Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3695-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3695-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OCTOPUS database (v.2)
Alexandru T. Codilean
CORRESPONDING AUTHOR
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Henry Munack
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Wanchese M. Saktura
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Tim J. Cohen
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Zenobia Jacobs
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Sean Ulm
College of Arts, Society and Education, and ARC Centre of Excellence for Australian Biodiversity and Heritage, James Cook University, Cairns, QLD 4870, Australia
Paul P. Hesse
School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
Jakob Heyman
Department of Earth Sciences, University of Gothenburg, Gothenburg 41320, Sweden
Katharina J. Peters
Global Ecology, College of Science and Engineering, and ARC Centre of Excellence for Australian Biodiversity and Heritage, Flinders University, Adelaide, SA 5001, Australia
Department of Anthropology, University of Zurich, Zurich 8006, Switzerland
Alan N. Williams
School of Biological, Earth and Environmental Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, Sydney, NSW 2052, Australia
EMM Consulting Pty Ltd, St Leonards, NSW 2065, Australia
Rosaria B. K. Saktura
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Xue Rui
School of Earth, Atmospheric and Life Sciences, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, NSW 2522, Australia
Kai Chishiro-Dennelly
Kasna, Sydney, NSW 2000, Australia
Adhish Panta
Kasna, Sydney, NSW 2000, Australia
Related authors
Christopher T. Halsted, Paul R. Bierman, Alexandru T. Codilean, Lee B. Corbett, and Marc W. Caffee
Geochronology, 7, 213–228, https://doi.org/10.5194/gchron-7-213-2025, https://doi.org/10.5194/gchron-7-213-2025, 2025
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study, we compiled sand from 766 river basins and measured its subtle radioactivity to unravel timelines of sediment routing around the world. With these data, we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Matley, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data, 17, 2681–2692, https://doi.org/10.5194/essd-17-2681-2025, https://doi.org/10.5194/essd-17-2681-2025, 2025
Short summary
Short summary
This paper presents SahulCHAR, a new collection of palaeofire (ancient fire) records from Australia, New Guinea, and New Zealand. SahulCHAR version 1 contains 687 records of sedimentary charcoal or black carbon, including digitized data, records from existing databases, and original author-submitted data. SahulCHAR is a much-needed update to past charcoal compilations that will also provide greater representation of records from this region in future global syntheses to understand past fire.
Alexandru T. Codilean and Henry Munack
Geochronology, 7, 113–122, https://doi.org/10.5194/gchron-7-113-2025, https://doi.org/10.5194/gchron-7-113-2025, 2025
Short summary
Short summary
OCTOPUS v2.3 updates CRN Denudation, adding 1311 new river basins to the CRN Global and CRN Australia collections, totalling 5611 basins with recalculated beryllium-10 denudation rates and 561 with aluminium-26 rates. New fields include basin centroid latitude, effective atmospheric pressure, glacier extent, and quartz-bearing lithology percentages, improving data quality and interoperability with online erosion calculators.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Christopher T. Halsted, Paul R. Bierman, Alexandru T. Codilean, Lee B. Corbett, and Marc W. Caffee
Geochronology, 7, 213–228, https://doi.org/10.5194/gchron-7-213-2025, https://doi.org/10.5194/gchron-7-213-2025, 2025
Short summary
Short summary
Sediment generation on hillslopes and transport through river networks are complex processes that influence landscape evolution. In this study, we compiled sand from 766 river basins and measured its subtle radioactivity to unravel timelines of sediment routing around the world. With these data, we empirically confirm that sediment from large lowland basins in tectonically stable regions typically experiences long periods of burial, while sediment moves rapidly through small upland basins.
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Matley, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data, 17, 2681–2692, https://doi.org/10.5194/essd-17-2681-2025, https://doi.org/10.5194/essd-17-2681-2025, 2025
Short summary
Short summary
This paper presents SahulCHAR, a new collection of palaeofire (ancient fire) records from Australia, New Guinea, and New Zealand. SahulCHAR version 1 contains 687 records of sedimentary charcoal or black carbon, including digitized data, records from existing databases, and original author-submitted data. SahulCHAR is a much-needed update to past charcoal compilations that will also provide greater representation of records from this region in future global syntheses to understand past fire.
