Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4743-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4743-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
Yutian Ke
CORRESPONDING AUTHOR
GEOPS, Université Paris-Saclay-CNRS, Orsay, 91405, France
now at: Division of Geological and Planetary Sciences, California
Institute of Technology, Pasadena, CA 91125, USA
Damien Calmels
GEOPS, Université Paris-Saclay-CNRS, Orsay, 91405, France
Julien Bouchez
Institut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, 75005, France
Cécile Quantin
GEOPS, Université Paris-Saclay-CNRS, Orsay, 91405, France
Related authors
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Sofía López-Urzúa, Louis Derry, and Julien Bouchez
EGUsphere, https://doi.org/10.5194/egusphere-2025-78, https://doi.org/10.5194/egusphere-2025-78, 2025
Short summary
Short summary
Silicon (Si) is essential for ecosystem health and Earth's climate, yet human activities such as agriculture have significantly disrupted its natural cycle. In a French agricultural catchment, we found that crop harvesting removes most of the Si released from rocks—1 to 4 times more than the dissolved Si transport downstream by rivers. Using geochemical tools, including Si isotopes and germanium-silicon ratio, we traced Si cycling and highlighted the impact of agriculture on Si exports.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Quentin Bollaert, Mathieu Chassé, Guillaume Morin, Benoît Baptiste, Alexandra Courtin, Laurence Galoisy, Gautier Landrot, Cécile Quantin, and Georges Calas
Eur. J. Mineral., 36, 55–72, https://doi.org/10.5194/ejm-36-55-2024, https://doi.org/10.5194/ejm-36-55-2024, 2024
Short summary
Short summary
X-ray absorption spectroscopy (XAS) was successfully used to investigate the atomic-scale environment of niobium (Nb) in ore minerals and Nb-doped compounds of technological importance. The demonstrated sensitivity of this technique to Nb minerals could help decipher Nb speciation in mining contexts such as hydrothermal and lateritic deposits and rationalize the origin of the enhanced physico-chemical properties of Nb-doped materials.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Quentin Charbonnier, Julien Bouchez, Jérôme Gaillardet, and Éric Gayer
Biogeosciences, 17, 5989–6015, https://doi.org/10.5194/bg-17-5989-2020, https://doi.org/10.5194/bg-17-5989-2020, 2020
Short summary
Short summary
The abundance and isotope composition of the trace metal barium (Ba) allows us to track and quantify nutrient cycling throughout the Amazon Basin. In particular, we show that the Ba biological fingerprint evolves from that of a strong net nutrient uptake in the mountainous area of the Andes towards efficient nutrient recycling on the plains of the Lower Amazon. Our study highlights the fact that the geochemical signature of rock-derived nutrients transported by the Amazon is scarred by life.
Cited articles
Baronas, J. J., Stevenson, E. I., Hackney, C. R., Darby, S. E., Bickle, M. J., Hilton, R. G., Larkin, C. S., Parsons, D. R., Khaing, A. M., and Tipper, E. T.: Integrating suspended sediment flux in large alluvial river channels: application of a synoptic Rouse-based model to the Irrawaddy and Salween rivers, J. Geophys. Res., 125, e2020JF00555, https://doi.org/10.1029/2020JF005554, 2020.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter,
A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2,
598–600, https://doi.org/10.1038/ngeo618, 2009.
Berner, R. A.: The long-term carbon cycle, fossil fuels and atmospheric
composition, Nature, 426, 323–326, https://doi.org/10.1038/nature02131, 2003.
Best, J.: Anthropogenic stresses on the world's big rivers, Nat. Geosci.,
12, 7–21, https://doi.org/10.1038/s41561-018-0262-x, 2019.
Blair, N. E. and Aller, R. C.: The fate of terrestrial organic carbon in the
marine environment., Ann. Rev. Mar. Sci., 4, 401–423, https://doi.org/10.1146/annurev-marine-120709-142717, 2012.
Blair, N. E., Leithold, E. L., Ford, S. T., Peeler, K. A., Holmes, J. C.,
and Perkey, D. W.: The persistence of memory: The fate of ancient
sedimentary organic carbon in a modern sedimentary system, Geochim.
Cosmochim. Acta, 67, 63–73, https://doi.org/10.1016/S0016-7037(02)01043-8, 2003.
