional, high-K felsic igneous rocks from the
Kimberley region of northwestern Australia, Precambrian Res., 101,
1–23, https://doi.org/10.1016/S0301-9268(99)00084-4, 2000.
Grobe, M., Machel, H. G., and Heuser, H.: Origin and evolution of saline
groundwater in the Münsterland Cretaceous Basin, Germany: oxygen,
hydrogen, and strontium isotope evidence, J. Geoch. Explo., 69–70, 5–9,
https://doi.org/10.1016/S0375-6742(00)00009-1, 2000.
Gruszczynski, M., Hoffman, A., Krzysztof, M., and Veizer, J.: Seawater
strontium isotopic perturbation at the Permian-Triassic boundary, west
Spitsbergen, and its implications for the interpretation of strontium
isotopic data, Geology, 20, 779–782, https://doi.org/10.1130/0091-7613(1992)020<0779:SSIPAT>2.3.CO;2,
1992.
Hagedorn, B., Cartwright, I., Raveggi, M., and Maas, R.: Rare earth element
and strontium geochemistry of the Australian Victorian Alps drainage system:
Evaluating the dominance of carbonate vs. aluminosilicate weathering under
varying runoff, Chem. Geol., 284, 105–126, https://doi.org/10.1016/j.chemgeo.2011.02.013, 2011.
Harrington, G. A. and Herczeg, A. L.: The importance of silicate weathering
of a sedimentary aquifer in arid Central Australia indicated by very high
ratios, Chem. Geol., 199, 281–292, https://doi.org/10.1016/S0009-2541(03)00128-1, 2003.
Hoogewerff, J. A., Reimann, C., Ueckermann, H., Frei, R., Frei, K. M., van
Aswegen, T., Stirling, C., Reid, M., Clayton, A., Ladenberger, A., and The
GEMAS Project Team: Bioavailable in European soils: a
baseline for provenancing studies, Sci. Total Environ., 672, 1033–1044,
https://doi.org/10.1016/j.scitotenv.2019.03.387, 2019.
Huston, D. L., Maas, R., Cross, A., Hussey, K. J., Mernagh, T. P., Fraser,
G., and Champion, D. C.: The Nolans Bore rare-earth
element-phosphorus-uranium mineral system: geology, origin and
post-depositional modifications, Miner. Deposita, 51, 797–822, https://doi.org/10.1007/s00126-015-0631-y, 2016.
Huston, D. L., Champion, D. C., Czarnota, K., Duan, J., Hutchens, M.,
Paradis, S., Hoggard, M., Ware, B., Gibson, G. M., Doublier, M. P., Kelley,
K., McCafferty, A., Hayward, N., Richards, F., Tessalina, S., and Carr, G.:
Zinc on the edge–isotopic and geophysical evidence that cratonic edges
control world-class shale-hosted zinc-lead deposits, Miner. Deposita, 58, 707–729,
https://doi.org/10.1007/s00126-022-01153-9, 2022.
Isbell, R. F. and National Committee on Soil and Terrain: The Australian
Soil Classification, third edn., CSIRO Publishing, Melbourne, Victoria, 181
pp., https://ebooks.publish.csiro.au/content/australian-soil-classification-9781486314782
(last access: 27 February 2023), 2021.
Jacks, G., Åberg, G., and Hamilton, P. J.: Calcium budgets for
catchments as interpreted by strontium isotopes, Hydrol. Res., 20, 85–96,
https://doi.org/10.2166/nh.1989.0007, 1989.
Jomori, Y., Minami, M., Sakurai-Goto, A., and Ohta, A.: Comparing the
of the bulk and exchangeable fractions in stream
sediments: implications for mapping in provenance
studies, Appl. Geochem., 86, 70–83, https://doi.org/10.1016/j.apgeochem.2017.09.004, 2017.
Jweda, J., Bolge, L., Class, C., and Goldstein, S. L.: High precision
Sr-Nd-Hf-Pb isotopic compositions of USGS reference material BCR-2,
Geostand. Geoanal. Res., 40, 101–115, https://doi.org/10.1111/j.1751-908X.2015.00342.x, 2016.
