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Abstract. Deep learning (DL) algorithms have shown incredible potential in many applications. The success of
these data-hungry methods is largely associated with the availability of large-scale datasets, as millions of obser-
vations are often required to achieve acceptable performance levels. Recently, there has been an increased interest
in applying deep learning methods to geophysical applications where electromagnetic methods are used to map
the subsurface geology by observing variations in the electrical resistivity of the subsurface materials. To date,
there are no standardized datasets for electromagnetic methods, which hinders the progress, evaluation, bench-
marking, and evolution of deep learning algorithms due to data inconsistency. Therefore, we present a large-scale
electrical resistivity model database (RMD) with a wide variety of geologically plausible and geophysically re-
solvable subsurface structures for the commonly deployed ground-based and airborne electromagnetic systems.
Potentially, the presented database can be used to build surrogate models of well-known processes and to aid in
labour-intensive tasks. The geophysically constrained property of this database will not only achieve enhanced
performance and improved generalization but, more importantly, incorporate consistency and credibility into
deep learning models. We show the effectiveness of the presented database by surrogating the forward-modelling
process, and we urge the geophysical community interested in deep learning for electromagnetic methods to uti-
lize the presented database. The dataset is publicly available at https://doi.org/10.5281/zenodo.7260886 (Asif et
al., 2022a).

1 Introduction

Recent years have witnessed the success of many deep learn-
ing (DL) applications. Although DL emerged in 1982 in the
form of neural networks (Hopfield, 1982), it started to gain
attention in 2012 due to its notable performance for image
classification tasks (Krizhevsky et al., 2017, 2012). Since
then, it has been applied successfully to many applications
including object detection (Asif et al., 2019; Redmon et al.,
2016; Ren et al., 2015), image super-resolution (Dong et
al., 2016; Zhang et al., 2018), speech recognition (Zhang et

al., 2017), and stock market predictions (Pang et al., 2020).
The revival of DL was mainly influenced by the availabil-
ity of cheap computing resources, deeper network architec-
tures, and large-scale publicly available datasets. Deeper net-
work architectures and an increased number of samples in the
training datasets are key factors for improved performance
and better generalization of DL models (Wang et al., 2016).

Geophysics is a branch of earth sciences, and geophysical
methods are often used to infer information about the subsur-
face geology by mapping physical properties. The integra-
tion of neural networks in geophysics started several decades
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ago and has covered many domains of geophysics (Baan and
Jutten, 2000; Dramsch, 2020), including seismic (Röth and
Tarantola, 1994; Zhang et al., 2020), magneto-telluric (Con-
way et al., 2019; Liu et al., 2020; Zhang and Paulson, 1997),
geo-mechanical (Feng and Seto, 1998; Khatibi and Aghajan-
pour, 2020), and electromagnetic domains (Birken and Poul-
ton, 1999; Birken et al., 1999; Bording et al., 2021; Kwan
et al., 2015; Poulton et al., 1992; Zhu et al., 2012). Inter-
estingly, the last few years have seen a significant increase
in interest in applying DL to electromagnetic (EM) methods
(see Table 1), where the artificially generated EM fields are
used to map variations in the electrical resistivity properties
of the subsurface. For more details regarding the EM meth-
ods, readers are referred to the literature (e.g. Kirsch, 2006).
The increasing interest in applying DL to EM methods is
mainly influenced by the increased ability of the EM methods
to collect huge datasets in short amounts of time, which make
the subsequent processes extremely laborious and time con-
suming. Therefore, a DL method could be beneficial in sur-
rogating well-known EM processes, e.g. forward modelling
where the propagation of the EM fields is simulated, result-
ing in the forward responses (Xue et al., 2020), and inverse
modelling (inversion) where the electrical resistivity proper-
ties of the subsurface are deduced from observed EM data
(Zhdanov, 2015). DL methods can also assist with manual
tasks, which may require considerable time when performed
manually, such as anomaly detection in EM data. Further op-
portunities may lie in other tasks, e.g. data de-noising.