Alexandru T. Codilean and Henry Munack
Geochronology, 7, 113–122, https://doi.org/10.5194/gchron-7-113-2025, https://doi.org/10.5194/gchron-7-113-2025, 2025
Short summary
Short summary
OCTOPUS v2.3 updates CRN Denudation, adding 1311 new river basins to the CRN Global and CRN Australia collections, totalling 5611 basins with recalculated beryllium-10 denudation rates and 561 with aluminium-26 rates. New fields include basin centroid latitude, effective atmospheric pressure, glacier extent, and quartz-bearing lithology percentages, improving data quality and interoperability with online erosion calculators.
Bradley W. Goodfellow, Arjen P. Stroeven, Nathaniel A. Lifton, Jakob Heyman, Alexander Lewerentz, Kristina Hippe, Jens-Ove Näslund, and Marc W. Caffee
Geochronology, 6, 291–302, https://doi.org/10.5194/gchron-6-291-2024, https://doi.org/10.5194/gchron-6-291-2024, 2024
Short summary
Short summary
Carbon-14 produced in quartz (half-life of 5700 ± 30 years) provides a new tool to date exposure of bedrock surfaces. Samples from 10 exposed bedrock surfaces in east-central Sweden give dates consistent with the timing of both landscape emergence above sea level through postglacial rebound and retreat of the last ice sheet shown in previous reconstructions. Carbon-14 in quartz can therefore be used for dating in landscapes where isotopes with longer half-lives give complex exposure results.
Klaus M. Wilcken, Alexandru T. Codilean, Réka-H. Fülöp, Steven Kotevski, Anna H. Rood, Dylan H. Rood, Alexander J. Seal, and Krista Simon
Geochronology, 4, 339–352, https://doi.org/10.5194/gchron-4-339-2022, https://doi.org/10.5194/gchron-4-339-2022, 2022
Short summary
Short summary
Cosmogenic nuclides are now widely applied in the Earth sciences; however, more recent applications often push the analytical limits of the technique. Our study presents a comprehensive method for analysis of cosmogenic 10Be and 26Al samples down to isotope concentrations of a few thousand atoms per gram of sample, which opens the door to new and more varied applications of cosmogenic nuclide analysis.
Cited articles
Akcar, N., Ivy-Ochs, S., and Schlüchter, C.: Application of in-situ produced terrestrial cosmogenic nuclides to archaeology: A schematic review, E&G Quaternary Sci. J., 57, 226–238, https://doi.org/10.3285/eg.57.1-2.9, 2008. a
Balco, G.: Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide
Exposure Dating, Annu. Rev. Earth Pl. Sc., 48, 21–48,
https://doi.org/10.1146/annurev-earth-081619-052609, 2019. a
Blondel, E.: ows4R: R Interface to OGC Web-Services (0.2), Zenodo [code],
https://doi.org/10.5281/zenodo.5741146, 2021. a
Bradshaw, C. J. A., Norman, K., Ulm, S., Williams, A. N., Clarkson, C.,
Chadœuf, J., Lin, S. C., Jacobs, Z., Roberts, R. G., Bird, M. I.,
Weyrich, L. S., Haberle, S. G., O'Connor, S., Llamas, B., Cohen, T. J.,
Friedrich, T., Veth, P., Leavesley, M., and Saltré, F.: Stochastic
models support rapid peopling of Late Pleistocene Sahul, Nat.
Commun., 12, 2440, https://doi.org/10.1038/s41467-021-21551-3, 2021. a, b
Braucher, R., Merchel, S., Borgomano, J., and Bourles, D. L.: Production of
cosmogenic radionuclides at great depth: A multi element approach, Earth
Planet. Sc. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011. a
Charreau, J., Blard, P., Zumaque, J., Martin, L. C., Delobel, T., and Szafran,
L.: Basinga: A cell-by-cell GIS toolbox for computing basin average scaling
factors, cosmogenic production rates and denudation rates, Earth Surf.