Blair, N. E., Leithold, E. L., and Aller, R. C.: From bedrock to burial: the
evolution of particulate organic carbon across coupled watershed-continental
margin systems, Mar. Chem., 92, 141–156, https://doi.org/10.1016/j.marchem.2004.06.023, 2004.
Blair, N. E., Leithold, E. L., Brackley, H., Trustrum, N., Page, M., and Childress, L.: Terrestrial sources and export of particulate organic carbon in the Waipaoa sedimentary system: Problems, progress and processes, Mar. Geol., 270, 108–118, https://doi.org/10.1016/j.margeo.2009.10.016, 2010.
Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., and Dutra-maia,
P.: Grain size control of river suspended sediment geochemistry: Clues from
Amazon River depth profiles, Geochem. Geophy. Geosy., 12, Q03008,
https://doi.org/10.1029/2010GC003380, 2011.
Bouchez, J., Galy, V., Hilton, R. G., Gaillardet, J., Moreira-Turcq, P.,
Pérez, M. A., France-Lanord, C., and Maurice, L.: Source, transport and
fluxes of Amazon River particulate organic carbon: Insights from river
sediment depth-profiles, Geochim. Cosmochim. Acta, 133, 280–298, 2014.
Burdige, D. J.: Burial of terrestrial organic matter in marine sediments: A
re-assessment, Global Biogeochem. Cy., 19, GB4011,
https://doi.org/10.1029/2004gb002368, 2005.
Campeau, A., Soerensen, A. L., Martma, T., Åkerblom, S., and Zdanowicz,
C.: Controls on the 14C content of dissolved and particulate organic
carbon mobilized across the Mackenzie River basin, Canada, Global
Biogeochem. Cy., 34, e2020GB006671, https://doi.org/10.1029/2020GB006671, 2020.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca,
M., Saatchi, S., Santoro, M., Thurner, M., and Weber, U.: Global covariation
of carbon turnover times with climate in terrestrial ecosystems, Nature,
514, 213–217, https://doi.org/10.1038/nature13731, 2014.
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J.,
Eisenmann, V., and Ehleringer, J. R.: Global vegetation change through the
Miocene/Pliocene boundary, Nature, 389, 153–158, https://doi.org/10.1038/38229, 1997.
Cohen, S., Kettner, A. J., and Syvitski, J. P. M.: Global suspended sediment
and water discharge dynamics between 1960 and 2010: Continental trends and
intra-basin sensitivity, Glob. Planet. Change, 115, 44–58, https://doi.org/10.1016/j.gloplacha.2014.01.011, 2014.
Coppola, A. I., Wiedemeier, D. B., Galy, V., Haghipour, N., Hanke, U. M.,
Nascimento, G. S., Usman, M., Blattmann, T. M., Reisser, M., Freymond, C.
V., Zhao, M. X., Voss, B., Wacker, L., Schefuß, E., Peucker-Ehrenrink,
B., Abiven, Samuel., Schmidt, M. W., and Eglinton, T. I.: Global-scale
evidence for the refractory nature of riverine black carbon, Nat. Geosci.,
11, 584–588, https://doi.org/10.1038/s41561-018-0159-8,
2019.
Dethier, E. N., Renshaw, C. E., and Magilligan, F. J.: Rapid changes to
global river suspended sediment flux by humans, Science, 376, 1447–1452,
https://doi.org/10.1126/science.abn7980, 2022.
Donahue, D. J., Linick, T. W., and Jull, A. T.: Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements, Radiocarbon, 32, 135–142, https://doi.org/10.1017/S0033822200040121, 1990.
Eglinton, T. I., Galy, V. V, Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F.,
Gies, H., Giosan, L., and Haghipour, N.: Climate control on terrestrial
biospheric carbon turnover, P. Natl. Acad. Sci. USA, 118, e2011585118, https://doi.org/10.1073/pnas.2011585118, 2021.
Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip,
F., Giosan, L., and Eglinton, T. I.: Constraining Instantaneous Fluxes and
Integrated Compositions of Fluvially Discharged Organic Matter, Geochem.
Geophy. Geosy., 19, 2453–2462, https://doi.org/10.1029/2018GC007539, 2018.
Frith, N. V., Hilton, R. G., Howarth, J. D., Gröcke, D. R., Fitzsimons,
S. J., Croissant, T., Wang, J., McClymont, E. L., Dahl, J., and Densmore, A.
L.: Carbon export from mountain forests enhanced by earthquake-triggered
landslides over millennia, Nat. Geosci., 11, 772–776,
https://doi.org/10.1038/s41561-018-0216-3, 2018.
