Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4271-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4271-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A strontium isoscape of inland southeastern Australia
Patrice de Caritat
CORRESPONDING AUTHOR
Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia
Anthony Dosseto
Wollongong Isotope Geochronology Laboratory, School of Earth,
Atmospheric and Life Sciences, University of Wollongong, Wollongong NSW
2522, Australia
Florian Dux
Wollongong Isotope Geochronology Laboratory, School of Earth,
Atmospheric and Life Sciences, University of Wollongong, Wollongong NSW
2522, Australia
Related authors
Anthony Dosseto, Florian Dux, Clement Bataille, and Patrice de Caritat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-277, https://doi.org/10.5194/essd-2025-277, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils that are taken up by plants and animals. These ratios vary depending on local geology and are useful for tracing the origins of people, animals, and food. By combining new data from across Australia with global datasets and a machine learning model, we produced a national prediction that supports research in archaeology, ecology, and forensic science.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research, 2, 315–327, https://doi.org/10.5194/ar-2-315-2024, https://doi.org/10.5194/ar-2-315-2024, 2024
Short summary
Short summary
Dust deposition flux was investigated in lutruwita / Tasmania, Australia, between 2016–2021. Results show that the use of direct measurements of aluminium, iron, thorium, and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Anthony Dosseto, Florian Dux, Clement Bataille, and Patrice de Caritat
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-277, https://doi.org/10.5194/essd-2025-277, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first detailed map of bioavailable strontium isotope ratios in Australian soils that are taken up by plants and animals. These ratios vary depending on local geology and are useful for tracing the origins of people, animals, and food. By combining new data from across Australia with global datasets and a machine learning model, we produced a national prediction that supports research in archaeology, ecology, and forensic science.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 17, 79–93, https://doi.org/10.5194/essd-17-79-2025, https://doi.org/10.5194/essd-17-79-2025, 2025
Short summary
Short summary
This new, extensive dataset from southwestern Australia contributes considerable new data and knowledge to Australia’s strontium isotope coverage. The data are discussed in terms of the lithology and age of the source lithologies. This dataset will reduce Northern Hemisphere bias in future global strontium isotope models. Potential applications of the new data include mineral exploration, hydrogeology, food tracing, dust provenancing, and historic migrations of people and animals.
Claudia Hird, Morgane M. G. Perron, Thomas M. Holmes, Scott Meyerink, Christopher Nielsen, Ashley T. Townsend, Patrice de Caritat, Michal Strzelec, and Andrew R. Bowie
Aerosol Research, 2, 315–327, https://doi.org/10.5194/ar-2-315-2024, https://doi.org/10.5194/ar-2-315-2024, 2024
Short summary
Short summary
Dust deposition flux was investigated in lutruwita / Tasmania, Australia, between 2016–2021. Results show that the use of direct measurements of aluminium, iron, thorium, and titanium in aerosols to estimate average dust deposition fluxes limits biases associated with using single elements. Observations of dust deposition fluxes in the Southern Hemisphere are critical to validate model outputs and better understand the seasonal and interannual impacts of dust deposition on biogeochemical cycles.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Cited articles
Adams, S., Grün, R., McGahan, D., Zhao, J.-X., Feng, Y., Nguyen, A.,
Willmes, M., Quaresimin, M., Lobsey, B., Collard, M., and Westaway, M. C.: A
strontium isoscape of north-east Australia for human provenance and
repatriation, Geoarchaeol., 34, 231–251, https://doi.org/10.1002/gea.21728, 2019.
Australian Soil Resource Information System (ASRIS): Digital Atlas of
Australian Soils, ASRIS [data set], https://www.asris.csiro.au/themes/Atlas.html (last access: 22 August 2022), 2021a.
Australian Soil Resource Information System (ASRIS): ASRIS Map Viewer Tool,
Landcover Layer, Land Use 2001–2002, http://www.asris.csiro.au/mapping/viewer.htm (last access: 22 August 2022), 2021b.
Bataille, C. P. and Bowen, G. J.: Mapping variations in
bedrock and water for large scale provenance studies, Chem. Geol., 304,
39–52, https://doi.org/10.1016/j.chemgeo.2012.01.028, 2012.
Bataille, C. P., Crowley, B. E., Wooller, M. J., and Bowen, G. J.: Advances
in global bioavailable strontium isoscapes, Palaeogeogr. Palaeocl., 555, 109849, https://doi.org/10.1016/j.palaeo.2020.109849, 2020.