To apply a DL algorithm to EM methods for various appli-
cations, subsurface resistivity models and/or the correspond-
ing EM responses are often required. To achieve optimal per-
formance, a DL method should be trained on a large number
of geologically realistic subsurface models. Evident from Ta-
ble 1, the recently developed DL methods either use subsur-
face resistivity models acquired from field data or generate
the models randomly or in a pseudorandom manner for train-
ing. However, a method trained on random models, where the
resistivity of each geological layer is chosen from a probabil-
ity distribution, would not result in optimal performance, as
many of the training samples would be geologically unrealis-
tic. A good solution is to use either resistivity models inverted
from field data or pseudorandom resistivity models where the
resistivity of the training models is based on some prior ge-
ological information to reflect various characteristics of field
data (Bai et al., 2020). However, a DL method trained on
such training samples would only be effective for specific ge-
ological conditions and would result in an unsatisfactory per-
formance for significantly different geological settings (Bor-
ding et al., 2021), as bias in the training data can affect gen-
eralizability substantially. Additionally, the unavailability of
a standard benchmark database hinders the progress, eval-
uation, benchmarking, and evolution of DL algorithms due
to data inconsistency (Bergen et al., 2019; Reichstein et al.,
2019).

To have an inclusive DL solution for various applica-
tions in EM, we present a physics-driven large-scale model
database (∼ 1 million models) of geologically plausible and
EM-resolvable 1-D subsurface resistivity models spanning
the resistivity range from 1 to 2000�m and to a depth of
500 m. This model database is suitable for ground-based and
airborne EM systems in a DL context. We use broad-banded
von Kármán covariance functions to generate geologically
constrained resistivity models. Geophysical constraints are
imposed by calculating the EM forward data of the initial
resistivity models followed by inversion of the EM forward
data to obtain the final resistivity models. This allows us to
create a comprehensive resistivity model database (RMD)
that may not only improve performance and generalization
but also incorporate consistency and reliability into the DL
models. We believe that the presented RMD will be a valu-
able resource to accelerate the inter- and trans-disciplinary
research of earth and data sciences. The presented DL-RMD
will also provide uniformity in training and benchmarking
for DL methods in EM. Therefore, we urge the geophysical
community interested in DL for EM methods to use the DL-
RMD.

The rest of this paper is organized as follows. Section 2 de-
scribes the general methodology of generating the subsurface
resistivity models, while specific settings for the DL-RMD
for the three EM system categories are specified in Sect. 3.
Section 4 provides details for training a DL method to surro-
gate the forward-modelling problem and shows the effective-
ness of the DL-RMD. Discussion, code and data availability,
and concluding remarks are given in Sects. 5, 6, and 7, re-
spectively.

2 Methodology

Geological processes do not result in random structures, nor
are the subsurface resistivity structures random, as some spa-
tial correlation is generally present (Tacher et al., 2006).
Therefore, it is reasonable that the training of a DL method
is based on subsurface structures that are geologically plau-
sible and, in an EM context, overall resolvable by the EM
method. Additionally, the scale of the resistivity structure in
the models should reflect the resolution capability of the EM
methods, as training a DL method to resolve structures that
are not evident in the input data is not possible. EM methods
are diffusive methods with significantly decreasing resolu-
tion with depth, and the electrical conductivity contrast plays
an important role for the resolution capability; hence, a met-
ric number for a given EM method’s resolution capability and
the depth of investigation cannot be given.

To obtain geologically realistic models, we use the broad-
banded von Kármán covariance functions (Møller et al.,
2001) to generate geologically plausible models (von Kár-
mán models). The suite of von Kármán models consists of
fine geological structures and contain some resistivity varia-
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Table 1. Recent publications (2019–2021) of DL applications in EM which show the number of training samples and type of training dataset
(random, pseudorandom, or field data).

Reference No. of samples Training observation type Application
in training set

Wu et al. (2021a) 80 000 Pseudorandom resistivity models and forward responses Inversion

Colombo et al. (2021a) 5000 Pseudorandom resistivity models and forward responses Inversion

Colombo et al. (2021b) 20 000 Random resistivity models and forward responses Inversion

Wu et al. (2021b) 16 800 Forward responses of random resistivity models De-noising

Bording et al. (2021) 93 500 Field data and inversion models Forward modelling

Puzyrev and Swidinsky (2021) 512 000 Random resistivity models and forward responses Inversion

Asif et al. (2021a) 100 000 Field data and inversion models Forward modelling

Moghadas et al. (2020) 20 000 Random resistivity models and forward responses Forward modelling

Bai et al. (2020) 12 000 Pseudorandom resistivity models and forward responses Inversion

Li et al. (2020) 1 000 000 Pseudorandom resistivity models and forward responses Inversion

Bang et al. (2021) 25 173 Pseudorandom resistivity models and forward responses Inversion

Noh et al. (2020) 20 000 Random resistivity models and forward responses Inversion