Galy, V. and Eglinton, T.: Protracted storage of biospheric carbon in the
Ganges-Brahmaputra basin, Nat. Geosci., 4, 843–847, https://doi.org/10.1038/ngeo1293, 2011.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and
Palhol, F.: Efficient organic carbon burial in the Bengal fan sustained by
the Himalayan erosional system, Nature, 450, 407–410, https://doi.org/10.1038/nature06273, 2007.
Galy, V., Beyssac, O., France-Lanord, C., and Eglinton, T.: Recycling of
Graphite During Himalayan Erosion: A Geological Stabilization of Carbon in
the Crust, Science, 322, 943–945, https://doi.org/10.1126/science.1161408, 2008a.
Galy, V., France-Lanord, C., and Lartiges, B.: Loading and fate of
particulate organic carbon from the Himalaya to the Ganga–Brahmaputra
delta, Geochim. Cosmochim. Acta, 72, 1767–1787, https://doi.org/10.1016/j.gca.2008.01.027, 2008b.
Galy, V., Peucker-Ehrenbrink, B., and Eglinton, T. I.: Global carbon export
from the terrestrial biosphere controlled by erosion, Nature, 521, 204–207,
https://doi.org/10.1038/nature14400, 2015.
Gao, Q., Tao, Z., Yao, G., Ding, J., Liu, Z., and Liu, K.: Elemental and
isotopic signatures of particulate organic carbon in the Zengjiang River,
southern China, Hydrol. Process. An Int. J., 21, 1318–1327, https://doi.org/10.1002/hyp.6358, 2007.
Godin, P., Macdonald, R. W., Kuzyk, Z. Z. A., Goñi, M. A., and Stern, G.
A.: Organic matter compositions of rivers draining into Hudson Bay:
Present-day trends and potential as recorders of future climate change, J.
Geophys. Res.-Biogeo., 122, 1848–1869, https://doi.org/10.1002/2016JG003569, 2017.
Hemingway, J. D., Rothman, D. H., Grant, K. E., Rosengard, S. Z., Eglinton,
T. I., Derry, L. A., and Galy, V. V: Mineral protection regulates long-term
global preservation of natural organic carbon, Nature, 570, 228–231,
https://doi.org/10.1038/s41586-019-1280-6, 2019.
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat.
Rev. Earth Environ., 1, 284–299, https://doi.org/10.1038/s43017-020-0058-6, 2020.
Hilton, R. G., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., and Chen,
H.: Tropical-cyclone-driven erosion of the terrestrial biosphere from
mountains, Nat. Geosci., 1, 759–762, https://doi.org/10.1038/ngeo333, 2008.
Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J., and Chen, H.: The isotopic composition of particulate organic carbon in mountain rivers of Taiwan, Geochim. Cosmochim. Ac., 74, 3164–3181, https://doi.org/10.1016/j.gca.2010.03.004, 2010.
Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J., and Chen, H.: Efficient
transport of fossil organic carbon to the ocean by steep mountain rivers: An
orogenic carbon sequestration mechanism, Geology, 39, 71–74, https://doi.org/10.1130/G31352.1, 2011.
Hilton, R. G., Gaillardet, J., Calmels, D., and Birck, J.-L.: Geological
respiration of a mountain belt revealed by the trace element rhenium, Earth
Planet. Sci. Lett., 403, 27–36, https://doi.org/10.1016/j.epsl.2014.06.021, 2014.
Hilton, R. G., Galy, V., Gaillardet, J., Dellinger, M., Bryant, C., O'Regan,
M., Gröcke, D. R., Coxall, H., Bouchez, J., and Calmels, D.: Erosion of
organic carbon in the Arctic as a geological carbon dioxide sink, Nature,
524, 84–87, https://doi.org/10.1038/nature14653, 2015.
Holmes, R. M., McClelland, J. W., Tank, S. E., Spencer, R. G. M., and
Shiklomanov, A. I.: Water Quality Dataset, Arctic Great Rivers Observatory, Version 20220609, https://www.arcticgreatrivers.org/data, last access: 9 June 2022.
Hu, B., Li, J., Bi, N., Wang, H., Wei, H., Zhao, J., Xie, L., Zou, L., Cui,
R., Li, S., Liu, M., and Li, G.: Effect of human-controlled hydrological
regime on the source, transport, and flux of particulate organic carbon from
the lower Huanghe (Yellow River), Earth Surf. Proc. Land., 40,
1029–1042, https://doi.org/10.1002/esp.3702, 2015.