Proc. Land., 44, 2349–2365, https://doi.org/10.1002/esp.4649, 2019. a
Chen, Y., Wu, B., Xiong, Z., Zan, J., Zhang, B., Zhang, R., Xue, Y., Li, M.,
and Li, B.: Evolution of eastern Tibetan river systems is driven by the
indentation of India, Communications Earth & Environment, 2, 256,
https://doi.org/10.1038/s43247-021-00330-4, 2021. a
Clarkson, C., Jacobs, Z., Marwick, B., Fullagar, R., Wallis, L., Smith, M.,
Roberts, R. G., Hayes, E., Lowe, K., Carah, X., Florin, S. A., McNeil, J.,
Cox, D., Arnold, L. J., Hua, Q., Huntley, J., Brand, H. E. A., Manne, T.,
Fairbairn, A., Shulmeister, J., Lyle, L., Salinas, M., Page, M., Connell, K.,
Park, G., Norman, K., Murphy, T., and Pardoe, C.: Human occupation of
northern Australia by 65,000 years ago, Nature, 547, 306–310,
https://doi.org/10.1038/nature22968, 2017. a
Codilean, A., Fülöp, R.-H., Munack, H., Wilcken, K., Cohen, T., Rood,
D., Fink, D., Bartley, R., Croke, J., and Fifield, L.: Controls on
denudation along the East Australian continental margin, Earth-Sci.
Rev., 214, 103543, https://doi.org/10.1016/j.earscirev.2021.103543,
2021a. a
Codilean, A. T.: Calculation of the cosmogenic nuclide production topographic
shielding scaling factor for large areas using DEMs, Earth Surf. Proc.
Land., 31, 785–794, https://doi.org/10.1002/esp.1336, 2006. a, b
Codilean, A. T. and Munack, H.: OCTOPUS Database v.2: The CRN Denudation
Global collection, University of Wollongong Australia [data set], https://doi.org/10.25900/g76f-0h45, 2021a. a
Codilean, A. T. and Munack, H.: OCTOPUS Database v.2: The CRN Denudation
Australian collection, University of Wollongong Australia [data set], https://doi.org/10.25900/mpr9-yn15,
2021b. a
Codilean, A. T., Cohen, T. J., Munack, H., and Saktura, W. M.: OCTOPUS – OSL/TL Australia. University of Wollongong, Australia [data set], https://doi.org/10.4225/48/5a836db1ac9b6, 2017. a
Cohen, T. J., Fu, X., Hesse, P., Price, D., Rui, X., Saktura, R. B. K., Munack,
H., and Codilean, A. T.: OCTOPUS Database v.2: The SahulSed Aeolian TL
collection, University of Wollongong Australia [data set], https://doi.org/10.25900/a2k9-kj43, 2021a. a
Cohen, T. J., Fu, X., Hesse, P., Rui, X., Saktura, R. B. K., Munack, H., and
Codilean, A. T.: OCTOPUS Database v.2: The SahulSed Aeolian OSL collection, University of Wollongong Australia [data set], https://doi.org/10.25900/5jcw-tn50, 2021b. a
Cohen, T. J., Fu, X., Price, D., Rui, X., Saktura, R. B. K., Munack, H., and
Codilean, A. T.: OCTOPUS Database v.2: The SahulSed Lacustrine TL collection, University of Wollongong Australia [data set], https://doi.org/10.25900/32de-mj32, 2021c. a
Cohen, T. J., Fu, X., Rui, X., Saktura, R. B. K., Munack, H., and Codilean,
A. T.: OCTOPUS Database v.2: The SahulSed Lacustrine OSL collection, University of Wollongong Australia [data set], https://doi.org/10.25900/6hmv-zz61, 2021d. a
Cohen, T. J., Saktura, W. M., Jansen, J. D., Price, D., Rui, X., Saktura, R.