Moghadas (2020) 20 000 Random resistivity models and forward responses Inversion

Colombo et al. (2020a) 235 620 Pseudorandom resistivity models and forward responses Inversion

Colombo et al. (2020b) 88 Pseudorandom resistivity models and forward responses Inversion

Lin et al. (2019) 2400 Field data and inverted model forward responses De-noising

Guo et al. (2019) 10 000 Pseudorandom resistivity models and forward responses Inversion

Puzyrev (2019) 20 000 Pseudorandom resistivity models and forward responses Inversion

Qin et al. (2019) 50 000 Random resistivity models and forward responses Inversion

tions and patterns that are unlikely to be resolved, due to the
resolution limitation of the EM method. To replicate the reso-
lution capability of the EM method, we generate EM forward
responses of the initially over-detailed von Kármán models
and invert these forward responses to obtain the final resistiv-
ity models. Since we aim at generating 1-D resistivity mod-
els, we are only concerned about the resistivity (ρ) variations
in the vertical direction (z) from surface to some depth in our
model generation.

Initially, we base the spatial variation character of (z,
log10(ρ)) for our von Kármán models on the broad-banded
von Kármán covariance functions (Christiansen and Auken,
2003; Møller et al., 2001).

C (z,A,v)= A2C0

( z
L

)ν
Kν

( z
L

)
, (1)

whereA becomes the amplitude of the logarithmic resistivity,
C0 is a scaling constant, z is the spatial (vertical) distance, L
characterizes the maximum correlation length accounted for,
and Kν is the modified Bessel function of the second kind
and order ν. In the model generation, L is fixed to a high
number (1800 m) which gives us strong correlation for z� L

Table 2. Parameters used in all combinations to generate the initial
von Kármán resistivity models.

Parameter Values

Resistivity 1 to 2000�m, log-spaced,
20 values per decade

L Fixed: 1800 m

v [0.6, 0.7, 0.8, 0.9, 1.0]

C0 [0.5, 1, 2, 4]

No. of sharp boundaries [1, 2, 3, 4, 5]

(Maurer et al., 1998). By using combinations of ν, C0, and
resistivity and compiling several realizations of the stochas-
tic von Kármán process, we generate a variety of resistivity
models on multiple scales. Table 2 summarizes the L, ν, C0,
and resistivity values used.

Examples of this are shown in Fig. 1a–c where the von
Kármán models (in black curves) are generated with a com-
bination of the extreme values of ν and C0 for an initial re-
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Figure 1. Examples of von Kármán models and the result after the
forward and inversion process, where black curves show von Kár-
mán models (re-discretized to 90 layers), and the red curve shows
the final model. Panels (a) to (c) are for the combination of ν andC0
stated in the title; panel (d) is for a stitched, layered model (green
arrows mark the imposed sharp layer boundaries). The red curves
show the obtained model from inversion of the forward response of
the black model.

sistivity value of 30�m. Low ν and high C0 produce mod-
els with fine- and large-scale variations (Fig. 1a), while high
ν and high C0 values produce a relatively smooth model
(Fig. 1b) but still with resistivity variations spanning 2–3
decades of resistivity. The combination of low ν and C0 val-
ues ensures that the simple and close-to-half-space models
are also represented (Fig. 1c).

Sharp layering in the subsurface is plausible, and large re-
sistivity amplitudes and short correlation lengths in the von
Kármán functions will form layering in the models. To in-
clude more models with a sharp layering, we stitch 2–6 ran-
domly selected depth intervals of the initially generated von
Kármán models from a uniform distribution. An example of
a stitched model is shown in Fig. 1d. These stitched mod-
els also ensure that different combinations of ν and C0 are
represented within one model.

Prior to the EM forward calculation, the von Kármán mod-
els are re-discretized to 90 layers for faster forward compu-
tation and easier handling. The top-layer thickness and depth
to the last layer boundary for the re-discretized layers are
detailed in Table 3 for three generic EM systems with differ-
ent depths of investigations (see Sect. 3 for further details).
For the forward calculation, the geometric mean of the last
5 m of the re-discretized von Kármán models is assigned to
the last model layer that continues to infinite depth. In or-
der to avoid making assumptions on the acquisition condi-
tions, on the specific instrument setups, etc., the calculated
forward data are pragmatically assigned a uniform uncer-
tainty of 5 % to take noise into account and are inverted with
a 30-layer model with a minimum structure (smooth) regular-
ization scheme (Viezzoli et al., 2008). The layer thicknesses

for the 30-layer models are fixed, and they are listed in Ta-
ble 3. The red model curves in Fig. 1 represent the resistivity
models after the forward and inversion process and represent
the models that enter the DL-RMD. As seen from Fig. 1, the
von Kármán models hold structures that are not resolved by
the inverted resistivity models, so the models obtained after
the forward and inversion process result in structures resolv-
able by the EM method. A total of ∼ 95 % of the inverted
resistivity models explain (fit) the forward data within the
assumed data uncertainty. In other words, the inverted mod-
els are explaining the more complex von Kármán models to
a very high degree.