Bestland, E. A. and Forbes, M. S.: Evidence for biocycling from Ba/Ca,
Sr/Ca, and in soils (Red Brown Earths) from South
Australia, Austral. J. Soil Res., 47, 154–165, https://doi.org/10.1071/SR08026, 2009.
Bestland, E. A., Green, G. P., and Rivett, K.: Sources of base cations in
soil solids and soil water: examples from red brown earths of South
Australia, in: Advances in Regolith (Canberra, ACT, 19–21
November 2003), edited by: Roach, I. C., Coop. Res. Centre Landscape Evol. Min. Explo., Canberra,
ACT, 16–18, http://crcleme.org.au/Pubs/Advancesinregolith/AdvancesinRegolith.html (last access: 22 August 2022), 2003.
Blake, D. H. and Kilgour, B.: Geological Regions of Australia 1:5 000 000
scale, Geosci. Austral., Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/32366 (last access: 22 August 2022), 1998.
Blum, J. D., Erel, Y., and Brown, K.: ratios of Sierra
Nevada stream waters: implications for relative mineral weathering rates,
Geochim. Cosmochim. Ac., 57, 5019–5025, https://doi.org/10.1016/S0016-7037(05)80014-6,
1993.
Bølviken, B., Bogen, J., Jartun, M., Langedal, M., Ottesen, R. T., and
Volden, T.: Overbank sediments: a natural bed blending sampling medium for
large-scale geochemical mapping, Chemometr. Intell. Lab., 74, 183–199,
https://doi.org/10.1016/j.chemolab.2004.06.006, 2004.
Bullen, T., White, A., Blum, A., Harden, J., and Schulz, M.: Chemical
weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic
and isotopic constraints on the behavior of strontium, Geochim. Cosmochim.
Ac., 61, 291–306, https://doi.org/10.1016/S0016-7037(96)00344-4, 1997.
Bureau of Meteorology (BOM): Climate classification maps
(Temperature/humidity zones), http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp (last access: 22 August 2022), 2021a.
Bureau of Meteorology (BOM): Climate classification maps (Köppen), http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp?maptype=kpn#maps(last access: 22 August 2022), 2021b.
Bureau of Meteorology (BOM): Decadal and multi-decadal temperature
(Minimum), http://www.bom.gov.au/jsp/ncc/climate_averages/decadal-temperature/index.jsp?maptype=6&period=7605&product=min#maps (last access: 22 August 2022), 2021c.
Bureau of Meteorology (BOM): Decadal and multi-decadal temperature
(Maximum), http://www.bom.gov.au/jsp/ncc/climate_averages/decadal-temperature/index.jsp?maptype=6&period=7605&product=max#maps (last access: 22 August 2022), 2021d.
Bureau of Meteorology (BOM): Decadal and multi-decadal rainfall (Rainfall
totals), http://www.bom.gov.au/jsp/ncc/climate_averages/decadal-rainfall/index.jsp?maptype=30&period=1986-2015&product=totals#maps (last access: 22 August 2022), 2021e.
Bureau of Meteorology (BOM): Australian Climate Averages – Average wind
velocity, http://www.bom.gov.au/jsp/ncc/climate_averages/wind-velocity/index.jsp?period=aug#maps (last access: 22 August 2022), 2021f.
Chadwick, O. A., Derry, L. A., Bern, C. R., and Vitousek, P. M.: Changing
sources of strontium to soils and ecosystems across the Hawaiian Islands,
Chem. Geol., 267, 64–76, https://doi.org/10.1016/j.chemgeo.2009.01.009, 2009.
Chappell, B. W., White, A. J. R., Williams, I. S., Wyborn, D., and Wyborn,
L. A. I.: Lachlan Fold Belt granites revisited: High- and low-temperature
granites and their implications, Austral. J. Earth Sci., 47, 123–138,
https://doi.org/10.1046/j.1440-0952.2000.00766.x, 2000.
Christensen, J. N., Dafflon, B., Shiel, A. E., Tokunaga, T. K., Wan, J.,
Faybishenko, B., Dong, W., Williams, K. H., Hobson, C., Brown, S. T., and
Hubbard, S. S.: Using strontium isotopes to evaluate the spatial variation
of groundwater recharge, Sci. Total Env., 637–638, 672–685,
https://doi.org/10.1016/j.scitotenv.2018.05.019, 2018.