Kennedy, M. J., Hedin, L. O., and Derry, L. A.: Decoupling of unpolluted
temperate forests from rock nutrient sources revealed by natural
and 84Sr tracer addition, P. Nat. Acad. Sci. USA,
99, 9639–9644, https://doi.org/10.1073/pnas.152045499, 2002.
Knudson, K. J., Webb, E., White, C., and Longstaffe, F. J.: Baseline data
for Andean paleomobility research: a radiogenic strontium isotope study of
modern Peruvian agricultural soils, Archaeol. Anthropol. Sci., 6, 205–219,
https://doi.org/10.1007/s12520-013-0148-1, 2014.
Le Bas, M., Spiro, B., and Yang, X.: Oxygen, carbon and strontium isotope
study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit,
Inner Mongolia, N China, Mineral. Mag., 61, 531–541, https://doi.org/10.1180/minmag.1997.061.407.05, 1997.
Lech, M. E., de Caritat, P., and Mcpherson, A. A.: National Geochemical
Survey of Australia: Field Manual, Record, 2007/08, Geosci. Austral.,
Canberra, http://pid.geoscience.gov.au/dataset/ga/65234 (last
access: 27 February 2023), 2007.
Lugli, F., Cipriani, A., Bruno, L., Ronchetti, F., Cavazzuti, C., and
Benazzi, S.: A strontium isoscape of Italy for provenance studies, Chem.
Geol., 587, 120624, https://doi.org/10.1016/j.chemgeo.2021.120624, 2022.
Lyons, W. B., Tyler, S. W., Gaudette, H. E., and Long, D. T.: The use of
strontium isotopes in determining groundwater mixing and brine fingering in
a playa spring zone, Lake Tyrrell, Australia, J. Hydrol., 167, 225–239,
https://doi.org/10.1016/0022-1694(94)02601-7, 1995.
McArthur, J. M., Howarth, R. J., and Shields, G. A.: Strontium Isotope
Stratigraphy, Chap. 7 in: The Geologic Time Scale, edited by: F. M., Ogg, J.
G., Schmitz, M., and Ogg, G., Elsevier BV, 127–144, https://doi.org/10.1016/B978-0-12-824360-2.00007-3, 2012.
McNutt, R. H.: Strontium Isotopes, in: Environmental Tracers in Subsurface
Hydrology, edited by: Cook P. G. and Herczeg A. L., Springer, Boston, MA,
https://doi.org/10.1007/978-1-4615-4557-6_8,
2000.
McNutt, R. H., Frape, S. K., and Dollar, P.: A strontium, oxygen and
hydrogen isotopic composition of brines, Michigan and Appalachian Basins,
Ontario and Michigan, Appl. Geochem., 2, 495–505, https://doi.org/10.1016/0883-2927(87)90004-7, 1987.
Moffat, I., Rudd, R., Willmes, M., Mortimer, G., Kinsley, L., McMorrow, L., Armstrong, R., Aubert, M., and Grün, R.: Bioavailable soil and rock strontium isotope data from Israel, Earth Syst. Sci. Data, 12, 3641–3652, https://doi.org/10.5194/essd-12-3641-2020, 2020.
Mountjoy, E. W., Qing, H., and McNutt, R. H.: Strontium isotopic composition
of Devonian dolomites, Western Canada Sedimentary Basin: significance of
sources of dolomitizing fluids, Appl. Geochem., 7, 59–75, 1992.
Nebel, O. and Stammeier, J. A.: Strontium Isotopes, in: Encycl. Geochem., Encycl.
Earth Sci. Series, edited by: White W. M., Springer, Cham, https://doi.org/10.1007/978-3-319-39312-4_137, 2018.
Négrel, P. and Grosbois, C.: Changes in chemical and
signature distribution patterns of suspended matter and bed sediments in the
upper Loire river basin (France), Chem. Geol., 156, 231–249, https://doi.org/10.1016/S0009-2541(98)00182-X, 1999.