The forward and inverse modelling is carried out for three
different generic time-domain EM (TEM) systems spanning
different depth ranges using the AarhusInv modelling code
(Auken et al., 2015). The specific DL-RMD settings for dif-
ferent TEM systems are summarized in Sect. 3.

3 Deep learning resistivity model database
(DL-RMD)

EM systems for subsurface exploration have existed since the
1950s, and nowadays a large variety of airborne and ground-
based time-domain electromagnetic (TEM) and frequency-
domain electromagnetic (FEM) systems exist. Both TEM
and FEM methods map the electrical resistivity of the sub-
surface by inducing EM fields. TEM methods record the de-
cay of the secondary EM field in the absence of the transmit-
ted EM field in the time domain, while FEM methods record
the secondary EM field in the frequency domain in the pres-
ence of the transmitted EM field (Christiansen et al., 2006).
TEM and FEM methods also differ in resolution and depth of
investigation, depending on the TEM system configuration,
e.g. transmitter turn-off time, transmitter moment, and air-
borne or ground-based. For the DL-RMD to be compatible
for different TEM systems, we have compiled three model
databases with ∼ 1 million models in each for three generic
TEM systems with different depths of investigation as their
primary differences. We refer to the three DL-RMDs as shal-
low, intermediate, and deep, with the initialisms S-RMD, I-
RMD, and D-RMD, respectively. S-RMD mimics a shallow-
focusing ground-based TEM system, initiated by a short
transmitter turn-off time. For S-RMD, the models are dis-
cretized down to 125 m with a top-layer thickness of 0.5 m.
I-RMD and D-RMD mimic airborne TEM systems with dif-
ferent depths of investigation and are hence discretized down
to depths of 350 and 500 m and top-layer thicknesses of 3
and 5 m, respectively. The calculation of depth of investiga-
tion follows Christiansen and Auken (2012).

The model discretization details for the three DL-RMDs
for the initial von Kármán models and for the final resistivity
models entering the RMD are summarized in Table 3. Table 3
also holds the key specifications of the three generic TEM
systems. The settings for the generation of the von Kármán
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Table 3. Model discretization and key specifications of the generic TEM systems for three resistivity model databases. The generic TEM
systems are all central loop configurations.

Type Parameter S-RMD I-RMD D-RMD

Von Kármán models Max depth (m) 125 355 505 m
Discretization (m) 0.1 0.1 0.1
Re-discretization (m) 0.2–120 m,

90-layer log-spaced
1–350 m,
90-layer log-spaced

2–500 m,
90-layer log-spaced

Database resistivity
models

Model discretization 0.5–120 m,
30-layer log-spaced

3–350 m,
30-layer log-spaced

5–500 m,
30-layer log-spaced

Generic TEM Turn-off time (µs) 4 12 40
configuration ∗Gate time start (µs) 5 13 50

∗Gate time end (ms) 1 10 32
Modelling height (m) 0 – ground-based 40 – airborne 40 – airborne

∗ Gate start/end times have zero-time reference at the beginning of turn-off time.

Figure 2. Statistical insights into the DL-RMD. (a–c) Resistivity distributions of the S-RMD, I-RMD, and D-RMD, respectively. (d–f)
Distributions of depth of investigation of models in the S-RMD, I-RMD, and D-RMD, plotted as a cumulative sum.

models are specified in Table 2 and are common for the three
DL-RMDs. Each of the three DL-RMDs holds ∼ 1 million
models spanning the resistivity interval 1–2000�m, where
1/6 of the models originate from the initially generated von
Kármán models and where 5/6 of the models come from the
stitched, layered von Kármán models.

