Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1389-2023
https://doi.org/10.5194/essd-15-1389-2023
Data description paper
 | 
24 Mar 2023
Data description paper |  | 24 Mar 2023

DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications

Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen

Related authors

Alleviating interpretational ambiguity in Hydrogeology through clustering-based analysis of transient electromagnetic and surface nuclear magnetic resonance data
Mathias Vang, Jakob Juul Larsen, Anders Vest Christiansen, and Denys Grombacher
EGUsphere, https://doi.org/10.5194/egusphere-2025-406,https://doi.org/10.5194/egusphere-2025-406, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
An optimized and hybrid gating scheme for the suppression of very low-frequency radios in transient electromagnetic systems
Smith Kashiram Khare, Paul McLachlan, Pradip Kumar Maurya, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 13, 27–41, https://doi.org/10.5194/gi-13-27-2024,https://doi.org/10.5194/gi-13-27-2024, 2024
Short summary
Potential of Machine learning techniques compared to MIKE-SHE model for drain flow predictions in tile-drained agricultural areas of Denmark
Hafsa Mahmood, Ty P. A. Ferré, Raphael J. M. Schneider, Simon Stisen, Rasmus R. Frederiksen, and Anders V. Christiansen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1872,https://doi.org/10.5194/egusphere-2023-1872, 2023
Preprint withdrawn
Short summary
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023,https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
A High Duty Cycle Transmitter Unit for Steady-State Surface NMR Instruments
Nikhil B. Gaikwad, Lichao Liu, Matthew P. Griffiths, Denys Grombacher, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-5,https://doi.org/10.5194/gi-2023-5, 2023
Revised manuscript accepted for GI
Short summary

Related subject area

Domain: ESSD – Land | Subject: Geophysics and geodesy
Seismic survey in an urban area: the activities of the EMERSITO INGV emergency group in Ancona (Italy) following the 2022 Mw 5.5 Costa Marchigiana–Pesarese earthquake
Daniela Famiani, Fabrizio Cara, Giuseppe Di Giulio, Giovanna Cultrera, Francesca Pacor, Sara Lovati, Gaetano Riccio, Maurizio Vassallo, Giulio Brunelli, Antonio Costanzo, Antonella Bobbio, Marta Pischiutta, Rodolfo Puglia, Marco Massa, Rocco Cogliano, Salomon Hailemikael, Alessia Mercuri, Giuliano Milana, Luca Minarelli, Alessandro Di Filippo, Lucia Nardone, Simone Marzorati, Chiara Ladina, Debora Pantaleo, Carlo Calamita, Maria Grazia Ciaccio, Antonio Fodarella, Stefania Pucillo, Giuliana Mele, Carla Bottari, Gaetano De Luca, Luigi Falco, Antonino Memmolo, Giulia Sgattoni, and Gabriele Tarabusi
Earth Syst. Sci. Data, 17, 2087–2112, https://doi.org/10.5194/essd-17-2087-2025,https://doi.org/10.5194/essd-17-2087-2025, 2025
Short summary
Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM)
Peyman Saemian, Omid Elmi, Molly Stroud, Ryan Riggs, Benjamin M. Kitambo, Fabrice Papa, George H. Allen, and Mohammad J. Tourian
Earth Syst. Sci. Data, 17, 2063–2085, https://doi.org/10.5194/essd-17-2063-2025,https://doi.org/10.5194/essd-17-2063-2025, 2025
Short summary
Advancing geodynamic research in Antarctica: reprocessing GNSS data to infer consistent coordinate time series (GIANT-REGAIN)
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data, 17, 1761–1780, https://doi.org/10.5194/essd-17-1761-2025,https://doi.org/10.5194/essd-17-1761-2025, 2025
Short summary
Airborne gravimetry with quantum technology: observations from Iceland and Greenland
Tim Enzlberger Jensen, Bjørnar Dale, Andreas Stokholm, René Forsberg, Alexandre Bresson, Nassim Zahzam, Alexis Bonnin, and Yannick Bidel
Earth Syst. Sci. Data, 17, 1667–1684, https://doi.org/10.5194/essd-17-1667-2025,https://doi.org/10.5194/essd-17-1667-2025, 2025
Short summary
GravIS: mass anomaly products from satellite gravimetry
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data, 17, 611–631, https://doi.org/10.5194/essd-17-611-2025,https://doi.org/10.5194/essd-17-611-2025, 2025
Short summary

Cited articles

Asif, M. R.: rizwanasif/DL-RMD: DL-RMD (DL-RMD), Zenodo [code], https://doi.org/10.5281/zenodo.7740243, 2023. 
Asif, M. R., Qi, C., Wang, T., Fareed, M. S., and Khan, S.: License plate detection for multi-national vehicles–a generalized approach, Multimed. Tools Appl., 78, 35585–35606, 2019. 
Asif, M. R., Bording, T. S., Barfod, A. S., Grombacher, D. J., Maurya, P. K., Christiansen, A. V., Auken, E., and Larsen, J. J.: Effect of data pre-processing on the performance of neural networks for 1-D transient electromagnetic forward modelling, IEEE Access, 9, 34635–34646, 2021a. 
Asif, M. R., Bording, T. S., Maurya, P. K., Zhang, B., Fiandaca, G., Grombacher, D. J., Christiansen, A. V., Auken, E., and Larsen, J. J.: A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data, IEEE T. Geosci. Remote, 60, 4503610, https://doi.org/10.1109/TGRS.2021.3076121, 2021b. 
Asif, M. R., Foged, N., Bording, T., Larsen, J. J., and Christiansen, A. V.: DL-RMD: A geophysically constrained electromagnetic resistivity model database for deep learning applications, Zenodo [data set], https://doi.org/10.5281/zenodo.7260886, 2022a. 
Download
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Share
Altmetrics
Final-revised paper
Preprint