Ittekkot, V.: Global trends in the nature of organic matter in river
suspensions, Nature, 332, 436–438, 1988.
Kao, S.-J., Hilton, R. G., Selvaraj, K., Dai, M., Zehetner, F., Huang, J.-C., Hsu, S.-C., Sparkes, R., Liu, J. T., Lee, T.-Y., Yang, J.-Y. T., Galy, A., Xu, X., and Hovius, N.: Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration, Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, 2014.
Ke, Y. T., Calmels, D., Bouchez, J., and Quantin, C.: MOdern River archivEs of Particulate Organic Carbon: MOREPOC (1.1), Zenodo
[data set], https://doi.org/10.5281/zenodo.7055970, 2022.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from
coastal sediments for the determination of organic carbon and its isotopic
signatures, δ13C and Δ14C: comparison of
fumigation and direct acidification by hydrochloric acid, Limnol. Oceanogr.
Methods, 6, 254–262, https://doi.org/10.4319/lom.2008.6.254, 2008.
Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0, Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, 2020.
Leithold, E. L., Blair, N. E., and Perkey, D. W.: Geomorphologic controls on
the age of particulate organic carbon from small mountainous and upland
rivers, Global Biogeochem. Cy., 20, GB3022, https://doi.org/10.1029/2005GB002677, 2006.
Leithold, E. L., Blair, N. E., and Wegmann, K. W.: Source-to-sink
sedimentary systems and global carbon burial: A river runs through it,
Earth-Sci. Rev., 153, 30–42, https://doi.org/10.1016/j.earscirev.2015.10.011, 2016.
Longworth, B. E., Petsch, S. T., Raymond, P. A., and Bauer, J. E.: Linking
lithology and land use to sources of dissolved and particulate organic
matter in headwaters of a temperate, passive-margin river system, Geochim.
Cosmochim. Acta, 71, 4233–4250, https://doi.org/10.1016/j.gca.2007.06.056, 2007.
Ludwig, W., Probst, J.-L., and Kempe, S.: Predicting the oceanic input of
organic carbon by continental erosion, Global Biogeochem. Cy., 10,
23–41, https://doi.org/10.1029/95GB02925, 1996.
Maavara, T., Lauerwald, R., Regnier, P., and Van Cappellen, P.: Global
perturbation of organic carbon cycling by river damming, Nat. Commun., 8,
15347, https://doi.org/10.1038/ncomms15347, 2017.
Martens, J., Romankevich, E., Semiletov, I., Wild, B., van Dongen, B., Vonk, J., Tesi, T., Shakhova, N., Dudarev, O. V., Kosmach, D., Vetrov, A., Lobkovsky, L., Belyaev, N., Macdonald, R. W., Pieńkowski, A. J., Eglinton, T. I., Haghipour, N., Dahle, S., Carroll, M. L., Åström, E. K. L., Grebmeier, J. M., Cooper, L. W., Possnert, G., and Gustafsson, Ö.: CASCADE – The Circum-Arctic Sediment CArbon DatabasE, Earth Syst. Sci. Data, 13, 2561–2572, https://doi.org/10.5194/essd-13-2561-2021, 2021.
Martin, E. E., Ingalls, A. E., Richey, J. E., Keil, R. G., Santos, G. M.,
Truxal, L. T., Alin, S. R., and Druffel, E. R. M.: Age of riverine carbon
suggests rapid export of terrestrial primary production in tropics, Geophys.
Res. Lett., 40, 5687–5691, https://doi.org/10.1002/2013GL057450, 2013.
Marwick, T. R., Tamooh, F., Teodoru, C. R., Borges, A. V, Darchambeau, F.,
and Bouillon, S.: The age of river transported carbon: A global perspective,
Global Biogeochem. Cy., 29, 122–137, https://doi.org/10.1002/2014GB004911, 2015.
Masiello, C. A. and Druffel, E. R. M.: Carbon isotope geochemistry of the
Santa Clara River, Global Biogeochem. Cy., 15, 407–416, https://doi.org/10.1029/2000GB001290, 2001.
Mayer, L. M.: Surface area control of organic carbon accumulation in
continental shelf sediments, Geochim. Cosmochim. Acta, 58, 1271–1284,
https://doi.org/10.1016/0016-7037(94)90381-6, 1994.
Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V, Hedges, J.
I., Quay, P. D., Richey, J. E., and Brown, T. A.: Young organic matter as a
source of carbon dioxide outgassing from Amazonian rivers, Nature, 436,
538–541, https://doi.org/10.1038/nature03880, 2005.
Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H.
W., Bouwman, A. F., Fekete, B. M., Kroeze, C., and Van Drecht, G.: Global
nutrient export from WaterSheds 2 (NEWS 2): model development and
implementation, Environ. Model. Softw., 25, 837–853, https://doi.org/10.1016/j.envsoft.2010.01.007, 2010.
Meybeck, M.: Riverine transport of atmospheric carbon: sources, global
typology and budget, Water. Air. Soil Pollut., 70, 443–463, https://doi.org/10.1007/BF01105015, 1993.
Milliman, J. D. and Farnsworth, K. L.: River discharge to the coastal ocean:
a global synthesis, Cambridge University Press, ISBN 978-0-521-87987-3, 2011.
Montgomery, D. R.: Soil erosion and agricultural sustainability, P. Natl. Acad. Sci. USA, 104, 13268–13272, https://doi.org/10.1073/pnas.0611508104, 2007.
Petsch, S. T.: Weathering of organic carbon, Treatise on Geochemistry, 2nd edn., Elsevier Science, 12, 217–238, https://doi.org/10.1016/B978-0-08-095975-7.01013-5, 2014.
Qu, Y., Jin, Z., Wang, J., Wang, Y., Xiao, J., Gou, L., Zhang, F., Liu, C.,
Gao, Y., Suarez, M. B., and Xu, X.: The sources and seasonal fluxes of
particulate organic carbon in the Yellow River, Earth Surf. Proc.
Land., 45, 2004–2019, https://doi.org/10.1002/esp.4861, 2020.
Quinton, J. N., Govers, G., Van Oost, K., and Bardgett, R. D.: The impact of
agricultural soil erosion on biogeochemical cycling, Nat. Geosci., 3,
311–314, https://doi.org/10.1038/ngeo838, 2010.
Raymond, P. A. and Bauer, J. E.: Riverine export of aged terrestrial organic
matter to the North Atlantic Ocean, Nature, 409, 497–500, https://doi.org/10.1038/35054034, 2001.
Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H.,
Haghipour, N., Gröcke, D. R., Orfeo, O., Eglinton, T. I., and Sachse,
D.: Fluvial organic carbon cycling regulated by sediment transit time and
mineral protection, Nat. Geosci., 14, 842–848, https://doi.org/10.1038/s41561-021-00845-7, 2021.
Schwab, M. S., Hilton, R. G., Raymond, P. A., Haghipour, N., Amos, E., Tank, S. E., Holmes, R. M., Tipper, E. T., and Eglinton, T. I.: An Abrupt Aging of Dissolved Organic Carbon in Large Arctic Rivers, Geophys. Res. Lett., 47, e2020GL088823, https://doi.org/10.1029/2020gl088823, 2020.
Schidlowski, M.: A 3,800-million-year isotopic record of life from carbon in
sedimentary rocks, Nature, 333, 313–318, https://doi.org/10.1038/333313a0, 1988.
Schuur, E. A., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W.,
Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Shi, Z., Allison, S. D., He, Y., Levine, P. A., Hoyt, A. M., Beem-Miller,
J., Zhu, Q., Wieder, W. R., Trumbore, S., and Randerson, J. T.: The age
distribution of global soil carbon inferred from radiocarbon measurements,
Nat. Geosci., 13, 555–559, https://doi.org/10.1038/s41561-020-0596-z, 2020.
Spencer, R. G. M., Hernes, P. J., Aufdenkampe, A. K., Baker, A., Gulliver,
P., Stubbins, A., Aiken, G. R., Dyda, R. Y., Butler, K. D., and Mwamba, V.
L.: An initial investigation into the organic matter biogeochemistry of the
Congo River, Geochim. Cosmochim. Acta, 84, 614–627, https://doi.org/10.1016/j.gca.2012.01.013, 2012.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling
weathering and erosion to carbon burial, Global Biogeochem. Cy., 12,
231–257, https://doi.org/10.1029/98GB00741, 1998.
Still, C. J., Berry, J. A., Collatz, G. J., and DeFries, R. S.: Global
distribution of C3 and C4 vegetation: carbon cycle implications, Global Biogeochem. Cy., 17, 1–6, https://doi.org/10.1029/2001GB001807, 2003.