Some insights into the three DL-RMDs are given in Fig. 2,
where Fig. 2a–c show the layer resistivity distribution of the
three DL-RMDs. The resistivity distributions of the von Kár-
mán models were generated uniformly, but the forward and
inversion process makes the resistivity distribution slightly
skewed towards the lower-resistivity end, due to the lower
sensitivity/resolution in the high-resistivity end for the EM
method (Christiansen et al., 2006; Jørgensen et al., 2005).
The larger start and end bins compared to the neighbouring

bins in Fig. 2a–c are due to the 1 and 2000�m resistivity
truncation. The estimated depths of investigation for the three
DL-RMDs are shown in Fig. 2d–f. We observe that approxi-
mately 70 % of the models have depths of investigation that
are less than the depth to last layer boundary of the given DL-
RMD. Notably, a thick conductive layer near the surface will
significantly limit the depth of investigation for a given TEM
configuration. The uneven and in some cases limited depth of
investigation does not pose a problem for a deep learning al-
gorithm, as the EM method will compromise a similar depth
of investigation limitation for the given resistivity model (see
the Discussion section for more details).
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4 Example of an EM application using the DL-RMD

EM methods can benefit from the presented DL-RMD in
many ways. For example, the DL-RMD can be used to
surrogate the computationally expensive numerical forward
modelling by using a computationally efficient DL method,
which would speed up the whole inversion process. It can
also be used to develop a DL algorithm to replace the cal-
culation of the partial derivatives in deterministic inversion
methods, where the subsurface resistivity model is updated
iteratively by using the partial derivatives of the model pa-
rameters. Detecting anomalies in the EM data by using a
DL approach using the DL-RMD can significantly speed up
the EM data processing and limit the involvement of human-
centric manual workflows. Additionally, EM data de-noising
also becomes plausible.

As an example in this paper, we use the DL-RMD to surro-
gate the forward modelling problem for a ground-based TEM
system using a fast DL method, since a significant number of
forward calculations are required during the inversion pro-
cess, when either deterministic or stochastic inversion meth-
ods are used. By replacing the computationally expensive
numerical forward modelling approach, the whole inversion
process may be accelerated without further modification to
a standard inversion workflow (Asif et al., 2021b). However,
it is crucial that the performance of the DL method balances
the numerical precision and increased speed of computation.
If the prediction accuracy is not sufficiently high, the appli-
cation in an inversion framework may result in spurious sub-
surface features and erroneous geological interpretations of
the geophysical EM mapping results.

4.1 Deep learning (DL) setup

We design the surrogate model for the tTEM system (Auken
et al., 2018). The tTEM system is a ground-based towed
TEM system with a maximum depth of investigation of
120 m based on the data time interval from ∼ 5 µs to ∼ 1 ms,
which matches the specification of S-RMD; therefore, we use
it to train our DL method.

The input to the DL algorithm becomes the 30-layer resis-
tivity model m in S-RMD, where the layer thickness of each
resistivity layer is fixed. The target outputs are the numerical
TEM forward responses, i.e. dB/dt , for the corresponding
inputs. A standard EM modelling code (Auken et al., 2015)
is used to generate the TEM forward responses for the resis-
tivity models m with fixed layer thicknesses. We generate the
responses from ∼ 1 ns to ∼ 10 ms by exponentially increas-
ing gate widths sampled at 14 gates per decade.

Prior to the training of a DL method, inputs and the cor-
responding target outputs are normalized. Each resistivity
model m is normalized, where the logarithmic variations in
the model parameters can take both positive and negative val-

ues.

mn = log10 (m)−
µ

[
log10(mmax)+ log10 (mmin)

]
2

, (2)

where mmin and mmax are the minimum and maximum resis-
tivity values in the training dataset of S-RMD, and µ is the
mean.

The target outputs, i.e. dB/dt , are normalized by

dBn
dt
=

dB/dt − µ
[
dB/dt

]
)

σ
[
dB/dt

] , (3)

where µ is the mean, and σ is the standard deviation of each
data point in the training dataset.

We use a simple DL method where a fully connected feed-
forward neural network is utilized with two hidden layers,
each having 384 neurons. The hyperbolic tangent function
is used as an activation function between the hidden lay-
ers, and the full-batch scaled conjugate algorithm is used for
backpropagation. The loss function for training is the sum
of squared errors with a regularization term consisting of the
mean of sum of squares of the network weights and biases.
The network configuration used here is based on our previous
results (Asif et al., 2021b, 2022b). We also apply an early-
stopping criterion to ensure that the training stops when the
validation loss starts to increase. The validation set for the
early-stopping criterion comprises of 70 000 models from S-
RMD, which are excluded from the training set. Once the
network is trained, it can be used for evaluation purposes.
The evaluation metric for our baselines is the percentage rel-
ative error, RLP, defined in Eq. (4), which effectively deals
with the large dynamic range and patterns of TEM data.