B. K., Munack, H., and Codilean, A. T.: OCTOPUS Database v.2: The SahulSed
Fluvial TL collection, University of Wollongong Australia [data set], https://doi.org/10.25900/2a76-vw55,
2021e. a
Cohen, T. J., Saktura, W. M., Jansen, J. D., Rui, X., Saktura, R. B. K.,
Munack, H., and Codilean, A. T.: OCTOPUS Database v.2: The SahulSed Fluvial
OSL collection, University of Wollongong Australia [data set], https://doi.org/10.25900/p5ye-rn35, 2021f. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project,
Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011. a, b
Crabtree, S. A., White, D. A., Bradshaw, C. J. A., Saltré, F., Williams,
A. N., Beaman, R. J., Bird, M. I., and Ulm, S.: Landscape rules predict
optimal superhighways for the first peopling of Sahul, Nature Human
Behaviour, 5, 1303–1313, https://doi.org/10.1038/s41562-021-01106-8, 2021. a, b, c
Delunel, R., Schlunegger, F., Valla, P. G., Dixon, J., Glotzbach, C., Hippe,
K., Kober, F., Molliex, S., Norton, K. P., Salcher, B., Wittmann, H.,
Akçar, N., and Christl, M.: Late-Pleistocene catchment-wide denudation
patterns across the European Alps, Earth-Sci. Rev., 211, 103407,
https://doi.org/10.1016/j.earscirev.2020.103407, 2020. a
DiBiase, R. A.: Short communication: Increasing vertical attenuation length of cosmogenic nuclide production on steep slopes negates topographic shielding corrections for catchment erosion rates, Earth Surf. Dynam., 6, 923–931, https://doi.org/10.5194/esurf-6-923-2018, 2018. a
Dixon, J. L. and Riebe, C. S.: Tracing and Pacing Soil Across Slopes,
Elements, 10, 363–368, https://doi.org/10.2113/gselements.10.5.363, 2014. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007. a
Fülöp, R.-H., Codilean, A. T., Wilcken, K. M., Cohen, T. J., Fink, D.,
Smith, A. M., Yang, B., Levchenko, V. A., Wacker, L., Marx, S. K., Stromsoe,
N., Fujioka, T., and Dunai, T. J.: Million-year lag times in a post-orogenic
sediment conveyor, Science Advances, 6, eaaz8845,
https://doi.org/10.1126/sciadv.aaz8845, 2020. a
Godard, V. and Tucker, G. E.: Influence of Climate‐Forcing Frequency on
Hillslope Response, Geophys. Res. Lett., 48, e2021GL094305,
https://doi.org/10.1029/2021gl094305, 2021. a
Godard, V., Dosseto, A., Fleury, J., Bellier, O., Siame, L., and ASTER Team:
Transient landscape dynamics across the Southeastern Australian Escarpment,
Earth Planet. Sc. Lett., 506, 397–406,
https://doi.org/10.1016/j.epsl.2018.11.017, 2019. a
Granger, D. E. and Schaller, M.: Cosmogenic Nuclides and Erosion at the
Watershed Scale, Elements, 10, 369–373, https://doi.org/10.2113/gselements.10.5.369,
2014. a
Granger, D. E., Lifton, N. A., and Willenbring, J. K.: A cosmic trip: 25 years
of cosmogenic nuclides in geology, Geol. Soc. Am. Bull.,
125, 1379–1402, https://doi.org/10.1130/B30774.1, 2013. a
Granger, D. E., Gibbon, R. J., Kuman, K., Clarke, R. J., Bruxelles, L., and
Caffee, M. W.: New cosmogenic burial ages for Sterkfontein Member 2
Australopithecus and Member 5 Oldowan, Nature, 522, 85–88,
https://doi.org/10.1038/nature14268, 2015. a
Guralnik, B., Ankjærgaard, C., Jain, M., Murray, A., Müller, A.,
Wälle, M., Lowick, S., Preusser, F., Rhodes, E., Wu, T.-S., Mathew, G.,
and Herman, F.: OSL-thermochronometry using bedrock quartz: A note of
caution, Quat. Geochronol., 25, 37–48,
https://doi.org/10.1016/j.quageo.2014.09.001, 2015. a
Hajdas, I., Ascough, P., Garnett, M. H., Fallon, S. J., Pearson, C. L., Quarta,
G., Spalding, K. L., Yamaguchi, H., and Yoneda, M.: Radiocarbon dating,
Nature Reviews Methods Primers, 1, 62, https://doi.org/10.1038/s43586-021-00058-7,
2021. a, b
Hesse, P. P.: How do longitudinal dunes respond to climate forcing? Insights
from 25 years of luminescence dating of the Australian desert dunefields,
Quatern. Int., 410, 11–29, https://doi.org/10.1016/j.quaint.2014.02.020,
2016. a
Hocknull, S. A., Lewis, R., Arnold, L. J., Pietsch, T., Joannes-Boyau, R.,
Price, G. J., Moss, P., Wood, R., Dosseto, A., Louys, J., Olley, J., and
Lawrence, R. A.: Extinction of eastern Sahul megafauna coincides with
sustained environmental deterioration, Nat. Commun., 11, 2250,
https://doi.org/10.1038/s41467-020-15785-w, 2020. a
Horn, B. K. P.: Hill shading and the reflectance map, P.