Cooper, M., Caritat, P. de, Burton, G., Fidler, R., Green, G., House, E.,
Strickland, C., Tang, J., and Wygralak, A.: National Geochemical Survey of
Australia: Field Data, Record, 2010/18, Geosci. Austral., Canberra, https://doi.org/10.11636/Record.2011.020, 2010.
de Caritat, P. and Cooper, M.: National Geochemical Survey of Australia: The
Geochemical Atlas of Australia, Record, 2011/20, Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/71973 (last access: 22 August 2022),
2011.
de Caritat, P. and Cooper, M.: A continental-scale geochemical atlas for
resource exploration and environmental management: the National Geochemical
Survey of Australia, Geochem. Explo. Env. Anal., 16, 3–13,
https://doi.org/10.1144/geochem2014-322, 2016.
de Caritat, P. and Troitzsch, U.: Towards a Regolith Mineralogy Map of the
Australian Continent: A Feasibility Study in the
Darling-Curnamona-Delamerian Region, Record 2021/35, Geosci. Austral.,
Canberra, https://doi.org/10.11636/Record.2021.035, 2021.
de Caritat, P., Kirste, D., Carr, G., and McCulloch, M.: Groundwater in the
Broken Hill region, Australia: recognising interaction with bedrock and
mineralisation using S, Sr and Pb isotopes, Appl. Geochem., 20, 767–787,
https://doi.org/10.1016/j.apgeochem.2004.11.003, 2005.
de Caritat, P., Cooper, M., Lech, M., McPherson, A., and Thun, C.: National
Geochemical Survey of Australia: Sample Preparation Manual, Record, 2009/08,
Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/68657 (last access: 22 August 2022), 2009.
de Caritat, P., Cooper, M., Pappas, W., Thun, C., and Webber, E.: National
Geochemical Survey of Australia: Analytical Methods Manual, Record, 2010/15,
Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/70369 (last access: 22 August 2022), 2010.
de Caritat, P., Dosseto, A., and Dux, F.: A strontium isoscape of inland
southeastern Australia, Geosci. Austral., Canberra [data set],
https://doi.org/10.26186/146397, 2022.
De Deckker, P., Munday, C. I., Brocks, J., O'loingsigh, T., Allison, G. E.,
Hope, J., Norman, M., Stuut, J.-B. W., Tapper, N. J., and Kaars, S. van
der: Characterisation of the major dust storm that traversed over eastern
Australia in September 2009; a multidisciplinary approach, Aeol. Res., 15,
133–149, https://doi.org/10.1016/j.aeolia.2014.07.003, 2014.
De Deckker, P.: Airborne dust traffic from Australia in modern and Late
Quaternary times, Global Planet. Change, 184, 103056,
https://doi.org/10.1016/j.gloplacha.2019.103056, 2020.
Douglas, G. B., Gray, C. M., Hart, B. T., and Beckett, R.: A strontium
isotopic investigation of the origin of suspended particulate matter (SPM)
in the Murray-Darling River system, Australia, Geochim. Cosmochim. Ac., 59,
3799–3815, https://doi.org/10.1016/0016-7037(95)00266-3, 1995.
Eggleton, R. A. (Ed.): The Regolith Glossary-Surficial Geology, Soils and
Landscapes, Coop. Res. Centre Landscape Evol. Min. Explo., Canberra, ACT,
144 pp., http://crcleme.org.au/Pubs/Monographs/BookRegGloss.html (last access: 22 August 2022), 2001.
Elburg, M. A., Bons, P. D., Foden, J., and Brugger, J.: A newly defined Late
Ordovician magmatic-thermal event in the Mt Painter Province, northern
Flinders Ranges, South Australia, Aust. J. Earth Sci., 50, 611–631,
https://doi.org/10.1046/j.1440-0952.2003.01016.x, 2003.
Foden, J., Barovich, K., Jane, M., and O'Halloran, G.: Sr-isotopic evidence
for Late Neoproterozoic rifting in the Adelaide Geosyncline at 586 Ma:
implications for a Cu ore forming fluid flux, Precamb. Res., 106, 291–308,
https://doi.org/10.1016/S0301-9268(00)00132-7, 2001.