RLP =
(dB/dt)DL− (dB/dt)N

(dB/dt)N
× 100%, (4)

where (dB/dt)DL is the output of the DL method, and
(dB/dt)N is the numerically computed forward response.

4.2 Surrogate forward-modelling results

To test the performance of our DL method trained on S-
RMD, we use 697 resistivity models inverted from field data
from a survey conducted in Søften, a region in Denmark. The
data processing and inversion step of the field data follows
the method developed by Auken et al. (2018), which covers
averaging, anomaly detection, manual inspection, etc. on the
data. The minimum and maximum resistivity values in the
test dataset are 3.9 and 127.1�m, respectively. The forward
responses of the field-inverted resistivity models are calcu-
lated numerically to compare them with the output of our DL
method. Since the output of our DL algorithm is the normal-
ized forward response, it is de-normalized to raw data val-
ues by manipulating Eq. (3). For a relative comparison, we
train another DL network with the same configuration using
the initial von Kármán resistivity models. The comparison
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Figure 3. Performance of the networks trained on S-RMD, von Kármán models, and random resistivity models. (a) RLP distribution. (b)
Cumulative distribution of RLP.

to the initial von Kármán resistivity models also allows us
to examine the effect of the forward/inversion process, as de-
scribed in Sect. 2, in the generation of the DL-RMD. We also
train an additional network using the random resistivity mod-
els, similarly to several DL studies (Colombo et al., 2021b;
Moghadas, 2020; Moghadas et al., 2020; Noh et al., 2020;
Puzyrev and Swidinsky, 2021; Qin et al., 2019; Wu et al.,
2021b) as mentioned in Table 1. To have the same level of
complexity, the number of layers, depth discretization, and
the number of random resistivity models are kept the same
as used to train the other two networks for a fair compar-
ison, and the resistivity of each layer is chosen randomly
from a log-uniform distribution to take into account the non-
linearity of the forward responses with the resistivity values.
As such, a resistivity change from 1 to 10�m would affect
the forward data more than a change from 100 to 110�m
(Asif et al., 2021a).

Figure 3 shows the performance comparison of the trained
networks based on the evaluation metric in Eq. (3) against the
forward responses of 697 resistivity models from the Søften
survey. Figure 3a shows the distribution of RLP of the DL
network trained on S-RMD. We also show the accuracy per-
formance of the DL networks trained on von Kármán and
the random resistivity models. It is evident that the network
trained on S-RMD results in lower errors as compared to the
network trained on von Kármán resistivity models. On the
other hand, the network trained on random resistivity mod-
els results in a poor accuracy performance. In quantitative
terms, 71 % of the data points are evaluated to be within half
a percent relative error for the network trained on S-RMD. In
comparison to S-RMD, the network trained on von Kármán
resistivity models results in 65 % of data points within half a
percent relative error. The network trained on random resis-
tivity models performs the worst, and only 34 % of the data
points are calculated to be within half a percent relative error.

We also show the cumulative distribution of RLP for the
networks trained on S-RMD, von Kármán models, and ran-
dom models in Fig. 3b. A maximum of 9 % improvement in
accuracy is achieved for the network trained on the S-RMD
as compared to the von Kármán models. In comparison to the
network trained on random resistivity models, an improve-
ment of 43 % is achieved when S-RMD is used for training.
The increase in accuracy is achieved only by using an ap-
propriate dataset for training. The prediction accuracy can be
improved with different data pre-processing, network con-
figurations, loss functions, etc. while using the same training
dataset to allow for consistency in benchmarking of DL algo-
rithms. It is also important that a balance between the predic-
tion performance and computational efficiency is maintained.
As such, the computational time for the forward pass of the
proposed network configuration can serve as a baseline for
time comparison.

Figure 4 shows a visual comparison of a numerical for-
ward response against the forward response from the trained
networks for one of the resistivity models from the Søften
survey. It is evident from Fig. 4 that the forward response
from the network trained on S-RMD is the most accurate and
has a maximum relative error of 1.4 % for the data point at
∼ 72 µs (see Fig. 4a). The highest error for the forward re-
sponse from the network trained on von Kármán models is
observed to be 2.5 % for the data point at ∼ 160 µs as shown
in Fig. 4b. The forward response from the network trained
on random models results in the worst accuracy performance
and results in a maximum error of 22.3 % for the data point
at 100 µs (see Fig. 4c).