IEEE, 69, 14–47, 1981. a
Iacovella, S. and Youngblood, B.: GeoServer Beginner's Guide, Packt
Publishing, Birmingham, ISBN 9781849516693, 2013. a
Jacobs, Z., Li, B., Shunkov, M. V., Kozlikin, M. B., Bolikhovskaya, N. S.,
Agadjanian, A. K., Uliyanov, V. A., Vasiliev, S. K., O’Gorman, K.,
Derevianko, A. P., and Roberts, R. G.: Timing of archaic hominin occupation
of Denisova Cave in southern Siberia, Nature, 565, 594–599,
https://doi.org/10.1038/s41586-018-0843-2, 2019. a
King, G., Herman, F., Lambert, R., Valla, P., and Guralnik, B.:
Multi-OSL-thermochronometry of feldspar, Quat. Geochronol., 33,
76–87, https://doi.org/10.1016/j.quageo.2016.01.004, 2016. a
Lancaster, N., Wolfe, S., Thomas, D., Bristow, C., Bubenzer, O., Burrough, S.,
Duller, G., Halfen, A., Hesse, P., Roskin, J., Singhvi, A., Tsoar, H.,
Tripaldi, A., Yang, X., and Zárate, M.: The INQUA Dunes Atlas
chronologic database, Quatern. Int., 410, 3–10,
https://doi.org/10.1016/j.quaint.2015.10.044, 2016. a
Lovelace, R., Nowosad, J., and Muenchow, J.: Geocomputation with R (The R
Series), Routledge, ISBN 9780367670573, 2020. a
Mudd, S. M., Harel, M.-A., Hurst, M. D., Grieve, S. W. D., and Marrero, S. M.: The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations, Earth Surf. Dynam., 4, 655–674, https://doi.org/10.5194/esurf-4-655-2016, 2016. a, b, c, d, e, f, g
Munack, H. and Codilean, A. T.: OCTOPUS Database v.2: Relational database
schema and documentation (v.2), Zenodo [data set], https://doi.org/10.5281/zenodo.5874855, 2022. a, b, c
Murray, A., Arnold, L. J., Buylaert, J.-P., Guérin, G., Qin, J., Singhvi,
A. K., Smedley, R., and Thomsen, K. J.: Optically stimulated luminescence
dating using quartz, Nature Reviews Methods Primers, 1, 72,
https://doi.org/10.1038/s43586-021-00068-5, 2021. a, b
Nishiizumi, K.: Preparation of 26Al AMS standards, Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with Materials
and Atoms, 223, 388–392, https://doi.org/10.1016/j.nimb.2004.04.075, 2004. a
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., and
Mcaninch, J.: Absolute calibration of 10Be AMS standards, Nuclear
Instruments & Methods In Physics Research Section B: Beam Interactions With
Materials And Atoms, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007. a
Octopus Database: https://octopusdata.org, last access: 1 July 2022a. a
Octopus Database: Geoserver, http://geoserver.octopusdata.org/geoserver/wfs, last access: 1 July 2022b. a
Peters, K. J., Saltré, F., Friedrich, T., Jacobs, Z., Wood, R., McDowell,
M., Ulm, S., and Bradshaw, C. J. A.: FosSahul 2.0, an updated database for
the Late Quaternary fossil records of Sahul, Scientific Data, 6, 272,
https://doi.org/10.1038/s41597-019-0267-3, 2019a. a
Peters, K. J., Saltre, F, Friedrich, T., Jacobs, Z., Wood, R., McDowell, M., Ulm, S., and Bradshaw, C.: FosSahul 2.0 database and R code, figshare [data set], https://doi.org/10.6084/m9.figshare.8796944.v3, 2019b. a
Peters, K. J., Saltré, F., Friedrich, T., Jacobs, Z., Wood, R., McDowell,
M., Ulm, S., and Bradshaw, C. J. A.: Addendum: FosSahul 2.0, an updated