Foster, D. A., Gray, D. R., Spaggiari, C., Kamenov, G., and Bierlein, F. P.:
Palaeozoic Lachlan orogen, Australia; accretion and construction of
continental crust in a marginal ocean setting: isotopic evidence from
Cambrian metavolcanic rocks, in: Earth Accretionary Systems in Space and Time, edited by: Cawood, P. A. and Kröner, A., Geol. Soc. Lond. Spec. Pub.,
318, 329–349, https://doi.org/10.1144/SP318.12, 2009.
Geoscience Australia (GA): Australia's River Basins 1997 – Product User
Guide, Geosci. Austral., Canberra, http://pid.geoscience.gov.au/dataset/ga/42343 (last access: 22 August 2022), 1997.
Geoscience Australia (GA): 9 Second Digital Elevation Model of Australia
Version 3, Geosci. Austral., Canberra [data set], http://pid.geoscience.gov.au/dataset/ga/89580 (last access: 22 August 2022), 2008.
Geoscience Australia: Geoscience Australia Portal: Geochronology and Isotopes – Isotopes – Rb-Sr Isotope – Points, Australian Government
[data set], https://portal.ga.gov.au/metadata/geochronology-and-isotopes/isotopes/rbsr-isotope-points/4cacd9e8-3340-4c27-99fe-48d404e67ca8, last access: 22 August 2022.
Gingele, F. X. and De Deckker, P.: Clay mineral, geochemical and
Sr-Nd-isotopic fingerprinting of sediments in the Murray-Darling fluvial
system, southeast Australia, Aust. J. Earth Sci., 52, 965–974,
https://doi.org/10.1080/08120090500302301, 2005.
Gray, C. M.: A strontium isotopic traverse across the granitic rocks of
southeastern Australia: petrogenetic and tectonic implications, Aust. J.
Earth Sci., 37, 331–349, https://doi.org/10.1080/08120099008727931, 1990.
Green, G. P., Bestland, E. A., and Walker, G. S.: Distinguishing sources of
base cations in irrigated and natural soils: evidence from strontium
isotopes, Biogeochem., 68, 199–225, https://doi.org/10.1023/B:BIOG.0000025743.34079.d3,
2004.
Haines, P. W., Turner, S. P., Foden, J. D., and Jago, J. B.: Isotopic and
geochemical characterisation of the Cambrian Kanmantoo Group, South
Australia: implications for stratigraphy and provenance, Aust. J. Earth
Sci., 56, 1095–1110, https://doi.org/10.1080/08120090903246212, 2009.
Hergt, J., Woodhead, J., and Schofield, A.: A-type magmatism in the Western
Lachlan Fold Belt? A study of granites and rhyolites from the Grampians
region, Western Victoria, Lithos, 97, 122–139,
https://doi.org/10.1016/j.lithos.2006.12.008, 2007.
Hoogewerff, J. A., Reimann, C., Ueckermann, H., Frei, R., Frei, K. M.,
Aswegen, T. van, Stirling, C., Reid, M., Clayton, A., Ladenberger, A., and
The GEMAS Project Team: Bioavailable in European soils: a baseline
for provenancing studies, Sci. Total Environ., 672, 1033–1044,
https://doi.org/10.1016/j.scitotenv.2019.03.387, 2019.
Isbell, R. F. and National Committee on Soil and Terrain: The Australian
Soil Classification, third edn., CSIRO Publishing, Melbourne, Victoria,
181 pp., https://ebooks.publish.csiro.au/content/australian-soil-classification-9781486314782 (last access: 22 August 2022), 2021.
Jweda, J., Bolge, L., Class, C., and Goldstein, S. L.: High precision
Sr-Nd-Hf-Pb isotopic compositions of USGS reference material BCR-2,
Geostand. Geoanal. Res., 40, 101–115, https://doi.org/10.1111/j.1751-908X.2015.00342.x,
2016.
Keay, S., Collins, W. J., and McCulloch, M. T.: A three-component Sr-Nd
isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern
Australia, Geology, 25, 307–310, https://doi.org/10.1130/0091-7613(1997)025<0307:ATCSNI>2.3.CO;2, 1997.
Lech, M. E., de Caritat, P., and Mcpherson, A. A.: National Geochemical
Survey of Australia: Field Manual, Record, 2007/08, Geosci. Austral.,
Canberra, http://pid.geoscience.gov.au/dataset/ga/65234 (last access: 22 August 2022), 2007.