5 Discussion

The network trained on random resistivity models results in
a poor accuracy performance as many of the resistivity mod-
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Figure 4. Comparison of performance of the networks trained on S-RMD, von Kármán models, and random resistivity models with a
numerical forward response from the test set. The forward responses are shown only within the time range of tTEM data, and the inset
shows the forward response from 16 to 20 µs (a) Numerical forward response vs. the forward response from the network trained on S-RMD.
(b) Numerical forward response vs. the forward response from the network trained on von Kármán models. (c) Numerical forward response
vs. the forward response from the network trained on random resistivity models.

els in the training dataset are geologically unrealistic. The
complex, unrealistic resistivity structures in the randomly
generated training models would result in forward responses
similar to the ones obtained from simpler resistivity models,
which further decreases the quality of the training dataset.
The von Kármán models may be considered pseudorandom
resistivity models where the resistivity structure of the mod-
els has a geologically realistic nature, as it considers multi-
ple correlation lengths with a stochastic nature resembling
geological processes. Due to the geological nature of the
von Kármán models, the network trained on such models re-
sults in a decent performance accuracy. However, the net-
work trained on von Kármán models has a lower accuracy
performance as compared to the network trained on S-RMD,
where the resolution capability of the EM method has been
taken into account, resulting in resistivity structures resolv-
able by the EM method.

The resolution capability and the depth of investigation for
a given TEM system strongly depend on the underlying re-
sistivity model. Therefore, stating a single depth of investi-
gation value for a given TEM system is not appropriate. A

single exploration depth, depth of investigation, or a simi-
lar value stated by the instrument manufacturers will often
be an optimistic one. For TEM systems with short transmit-
ter current turn-off, the early data points provide the near-
surface resolution, while the late data points strongly control
the depth of investigation for a given resistivity model. The
transmitter moment and the background noise level also in-
fluence the depth of investigation, but these factors are not
considered in our case, since we have assumed a uniform
data uncertainty in the forward and inversion process. The
three DL-RMDs span different TEM systems and resolu-
tions. Therefore, for a particular TEM system, one should
pick the DL-RMD that has a similar resolution as the under-
lying generic TEM system. This is best evaluated by match-
ing the time interval of the data for the particular TEM sys-
tem to the data time interval (data time start/end in Table 3)
for the generic TEM system.

In Table 4, we list some examples of the compatibility
of our DL-RMD with some well-known TEM systems. De-
spite I-RMD and D-RMD being compiled for a generic air-
borne system, I-RMD and D-RMD are also appropriate for
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Table 4. Examples of DL-RMD compatibility for some TEM sys-
tems.

System Resistivity model database

S-RMD I-RMD D-RMD

EQUATOR
(Karshakov et al., 2017)

X

tTEM
(Auken et al., 2018)

X

MEGATEM
(Smith et al., 2003)

X

AEROTEM
(Balch et al., 2003)

X

SkyTEM
(Sørensen and Auken, 2004)

X X

GEOTEM
(Smith, 2010)

X X

SPECTREMPLUS

(Leggatt et al., 2000)
X

ground-based TEM systems since the simulated flight alti-
tude of 40 m does not lead to a drastic change in the vertical
resolution.

Since FEM and TEM systems follow the same laws of
physics, the DL-RMD is also applicable for many FEM sys-
tems, despite the generic EM system in the forward/inver-
sion process mimicking the TEM systems. In general, the
FEM systems have a shallower depth of investigation than
that of the TEM systems, hence, the S-RMD is best suited
for FEM systems. An alternative to the DL-RMD is to gen-
erate the resistivity model realizations by following the de-
scribed methodology for the specific EM system by using
the von Kármán models provided (Asif et al., 2022a). This
will ensure a 100 % match between resolution, depth of in-
vestigation, etc. in the model domain compared to sensitivity
in the EM data domain.

Despite the initial von Kármán models with superim-
posed layering, the resistivity models in the DL-RMD have
a pronounced vertical smooth behaviour due to the mini-
mum structure (smooth) regularization scheme (Viezzoli et
al., 2008) used in the inversion phase. When applying an-
other regularization scheme in the inversion phase, e.g. the
minimum support norm (Vignoli et al., 2015), or when us-
ing a few-layer model discretization with no vertical regular-
ization, one could compile a resistivity model database with
different appearances. For our DL-RMD, we chose the min-
imum structure regularization scheme, since it is commonly
used for inverting airborne and ground-based EM data. It is
important to point out that a TEM data curve itself does not
hold information about whether subsurface boundaries are
smooth or sharp. As such, both smooth and sharp-layered
models will explain the recorded data equally well in most

cases. With our approach of compiling resistivity models,
we have tried to avoid the inclusion of models with differ-
ent smooth/sharp behaviours that result in identical or close
to identical forward data responses (equivalent models).