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data,
Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Syvitski, J., Ángel, J. R., Saito, Y., Overeem, I., Vörösmarty,
C. J., Wang, H., and Olago, D.: Earth's sediment cycle during the
Anthropocene, Nat. Rev. Earth Environ., 3, 179–196,
https://doi.org/10.1038/s43017-021-00253-w, 2022.
Tamooh, F., Borges, A. V., Meysman, F. J. R., Van Den Meersche, K., Dehairs, F., Merckx, R., and Bouillon, S.: Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River basin, Kenya, Biogeosciences, 10, 6911–6928, https://doi.org/10.5194/bg-10-6911-2013, 2013.
Tao, S., Eglinton, T. I., Montluçon, D. B., McIntyre, C., and Zhao, M.:
Pre-aged soil organic carbon as a major component of the Yellow River
suspended load: Regional significance and global relevance, Earth Planet.
Sci. Lett., 414, 77–86, https://doi.org/10.1016/j.epsl.2015.01.004, 2015.
Townsend-Small, A., Noguera, J. L., McClain, M. E., and Brandes, J. A.:
Radiocarbon and stable isotope geochemistry of organic matter in the Amazon
headwaters, Peruvian Andes, Global Biogeochem. Cy., 21, GB2029, https://doi.org/10.1029/2006GB002835, 2007.
van der Voort, T. S., Blattmann, T. M., Usman, M., Montluçon, D., Loeffler, T., Tavagna, M. L., Gruber, N., and Eglinton, T. I.: MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): a (radio)carbon-centric database for seafloor surficial sediments, Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, 2021.
van Hoek, W. J., Wang, J., Vilmin, L., Beusen, A. H. W., Mogollón, J.
M., Müller, G., Pika, P. A., Liu, X., Langeveld, J. J., Bouwman, A. F.,
and Middelburg, J. J.: Exploring Spatially Explicit Changes in Carbon
Budgets of Global River Basins during the 20th Century, Environ. Sci.
Technol., 55, 16757–16769, https://doi.org/10.1021/acs.est.1c04605, 2021.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015.
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec,
M., Ruff, M., Suter, M., Synal, H.-A., and Vockenhuber, C.: MICADAS: routine
and high-precision radiocarbon dating, Radiocarbon, 52, 252–262, https://doi.org/10.1017/S0033822200045288, 2010.
Wang, J., Jin, Z., Hilton, R. G., Zhang, F., Densmore, A. L., Li, G., and
West, A. J.: Controls on fluvial evacuation of sediment from
earthquake-triggered landslides, Geology, 43, 115–118,
https://doi.org/10.1130/g36157.1, 2015.
Wang, J., Hilton, R. G., Jin, Z., Zhang, F., Densmore, A. L., Gröcke, D.
R., Xu, X., Li, G., and West, A. J.: The isotopic composition and fluxes of
particulate organic carbon exported from the eastern margin of the Tibetan
Plateau, Geochim. Cosmochim. Acta, 252, 1–15, https://doi.org/10.1016/j.gca.2019.02.031, 2019.
Wang, X., Ma, H., Li, R., Song, Z., and Wu, J.: Seasonal fluxes and source
variation of organic carbon transported by two major Chinese Rivers: The
Yellow River and Changjiang (Yangtze) River, Global Biogeochem. Cy., 26, GB2025, https://doi.org/10.1029/2011gb004130, 2012.
Wild, B., Andersson, A., Bröder, L., Vonk, J., Hugelius, G., McClelland,
J. W., Song, W., Raymond, P. A., and Gustafsson, Ö.: Rivers across the
Siberian Arctic unearth the patterns of carbon release from thawing
permafrost, P. Natl. Acad. Sci. USA, 116, 10280–10285, https://doi.org/10.1073/pnas.1811797116, 2019.
Wu, Y., Eglinton, T. I., Zhang, J., and Montlucon, D. B.: Spatiotemporal
Variation of the Quality, Origin, and Age of Particulate Organic Matter
Transported by the Yangtze River (Changjiang), J. Geophys. Res., 123,
2908–2921, https://doi.org/10.1029/2017JG004285, 2018.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the Global
Carbon Budget, Science, 312, 1612–1613, https://doi.org/10.1126/science.1128908, 2006.
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
In this paper, we introduce the largest and most comprehensive database for riverine particulate...
Altmetrics
Final-revised paper
Preprint