Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1389-2023
https://doi.org/10.5194/essd-15-1389-2023
Data description paper
 | 
24 Mar 2023
Data description paper |  | 24 Mar 2023

DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications

Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen

Related authors

An optimized and hybrid gating scheme for the suppression of very low-frequency radios in transient electromagnetic systems
Smith Kashiram Khare, Paul McLachlan, Pradip Kumar Maurya, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 13, 27–41, https://doi.org/10.5194/gi-13-27-2024,https://doi.org/10.5194/gi-13-27-2024, 2024
Short summary
Potential of Machine learning techniques compared to MIKE-SHE model for drain flow predictions in tile-drained agricultural areas of Denmark
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872,https://doi.org/10.5194/egusphere-2023-1872, 2023
Preprint withdrawn
Short summary
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023,https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
A High Duty Cycle Transmitter Unit for Steady-State Surface NMR Instruments
Nikhil B. Gaikwad, Lichao Liu, Matthew P. Griffiths, Denys Grombacher, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-5,https://doi.org/10.5194/gi-2023-5, 2023
Preprint under review for GI
Short summary
Brief communication: The hidden labyrinth: deep groundwater in Wright Valley, Antarctica
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022,https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary

Related subject area

Domain: ESSD – Land | Subject: Geophysics and geodesy
Synthetic ground motions in heterogeneous geologies from various sources: the HEMEWS-3D database
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data, 16, 3949–3972, https://doi.org/10.5194/essd-16-3949-2024,https://doi.org/10.5194/essd-16-3949-2024, 2024
Short summary
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024,https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024,https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024,https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024,https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary

Cited articles

Asif, M. R.: rizwanasif/DL-RMD: DL-RMD (DL-RMD), Zenodo [code], https://doi.org/10.5281/zenodo.7740243, 2023. 
Asif, M. R., Qi, C., Wang, T., Fareed, M. S., and Khan, S.: License plate detection for multi-national vehicles–a generalized approach, Multimed. Tools Appl., 78, 35585–35606, 2019. 
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E., and Larsen, J. J.: Effect of data pre-processing on the performance of neural networks for 1-D transient electromagnetic forward modelling, IEEE Access, 9, 34635–34646, 2021a. 
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G., Grombacher, D. J., Christiansen, A. V., Auken, E., and Larsen, J. J.: A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data, IEEE T. Geosci. Remote, 60, 4503610, https://doi.org/10.1109/TGRS.2021.3076121, 2021b. 
Asif, M. R., Foged, N., Bording, T., Larsen, J. J., and Christiansen, A. V.: DL-RMD: A geophysically constrained electromagnetic resistivity model database for deep learning applications, Zenodo [data set], https://doi.org/10.5281/zenodo.7260886, 2022a. 
Download
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Altmetrics
Final-revised paper
Preprint