Négrel, P. and Pauwels, H.: Interaction between different groundwaters
in Brittany catchments (France): characterizing multiple sources through
strontium- and sulphur isotope tracing, Wat. Air Soil Poll., 151, 261–285,
https://doi.org/10.1023/B:WATE.0000009912.04798.b7, 2004.
Oishi, Y.: Is the Sr isotope ratio of mosses a good indicator for Asian dust
(Kosa)?, Landscape Ecol. Eng., 18, 11–17, https://doi.org/10.1007/s11355-021-00476-5, 2021.
Ojiambo, S. B., Lyons, W. B., Welch, K. A., Poreda, R. J., and Johannesson,
K. H.: Strontium isotopes and rare earth elements as tracers of
groundwater-lake water interactions, Lake Naivasha, Kenya, Appl. Geochem.,
18, 1789–1805, https://doi.org/10.1016/S0883-2927(03)00104-5,
2003.
Oliver, L., Harris, N., Bickle, M., Chapman, H., Dise, N., and Horstwood,
M.: Silicate weathering rates decoupled from the ratio
of the dissolved load during Himalayan erosion, Chem. Geol., 201, 119–139,
https://doi.org/10.1016/S0009-2541(03)00236-5, 2003.
Ollier, C. D.: The regolith in Australia, Earth-Sci. Rev., 25, 355–361,
https://doi.org/10.1016/0012-8252(88)90003-7, 1988.
Pacheco-Forés, S. I., Gordon, G. W., and Knudson, K. J.: Expanding
radiogenic strontium isotope baseline data for central Mexican paleomobility
studies, PLoS ONE, 15, e0229687, https://doi.org/10.1371/journal.pone.0229687, 2020.
Page, R. W., Needham, R. S., and Compston, W.: Geochronology and evolution
of the Late-Archaean basement and Proterozoic rocks in the Alligator Rivers
uranium field, Northern Territory, Australia, in: Proc. Int. Uranium Symp.,
Pine Creek Geosyncline (Sydney, New South Wales, 4–8 June 1979), edited by:
Ferguson, J. and Goleby, A. B., Int. Atom. En. Agency, Vienna, Austria,
39–68, https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/629/12629252.pdf, last access: 27 February 2023, 1980.
Pain, C., Gregory, L., Wilson, P., and McKenzie, N.: The Physiographic
Regions of Australia – Explanatory Notes, Australian Collaborative Land
Evaluation Program (ACLEP) and National Committee on Soil and Terrain
(NCST), Canberra, 30 pp., https://publications.csiro.au/rpr/pub?pid=csiro%3AEP113843 (last access: 27 February 2023), 2011.
Palmer, M. R., Helvaci, C., and Fallick, A. E.: Sulphur, sulphate oxygen and
strontium isotope composition of Cenozoic Turkish evaporates, Chem. Geol.,
209, 341–356, https://doi.org/10.1016/j.chemgeo.2004.06.027,
2004.
Plumlee, G.: Basalt, Columbia River, BCR-2, Prelim. U.S. Geol. Surv. Cert.
Anal., https://cpb-us-w2.wpmucdn.com/muse.union.edu/dist/c/690/files/2021/07/usgs-bcr2-1.pdf
(last access: 27 February 2023), 1998.
Price, G. J., Ferguson, K. J., Webb, G. E., Feng, Y. X., Higgins, P.,
Nguyen, A. D., Zhao, J. X., Joannes-Boyau, R., and Louys, J.: Seasonal
migration of marsupial megafauna in Pleistocene Sahul (Australia-New
Guinea), P. Roy. Soc. B-Biol. Sci., 284, 20170785, https://doi.org/10.1098/rspb.2017.0785, 2017.
Probst, A., El Gh'Mari, A., Aubert, D., Fritz, B., and McNutt, R.: Strontium
as a tracer of weathering processes in a silicate catchment polluted by acid
atmospheric inputs, Strengbach, France, Chem. Geol., 170, 203–219,
https://doi.org/10.1016/S0009-2541(99)00248-X, 2000.