database for the Late Quaternary fossil records of Sahul, Scientific Data,
8, 133, https://doi.org/10.1038/s41597-021-00918-7, 2021. a
Phillips, F. M., Argento, D. C., Balco, G., Caffee, M. W., Clem, J., Dunai,
T. J., Finkel, R., Goehring, B., Gosse, J. C., Hudson, A. M., Jull, A. T.,
Kelly, M. A., Kurz, M., Lal, D., Lifton, N., Marrero, S. M., Nishiizumi, K.,
Reedy, R. C., Schaefer, J., Stone, J. O., Swanson, T., and Zreda, M. G.: The
CRONUS-Earth Project: A synthesis, Quat. Geochronol., 31, 119–154,
https://doi.org/10.1016/j.quageo.2015.09.006, 2016. a
re3data.org: OCTOPUS database, re3data.org – Registry of Research Data Repositories [data set], https://doi.org/10.17616/R31NJN2E, 2018. a
Rehn, E.: OCTOPUS Web Interface User Guide (v.1), Zenodo,
https://doi.org/10.5281/zenodo.6469039, 2022. a
Renfrew, C.: Before Civilization, Random House, ISBN 9781446466964, 2011. a
Rhodes, E. J.: Optically Stimulated Luminescence Dating of Sediments over the
Past 200,000 Years, Annu. Rev. Earth Pl. S., 39,
461–488, https://doi.org/10.1146/annurev-earth-040610-133425, 2011. a
Roberts, R. G., Flannery, T. F., Ayliffe, L. K., Yoshida, H., Olley, J. M.,
Prideaux, G. J., Laslett, G. M., Baynes, A., Smith, M. A., Jones, R., and
Smith, B. L.: New Ages for the Last Australian Megafauna: Continent-Wide
Extinction About 46,000 Years Ago, Science, 292, 1888–1892,
https://doi.org/10.1126/science.1060264, 2001. a
Roberts, R. G., Jacobs, Z., Li, B., Jankowski, N. R., Cunningham, A. C., and
Rosenfeld, A. B.: Optical dating in archaeology: thirty years in retrospect
and grand challenges for the future, J. Archaeol. Sci., 56,
41–60, https://doi.org/10.1016/j.jas.2015.02.028, 2015. a
Rodríguez-Rey, M., Herrando-Pérez, S., Brook, B. W., Saltré, F.,
Alroy, J., Beeton, N., Bird, M. I., Cooper, A., Gillespie, R., Jacobs, Z.,
Johnson, C. N., Miller, G. H., Prideaux, G. J., Roberts, R. G., Turney,
C. S., and Bradshaw, C. J.: A comprehensive database of quality-rated fossil
ages for Sahul's Quaternary vertebrates, Scientific Data, 3, 160053,
https://doi.org/10.1038/sdata.2016.53, 2016. a
Saktura, W. M., Munack, H., Codilean, A. T., Jacobs, Z., Williams, A., and Ulm,
S.: OCTOPUS Database v.2: The SahulArch OSL collection, University of Wollongong Australia [data set],
https://doi.org/10.25900/ypr0-j711, 2021a. a
Saktura, W. M., Munack, H., Codilean, A. T., Jacobs, Z., Williams, A., and Ulm,
S.: OCTOPUS Database v.2: The SahulArch TL collection, University of Wollongong Australia [data set],
https://doi.org/10.25900/xq40-t003, 2021b. a
Saktura, W. M., Munack, H., Codilean, A. T., Wood, R., Petchey, F., Jacobs, Z.,
Williams, A., and Ulm, S.: OCTOPUS Database v.2: The SahulArch Radiocarbon
collection, University of Wollongong Australia [data set], https://doi.org/10.25900/2mb4-rr36, 2021c. a
Schaefer, J. M., Codilean, A. T., Willenbring, J. K., Lu, Z.-T., Keisling, B.,
Fülöp, R.-H., and Val, P.: Cosmogenic nuclide techniques, Nature
Reviews Methods Primers, 2, 18, https://doi.org/10.1038/s43586-022-00096-9, 2022.
