Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1389-2023
https://doi.org/10.5194/essd-15-1389-2023
Data description paper
 | 
24 Mar 2023
Data description paper |  | 24 Mar 2023

DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications

Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen

Related authors

Potential of Machine learning techniques compared to MIKE-SHE model for drain flow predictions in tile-drained agricultural areas of Denmark
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872,https://doi.org/10.5194/egusphere-2023-1872, 2023
Short summary
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023,https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
A High Duty Cycle Transmitter Unit for Steady-State Surface NMR Instruments
Nikhil B. Gaikwad, Lichao Liu, Matthew P. Griffiths, Denys Grombacher, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-5,https://doi.org/10.5194/gi-2023-5, 2023
Preprint under review for GI
Short summary
Brief communication: The hidden labyrinth: deep groundwater in Wright Valley, Antarctica
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022,https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022,https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary

Related subject area

Domain: ESSD – Land | Subject: Geophysics and geodesy
Global physics-based database of injection-induced seismicity
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023,https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
The Weisweiler passive seismological network: optimised for state-of-the-art location and imaging methods
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023,https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021
Jia-Hao Li, Zhao-Liang Li, Xiangyang Liu, and Si-Bo Duan
Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023,https://doi.org/10.5194/essd-15-2189-2023, 2023
Short summary
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023,https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023,https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary

Cited articles

Asif, M. R.: rizwanasif/DL-RMD: DL-RMD (DL-RMD), Zenodo [code], https://doi.org/10.5281/zenodo.7740243, 2023. 
Asif, M. R., Qi, C., Wang, T., Fareed, M. S., and Khan, S.: License plate detection for multi-national vehicles–a generalized approach, Multimed. Tools Appl., 78, 35585–35606, 2019. 
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E., and Larsen, J. J.: Effect of data pre-processing on the performance of neural networks for 1-D transient electromagnetic forward modelling, IEEE Access, 9, 34635–34646, 2021a. 
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G., Grombacher, D. J., Christiansen, A. V., Auken, E., and Larsen, J. J.: A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data, IEEE T. Geosci. Remote, 60, 4503610, https://doi.org/10.1109/TGRS.2021.3076121, 2021b. 
Asif, M. R., Foged, N., Bording, T., Larsen, J. J., and Christiansen, A. V.: DL-RMD: A geophysically constrained electromagnetic resistivity model database for deep learning applications, Zenodo [data set], https://doi.org/10.5281/zenodo.7260886, 2022a. 
Download
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.