Quade, J., Chivas, A. R., and McCulloch, M. T.: Strontium and carbon isotope
tracers and the origins of soil carbonate in South Australia and Victoria,
Palaeogeogr. Palaeocl. Palaeoecol., 113, 103–117, https://doi.org/10.1016/0031-0182(95)00065-T, 1995.
Raymond, O. L., Gallagher, R., Shaw, R., Yeates, A. N., Doutch,
H. F., Palfreyman, W. D., Blake, D. H., and Highet, L.: Surface Geology of
Australia 1 : 2.5 million scale dataset 2012 edition, edited by: Raymond, O. L. and Gallagher, R., Geosci. Austral.,
Canberra [data set], https://doi.org/10.26186/5c636e559cbe1,
2012.
Revel-Rolland, M., De Deckker, P., Delmonte, B., Hesse, P. P., Magee, J. W.,
Basile-Doelsch, I., Grousset, F., and Bosch, D.: Eastern Australia: a
possible source of dust in East Antarctica interglacial ice, Earth Planet.
Sc. Lett., 249, 1–13, https://doi.org/10.1016/j.epsl.2006.06.028, 2006.
Riley, G. H.: Granite ages in the Pine Creek Geosyncline, in: Proc. Int.
Uranium Symp., Pine Creek Geosyncline, 4–8 June 1979, Sydney, New South Wales, edited by: Ferguson, J. and Goleby, A. B., Int. Atom. En. Agency,
Vienna, Austria, 69–72, https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/629/12629252.pdf, last access: 27 February 2023, 1980.
Romaniello, S. J., Field, M. P., Smith, H. B., Gordon, G. W., Kim, M. H.,
and Anbar, A. D.: Fully automated chromatographic purification of Sr and Ca
for isotopic analysis, J. Anal. Atomic Spectro., 30, 1906–1912, https://doi.org/10.1039/C5JA00205B, 2015.
Rotenberg, E., Davis, D. W., Amelin, Y., Ghosh, S., and Bergquist, B. A.:
Determination of the decay-constant of 87Rb by laboratory accumulation
of 87Sr, Geochim. Cosmochim. Ac., 85, 41–57, https://doi.org/10.1016/j.gca.2012.01.016, 2012.
Rundberg, Y. and Smalley, P. C.: High-resolution dating of Cenozoic
sediments from northern North Sea using stratigraphy,
Am. Assoc. Petrol. Geol. Bull., 73, 298–308, https://doi.org/10.1306/703C9B77-1707-11D7-8645000102C1865D, 1989.
Schaltegger, U., Stille, P., Rais, N., Pique, A., and Clauer, N.: Neodymium
and strontium isotopic dating of diagenesis and low-grade metamorphism of
argillaceous sediments, Geochim. Cosmochim. Ac., 58, 1471–1481, https://doi.org/10.1016/0016-7037(94)90550-9, 1994.
Schoneveld, L., Spandler, C., and Hussey, K.: Genesis of the central zone of
the Nolans Bore rare earth element deposit, Northern Territory, Australia,
Contrib. Mineral. Petrol., 170, 11, https://doi.org/10.1007/s00410-015-1168-x, 2015.
Schultz, J. L., Boles, J. R., and Tilton, G. R.: Tracking calcium in the San
Joaquin basin, California: a strontium isotopic study of carbonate cements
at North Coles Levee, Geochim. Cosmochim. Ac., 53, 1991–1999, https://doi.org/10.1016/0016-7037(89)90319-0, 1989.
Shewan, L. G., Armstrong, R. A., and O'Reilly, D.: Baseline bioavailable
strontium isotope values for the investigation of residential mobility and
resource-acquisition strategies in prehistoric Cambodia, Archaeom., 62,
810–826, https://doi.org/10.1111/arcm.12557, 2020.
Shields, G. A.: A normalised seawater strontium isotope curve and the
Neoproterozoic-Cambrian chemical weathering event, eEarth Discuss., 2, 69–84, 2007.