Lugli, F., Cipriani, A., Bruno, L., Ronchetti, F., Cavazzuti, C., and
Benazzi, S.: A strontium isoscape of Italy for provenance studies, Chem.
Geol., 587, 120624, https://doi.org/10.1016/j.chemgeo.2021.120624, 2022.
Madgwick, R., Lamb, A. L., Sloane, H., Nederbragt, A. J., Albarella, U.,
Pearson, M. P., and Evans, J. A.: Multi-isotope analysis reveals that feasts
in the Stonehenge environs and across Wessex drew people and animals from
throughout Britain, Sci. Adv., 5, eaau6078, https://doi.org/10.1126/sciadv.aau6078,
2019.
Madgwick, R., Lamb, A., Sloane, H., Nederbragt, A., Albarella, U., Parker
Pearson, M., and Evans, J.: A veritable confusion: use and abuse of isotope
analysis in archaeology, Archaeol. J., 178, 361–385,
https://doi.org/10.1080/00665983.2021.1911099, 2021.
Martin, C. E. and McCulloch, M. T.: Nd-Sr isotopic and trace element
geochemistry of river sediments and soils in a fertilized catchment, New
South Wales, Australia, Geochim. Cosmochim. Ac., 63, 287–305,
https://doi.org/10.1016/S0016-7037(98)00308-1, 1999.
McLaren, S., Sandiford, M., Powell, R., Neumann, N., and Woodhead, J.:
Palaeozoic intraplate crustal anatexis in the Mount Painter Province, South
Australia: timing, thermal budgets and the role of crustal heat production,
J. Pet., 47, 2281–2302, https://doi.org/10.1093/petrology/egl044, 2006.
Mee, A. C., Bestland, E. A., and Spooner, N. A.: Age and origin of Terra
Rossa soils in the Coonawarra area of South Australia, Geomorph., 58, 1–25,
https://doi.org/10.1016/S0169-555X(03)00183-1, 2004.
Murray-Darling Basin Authority (MDBA): A plan for the Murray-Darling Basin, https://www.mdba.gov.au/basin-plan/plan-murray-darling-basin, last access: 22 August 2022.
Ottesen, R. T., Bogen, J., Bølviken, B., and Volden, T.: Overbank
sediment: a representative sample medium for regional geochemical sampling,
J. Geoch. Explo., 32, 257–277, https://doi.org/10.1016/0375-6742(89)90061-7,
1989.
Page, R. W. and Laing, W. P.: Felsic metavolcanic rocks related to the
Broken Hill Pb-Zn-Ag orebody, Australia: geology, depositional age, and
timing of high-grade metamorphism, Econ. Geol., 87, 2138–2168,
https://doi.org/10.2113/gsecongeo.87.8.2138, 1992.
Pain, C., Gregory, L., Wilson, P., and McKenzie, N.: The Physiographic
Regions of Australia – Explanatory Notes, Australian Collaborative Land
Evaluation Program (ACLEP) and National Committee on Soil and Terrain
(NCST), Canberra, 30 pp., https://publications.csiro.au/rpr/pub?pid=csiro%3AEP113843 (last access: 22 August 2022), 2011.
Pain, C. F., Pillans, B. J., Roach, I. C., Worrall L., and Wilford, J. R.:
Old, flat and red-Australia's distinctive landscape, chap. 5, in: Shaping a Nation – A Geology of Australia, edited by: Blewett, R., Geosci. Austral. and ANU E
Press, Canberra, 227–275, https://doi.org/10.22459/SN.08.2012, 2012.
Pidgeon, R. T.: A rubidium-strontium geochronological study of the Willyama
Complex, Broken Hill, Australia, J. Pet., 8, 283–324,
https://doi.org/10.1093/petrology/8.2.283, 1967.
Plimer, I. R.: Broken Hill Pb-Zn-Ag deposit – a product of mantle
metasomatism, Mineral. Dep., 20, 147–153, https://doi.org/10.1007/BF00204557, 1985.
Plumlee, G.: Basalt, Columbia River, BCR-2, Prelim. U.S. Geol. Surv. Cert.
Anal., https://cpb-us-w2.wpmucdn.com/muse.union.edu/dist/c/690/files/2021/07/usgs-bcr2-1.pdf (last access: 22 August 2022), 1998.