The DL-RMD is generated in the resistivity range of 1–
2000�m, which covers most of the geological settings, tak-
ing into account the EM mapping capability in the high-
resistivity range. The resistivity limit of 2000�m was cho-
sen since EM methods have no or very low sensitivity in the
high-resistivity range, since high-resistivity materials (gran-
ite, basalt, glacier ice, etc.) produce an EM signal below the
detection level. Despite the 2000�m limit, the resistivity dis-
tribution of the models in the DL-RMD is slightly skewed
towards lower resistivities due to the limited sensitivity of
the EM method to high-resistivity values. A slight bias to-
wards lower-resistivity values may affect the performance of
a DL method for highly resistive models. However, even if
an actual subsurface model is represented by a highly resis-
tive model, it is expected that any TEM method would have
difficulty in resolving such a model. The RMD also has a
limitation in the low-resistivity end, e.g. in settings with sea-
water and saltwater intrusion, which may result in subsurface
materials with resistivity values below 1�m.

Since the 1-D models of the DL-RMD hold resistivity vari-
ations in one dimension (vertical) only, they cannot be used
for calculating 2-D or 3-D EM responses. Examples of ge-
ological settings where a 1-D approach would be inappro-
priate include steep-dipping geological structures, thin sheet
mineralization, mapping close to or on the shoreline, or areas
with strong topographical variations. However, one could ap-
ply the same methodology to compile a 2-D or 3-D resistivity
database. In this case, one would generate the initial von Kár-
mán models as a 2-D section or 3-D volumes and use a 2-D or
3-D forward and inversion process, which of course would be
much more computationally expensive compared to the 1-D
case. However, the DL-RMD provided in this study opens up
the possibility of exploring more deep learning frameworks,
which have reliability and consistency in performance com-
parisons for 1-D models.

6 Code and data availability

The DL-RMD is freely available at
https://doi.org/10.5281/zenodo.7260886 (Asif et al.,
2022a), and a ready-to-run demo code in Python Jupyter
Notebook that uses the network trained on S-RMD and
reproduces the results of this paper is available at https:
//github.com/rizwanasif/DL-RMD (last access: 17 March
2023) (DOI: https://doi.org/10.5281/zenodo.7740243, Asif,
2023).

The EM modelling code “AarhusInv” used to generate
EM forward responses in this study is freely available to
researchers for non-commercial activities. The details are
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available at https://hgg.au.dk/software/aarhusinv (Auken et
al., 2015).

7 Conclusion

We have presented a methodology for compiling a geo-
physically constrained subsurface resistivity model database
for applications related to electromagnetic data. We gener-
ated three 1-D resistivity databases, discretized to depths
of 120, 350, and 500 m in the resistivity range of 1–
2000�m, hence covering various ground-based and airborne
frequency-domain and time-domain electromagnetic systems
and most of the geological settings. The upper resistivity
limit of the model database is satisfactory as the electro-
magnetic methods have limitations for high resistivity; how-
ever, the model database has limitations in the low resistivity
limit for subsurface materials below 1�m that may occur
in some cases. Additionally, the database holds 1-D models
and therefore inherits the limitations of 1-D electromagnetic
modelling.

An example is included using the proposed resistivity
model database and deep learning for surrogating TEM for-
ward modelling, showing that high accuracy can be obtained
with our resistivity model database. Furthermore, the exam-
ple shows that the forward/inversion steps in the generation
of the database lead to a significantly increased performance
in the forward modelling.

Despite some limitations, the generated resistivity model
database is a well-organized database, which empowers the
geoscience community to have consistency and credibility in
the development of deep learning methods for many tasks
including surrogating forward modelling, inverse modelling,
data de-noising, automatic data processing, etc. Therefore,
we urge the geophysical community to utilize the presented
database to develop and investigate different network config-
urations, data pre-processing strategies, loss functions, etc.
while using the presented model database to allow for con-
sistency in benchmarking deep learning algorithms. The re-
sistivity model database has already proven valuable in sig-
nificantly improving the accuracy of neural networks for the
forward modelling of electromagnetic data.
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