Shin, W.-J., Ryu, J.-S., Kim, R.-H., and Min, J.-S.: First strontium
isotope map of groundwater in South Korea: applications for identifying the
geographical origin, Geosci. J., 25, 173–181, https://doi.org/10.1007/s12303-020-0013-z, 2021.
Simandl, G. J. and Paradis, S.: Vanadium as a critical material: economic
geology with emphasis on market and the main deposit types, Appl. Earth
Sci., 131, 218–236, https://doi.org/10.1080/25726838.2022.2102883, 2022.
Smalley, P. C., Råheim, A., Rundberg, Y., and Johansen, H.:
Strontium-isotope stratigraphy: applications in basin modelling and
reservoir correlation, chap. 3, in: Correlation in Hydrocarbon Exploration,
Norwegian Petrol. Soc., Graham and Trotman, 23–31, https://doi.org/10.1007/978-94-009-1149-9_3, 1989.
Smalley, P. C., Lønøy, A., and Råheim, A.: Spatial
variations in formation water and calcite from the
Ekofisk chalk oil field: implications for reservoir connectivity and fluid
composition, Appl. Geochem., 7, 341–350, https://doi.org/10.1016/0883-2927(92)90024-W, 1992.
Stueber, A. M., Pushkar, P., and Hetherington, E. A.: A strontium isotopic
study of formation waters from the Illinois basin, USA, Appl. Geochem.,
2, 477–494, https://doi.org/10.1016/0883-2927(87)90003-5,
1987.
Sullivan, M. D., Haszeldine, R. S., and Fallick, A. E.: Linear coupling of
carbon and strontium isotopes in Rotliegend Sandstone, North Sea: evidence
for cross-formational fluid flow, Geology, 18, 1215–1218, https://doi.org/10.1130/0091-7613(1990)018<1215:LCOCAS>2.3.CO;2,
1990.
Swart, P. K., Ruiz, J., and Holmes, C. W.: Use of strontium isotopes to
constrain the timing and mode of dolomitization of upper Cenozoic sediments
in a core from San Salvador, Bahamas, Geology, 15, 262–265, https://doi.org/10.1130/0091-7613(1987)15<262:UOSITC>2.0.CO;2,
1987.
Tukey, J. W.: Exploratory Data Analysis, Addison-Wesley Publishing Company,
Reading, MA, 506 pp., 1977.
Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H., Nelson, D. R., and
Pike, G.: Geology and tectonic evolution of the Archean North Pilbara
Terrain, Pilbara Craton, Western Australia, Econ. Geol., 97, 695–732,
https://doi.org/10.2113/gsecongeo.97.4.695, 2002.
Veizer, J.: Strontium isotopes in seawater trough time, Ann. Rev. Earth
Planet. Sci., 17, 141–167, https://doi.org/10.1146/annurev.ea.17.050189.001041, 1989.
Vinciguerra, V., Stevenson, R., Pedneault, K., Poirer, A., Hélie, J.-F., and Widory, D.: Strontium isotope characterization of Wines from the
Quebec (Canada) Terroir, Proc. Earth Planet. Sci., 13, 252–255, https://doi.org/10.1016/j.proeps.2015.07.059, 2015.
Voerkelius, S., Lorenz, G. D., Rummel, S., Quétel, C. R., Heiss, G.,
Baxter, M., Brach-Papa, C., Deters-Itzelsberger, P., Hoelzl, S., Hoogewerff,
J., Ponzevera, E., Bocxstaele, M., and Van Ueckermann, H.: Strontium
isotopic signatures of natural mineral waters, the reference to a simple
geological map and its potential for authentication of food, Food Chem.,
118, 933–940, https://doi.org/10.1016/j.foodchem.2009.04.125,
2010.
Vorster, C., Greeff, L., and Coetzee, P. P.: The determination of
11B/10B and isotope ratios by quadrupole-based
ICP-MS for the fingerprinting of South African wine, South Afric. J. Chem.,
63, 207–214, 2010.