Price, G. J., Ferguson, K. J., Webb, G. E., Feng, Y. X., Higgins, P.,
Nguyen, A. D., Zhao, J. X., Joannes-Boyau, R., and Louys, J.: Seasonal
migration of marsupial megafauna in Pleistocene Sahul (Australia-New
Guinea), P. Roy. Soc. B-Biol. Sci., 284, 20170785,
https://doi.org/10.1098/rspb.2017.0785, 2017.
Raymond, O. L. (Ed.), Gallagher, R. (Ed.), Shaw, R., Yeates, A. N., Doutch, H.
F., Palfreyman, W. D., Blake, D. H., and Highet, L.: Surface Geology of
Australia 1:2.5 million scale dataset 2012 edition, Geosci. Austral.,
Canberra [data set], https://doi.org/10.26186/5c636e559cbe1, 2012.
Revel-Rolland, M., De Deckker, P., Delmonte, B., Hesse, P. P., Magee, J. W.,
Basile-Doelsch, I., Grousset, F., and Bosch, D.: Eastern Australia: a
possible source of dust in East Antarctica interglacial ice, Earth Planet.
Sc. Lett., 249, 1–13, https://doi.org/10.1016/j.epsl.2006.06.028, 2006.
Romaniello, S. J., Field, M. P., Smith, H. B., Gordon, G. W., Kim, M. H.,
and Anbar, A. D.: Fully automated chromatographic purification of Sr and Ca
for isotopic analysis, J. Anal. Atomic Spectro., 30, 1906–1912,
https://doi.org/10.1039/C5JA00205B, 2015.
Schellart, W. P. and Spakman, W.: Australian plate motion and topography
linked to fossil New Guinea slab below Lake Eyre, Earth Planet. Sc. Lett.,
421, 107–116, https://doi.org/10.1016/j.epsl.2015.03.036, 2015.
Snoeck, C., Ryan, S., Pouncett, J., Pellegrini, M., Claeys, P., Wainwright,
A. N., Mattielli, N., Lee-Thorp, J. A., and Schulting, R. J.: Towards a
biologically available strontium isotope baseline for Ireland, Sci. Total
Environ., 712, 136248, https://doi.org/10.1016/j.scitotenv.2019.136248, 2020.
Stewart, B. W., Capo, R. C., and Chadwick, O. A.: Quantitative strontium
isotope models for weathering, pedogenesis and biogeochemical cycling,
Geoderma, 82, 173–195, https://doi.org/10.1016/S0016-7061(97)00101-8, 1998.
Tukey, J. W.: Exploratory Data Analysis, Addison-Wesley Publishing Company, Reading, MA, 506 pp., http://www.ru.ac.bd/wp-content/uploads/sites/25/2019/03/102_05_01_Tukey-Exploratory-Data-Analysis-1977.pdf (last access: 22 August 2022), 1977.
Ullman, W. J. and Collerson, K. D.: The Sr-isotope record of late
Quaternary hydrologic changes around Lake Frome, South Australia, Aust.
J. Earth Sci., 41, 37–45, https://doi.org/10.1080/08120099408728111, 1994.
Vinciguerra, V., Stevenson, R., Pedneault, K., Poirer, A., Hélie, J.-F., and Widory, D.: Strontium isotope characterization of Wines from the
Quebec (Canada) Terroir, Proc. Earth Planet. Sci., 13, 252–255,
https://doi.org/10.1016/j.proeps.2015.07.059, 2015.
Wilford, J.: A weathering intensity index for the Australian continent using
airborne gamma-ray spectrometry and digital terrain analysis, Geoderma,
183–184, 124–142, https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.
Zhao, Z., Leach, D. L., Wei, J., Liang, S., and Pfaff, K.: Origin of the
Xitieshan Pb-Zn deposit, Qinghai, China: evidence from petrography and
S-C-O-Sr isotope geochemistry, Ore Geol. Rev., 139A, 104429,
https://doi.org/10.1016/j.oregeorev.2021.104429, 2021.
Zhou, B. and Whitford, D. J.: Geochemistry of the Mt Wright Volcanics from
the Wonominta Block, northwestern New South Wales, Aust. J. Earth Sci.,
41, 331–340, https://doi.org/10.1080/08120099408728142, 1994.
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Strontium isotopes are useful in geological, environmental, archaeological, and forensic...
Altmetrics
Final-revised paper
Preprint