a, b, c
Singhvi, A. K. and Porat, N.: Impact of luminescence dating on
geomorphological and palaeoclimate research in drylands, Boreas, 37,
536–558, https://doi.org/10.1111/j.1502-3885.2008.00058.x, 2008. a
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett,
S. D., Faccenna, C., Giulio, A. D., Spada, G., Jolivet, L., Valla, P., Petit,
C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift
of the European Alps: Evaluating mechanisms and models of their relative
contributions, Earth-Sci. Rev., 190, 589–604,
https://doi.org/10.1016/j.earscirev.2019.01.005, 2019. a
Stone, J. O.: Air pressure and cosmogenic isotope production, J.
Geophys. Res.-Sol. Ea., 105, 23753–23759,
https://doi.org/10.1029/2000JB900181, 2000. a, b
van Dongen, R., Scherler, D., Wittmann, H., and von Blanckenburg, F.: Cosmogenic 10Be in river sediment: where grain size matters and why, Earth Surf. Dynam., 7, 393–410, https://doi.org/10.5194/esurf-7-393-2019, 2019. a
Vermeesch, P.: CosmoCalc: An Excel add-in for cosmogenic nuclide
calculations, Geochem. Geophy. Geosy., 8, Q08003,
https://doi.org/10.1029/2006GC001530, 2007. a, b
Wightman, P., Coronell, W., Jabba, D., Jimeno, M., and Labrador, M.:
Evaluation of Location Obfuscation Techniques for Privacy in Location Based
Information Systems, 2011 IEEE Third Latin-American Conference on
Communications, Belem, Brazil, 24–26 October 2011, 1–6, https://doi.org/10.1109/latincom.2011.6107399, 2011. a, b
Williams, A., Ulm, S., Smith, M., and Reid, J.: AustArch: A Database of
14C and Non-14C Ages from Archaeological Sites in Australia –
Composition, Compilation and Review (Data Paper), Internet Archaeology,
https://doi.org/10.11141/ia.36.6, 2014. a, b, c
Wilson, C., Fallon, S., and Trevorrow, T.: New radiocarbon ages for the Lower
Murray River, South Australia, Archaeol. Ocean., 47, 157–160,
https://doi.org/10.1002/j.1834-4453.2012.tb00128.x, 2012. a
Zilhão, J., Angelucci, D. E., Igreja, M. A., Arnold, L. J., Badal, E.,
Callapez, P., Cardoso, J. L., d'Errico, F., Daura, J., Demuro, M., Deschamps,
M., Dupont, C., Gabriel, S., Hoffmann, D. L., Legoinha, P., Matias, H.,
Soares, A. M. M., Nabais, M., Portela, P., Queffelec, A., Rodrigues, F., and
Souto, P.: Last Interglacial Iberian Neandertals as
fisher-hunter-gatherers, Science, 367, eaaz7943,
https://doi.org/10.1126/science.aaz7943, 2020. a
Zurbarán, M., Wightman, P., Brovelli, M., Oxoli, D., Iliffe, M., Jimeno,
M., and Salazar, A.: NRand-K: Minimizing the impact of location obfuscation
in spatial analysis, T. GIS, 22, 1257–1274,
https://doi.org/10.1111/tgis.12462, 2018. a, b
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download...
Altmetrics
Final-revised paper
Preprint