Washburn, E., Nesbitt, J., Ibarra, B., Fehren-Schmitz, L., and Oelze, V. M.:
A strontium isoscape for the Conchucos region of highland Peru and its
application to Andean archaeology, PLOS ONE 16, e0248209, https://doi.org/10.1371/journal.pone.0248209, 2021.
Wei, C.-W., Xu, C., Chakhmouradian, A. R., Brenna, M., Kynicky, J., and
Song, W.-L.: Carbon-strontium isotope decoupling in carbonatites from
Caotan (Qinling, China): implications for the origin of calcite carbonatite
in orogenic settings, J. Petrol., 61, egaa024, https://doi.org/10.1093/petrology/egaa024, 2020.
Wei, X., Wang, S., Ji, H., and Shi, Z.: Strontium isotopes reveal weathering
processes in lateritic covers in southern China with implications for
paleogeographic reconstructions, PLOS ONE, 13, e0191780, https://doi.org/10.1371/journal.pone.0191780, 2018.
Wickman, T. and Jacks, G.: Strontium isotopes in weathering budgeting. In:
Water-Rock Interaction, Proc. 7th Int. Symp. Water-Rock Interaction, 13–18 July 1992, Park
City, Utah, edited by: Kharaka, Y. K. and Maest, A. S.,
Balkema, Rotterdam, 1, 611–614, ISBN 9054100753, 1992.
Wilford, J.: A weathering intensity index for the Australian continent using
airborne gamma-ray spectrometry and digital terrain analysis, Geoderma,
183–184, 124–142, https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.
Willmes, M., McMorrow, L., Kinsley, L., Armstrong, R., Aubert, M., Eggins, S., Falguères, C., Maureille, B., Moffat, I., and Grün, R.: The IRHUM (Isotopic Reconstruction of Human Migration) database – bioavailable strontium isotope ratios for geochemical fingerprinting in France, Earth Syst. Sci. Data, 6, 117–122, https://doi.org/10.5194/essd-6-117-2014, 2014.
Willmes, M., Bataille, C. P., James, H. F., Moffat, I., McMorrow, L.,
Kinsley, L., Armstrong, R. A., Eggins, S., and Grün, R.: Mapping of
bioavailable strontium isotope ratios in France for archaeological
provenance studies, Appl. Geochem., 90, 75–86, https://doi.org/10.1016/j.apgeochem.2017.12.025, 2018.
Withnall, I. W., Hutton, L. J., Armit, R. J., Betts, P. G., Blewett, R. S.,
Champion, D. C., and Jell, P. A.: North Australian Craton. In: Geology of
Queensland, edited by: Jell, P. A., Geol. Surv. Queensland, Brisbane,
23–112, ISBN 9781921489761, https://www.business.qld.gov.au/industries/mining-energy-water/resources/geoscience-information/reports-news/geology-queensland-book-map
(last access: 27 February 2023), 2013.
Wyborn, L. A. I., Heinrich, C. A., and Jaques, A. L.: Australian Proterozoic
mineral systems: essential ingredients and mappable criteria, Austral. Inst.
Mining Metall. (AusIMM) Ann. Conf. Proc., 5–9
August 1994, Darwin, Northern Territory, 109–115, https://ecat.ga.gov.au/geonetwork/srv/api/records/a05f7892-f8a0-7506-e044-00144fdd4fa6
(last access: 27 February 2023), 1994.
Yang, C., Telmer, K., and Veizer, J.: Chemical dynamics of the “St.
Lawrence” riverine system: δD , δ18O ,
δ13CDIC, δ34Ssulfate, and dissolved
, Geochim. Cosmochim. Ac., 60, 851–866, https://doi.org/10.1016/0016-7037(95)00445-9, 1996.
Zhao, Z., Leach, D. L., Wei, J., Liang, S., and Pfaff, K.: Origin of the
Xitieshan Pb-Zn deposit, Qinghai, China: evidence from petrography and
S-C-O-Sr isotope geochemistry, Ore Geol. Rev., 139A, 104429, https://doi.org/10.1016/j.oregeorev.2021.104429, 2021.
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new...
Altmetrics
Final-revised paper
Preprint