Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-697-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-697-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Real-time WRF large-eddy simulations to support uncrewed aircraft system (UAS) flight planning and operations during 2018 LAPSE-RATE
James O. Pinto
CORRESPONDING AUTHOR
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Anders A. Jensen
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Pedro A. Jiménez
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Tracy Hertneky
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Domingo Muñoz-Esparza
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Arnaud Dumont
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Matthias Steiner
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
Related authors
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Eloisa Raluy-López, Domingo Muñoz-Esparza, and Juan Pedro Montávez
EGUsphere, https://doi.org/10.5194/egusphere-2025-3744, https://doi.org/10.5194/egusphere-2025-3744, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Steep terrain can cause numerical problems in weather and climate simulations. We present a new local method that smooths only the steepest areas, preserving important terrain details elsewhere. This improves numerical stability without reducing resolution across the entire map, as was common in previous global approaches. The technique is simple, fast, and effective across models and scales, helping researchers run more accurate and reliable high-resolution simulations over complex landscapes.
Pedro Angel Jimenez y Munoz, Maria Frediani, Masih Eghdami, Daniel Rosen, Michael Kavulich, and Timothy W. Juliano
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-124, https://doi.org/10.5194/gmd-2024-124, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We present the Community Fire Behavior model (CFBM) a fire behavior model designed to facilitate coupling to atmospheric models. We describe its implementation in the Unified Forecast System (UFS). Simulations of the Cameron Peak ire allowed us to verify our implementation. Our vision is to foster collaborative development in fire behavior modeling with the ultimate goal of increasing our fundamental understanding of fire science and minimizing the adverse impacts of wildland fires.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy Wing Yi Li, Pablo Lichtig, Roy Chun-Wang Tsang, Chun-Ho Liu, Tao Wang, and Guy Pierre Brasseur
Atmos. Chem. Phys., 23, 5905–5927, https://doi.org/10.5194/acp-23-5905-2023, https://doi.org/10.5194/acp-23-5905-2023, 2023
Short summary
Short summary
Air quality in urban areas is difficult to simulate in coarse-resolution models. This work exploits the WRF (Weather Research and Forecasting) model coupled with a large-eddy simulation (LES) component and online chemistry to perform high-resolution (33.3 m) simulations of air quality in a large city. The evaluation of the simulations with observations shows that increased model resolution improves the representation of the chemical species near the pollution sources.
Miguel Sanchez Gomez, Julie K. Lundquist, Jeffrey D. Mirocha, Robert S. Arthur, and Domingo Muñoz-Esparza
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-57, https://doi.org/10.5194/wes-2021-57, 2021
Revised manuscript not accepted
Short summary
Short summary
Winds decelerate upstream of a wind plant as turbines obstruct and extract energy from the flow. This effect is known as wind plant blockage. We assess how atmospheric stability modifies the upstream wind plant blockage. We find stronger stability amplifies this effect. We also explore different approaches to quantifying blockage from field-like observations. We find different methodologies may induce errors of the same order of magnitude as the blockage-induced velocity deficits.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Cathy W. Y. Li, Mary Barth, Tao Wang, and Guy P. Brasseur
Atmos. Chem. Phys., 21, 3531–3553, https://doi.org/10.5194/acp-21-3531-2021, https://doi.org/10.5194/acp-21-3531-2021, 2021
Short summary
Short summary
Large-eddy simulations (LESs) were performed in the mountainous region of the island of Hong Kong to investigate the degree to which the rates of chemical reactions between two reactive species are reduced due to the segregation of species within the convective boundary layer. We show that the inhomogeneity in emissions plays an important role in the segregation effect. Topography also has a significant influence on the segregation locally.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Cited articles
Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R.,
Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A.,
Lin, H., Peckham, S. E., Smith, T. L., Moninger, W. R., and Kenyon, J. S.: A
North American hourly assimilation and model forecast cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1, 2016.
Bryan, G. H., Wyngaard, J. C., and Fritsch, J. M.: Resolution requirements
for the simulation of deep moist convection, Mon. Wea. Rev., 131, 2394–2416,
https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2, 2003.
Campbell, S. E., Clark, D. A., and Evans, J. E.: Preliminary Weather Information Gap Analysis for UAS Operations, Technical Report, MIT Lincoln
Laboratory, Boston, MA, USA, 2017.
Computational and Information Systems Laboratory (CISL): Cheyenne: HPE/SGI
ICE XA System (NCAR Community Computing), Boulder, CO, National Center for
Atmospheric Research, https://doi.org/10.5065/D6RX99HX, 2019.
Deardorff, J. W.: Stratocumulus-capped mixed layers derived from a three
dimensional model, Bound.-Lay. Meteorol., 18, 495–527, 1980.
de Boer, G., Diehl, C., Jacob, J., Houston, A., Smith, S. W., Chilson, P., Schmale III., D. G., Intrieri, J., Pinto, J., Elston, J., Brus, D., Kemppinen, O., Clark, A., Lawrence, D., Bailey, S. C. C., Sama, M. P., Frazier, A., Crick, C., Natalie, V., Pillar-Little, E., Klein, P., Waugh, S., Lundquist, J. K., Barbieri, L., Kral, S. T., Jensen, A. A., Dixon, C., Borenstein, S., Hesselius, D., Human, K., Hall, P., Argrow, B., Thornberry, T., Wright, R., and Kelly, J. T.: Development of community, capabilities and
understanding through unmanned aircraft-based atmospheric research: The
LAPSE-RATE campaign, B. Am. Meteorol. Soc., 101, E684–E699, https://doi.org/10.1175/BAMS-D-19-0050.1, 2020a.
de Boer, G., Houston, A., Jacob, J., Chilson, P. B., Smith, S. W., Argrow, B., Lawrence, D., Elston, J., Brus, D., Kemppinen, O., Klein, P., Lundquist, J. K., Waugh, S., Bailey, S. C. C., Frazier, A., Sama, M. P., Crick, C., Schmale III, D., Pinto, J., Pillar-Little, E. A., Natalie, V., and Jensen, A.: Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview, Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, 2020b.
Doubrawa, P. and Muñoz-Esparza, D.: Simulating real atmospheric
boundary layers at gray-zone resolutions: How do currently available
turbulence parameterizations perform?, Atmosphere, 11, 345, 10.3390/atmos11040345, 2020.
Dudhia, J.: Numerical study of convection observed during the Winter Monsoon
Experiment using a mesoscale two–dimensional model, J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ., 114, 168–182, 168, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Garrett-Glaser, B.: Are Low-Altitude Weather Services Ready for Drones and
Air Taxis? Aviation Today, available at: https://www.aviationtoday.com/2020/04/26/low-altitude-weather-services-ready-drones-air-taxis/,
last access: 1 August 2020.
Glasheen, K., Pinto, J., Steiner, M., and Frew, E.: Assessment of finescale
local wind forecasts using small unmanned aircraft systems, J. Aerosp. Inf. Syst., 17,
182–192, https://doi.org/10.2514/1.I010747, 2020.
Haupt, S. E., Kosovic, B., Shaw, W., Berg, L. K., Churchfield, M., Cline, J., Draxl, C., Ennis, B., Koo, E., Kotamarthi, R., Mazzaro, L., Mirocha, J., Moriarty, P., Muñoz-Esparza, D., Quon, E., Rai, R. K., Robinson, M., and Sever, G.: On bridging a modeling scale gap. Mesoscale to
microscale coupling for wind energy, B. Am. Meteorol. Soc., 100, 2533–2549,
https://doi.org/10.1175/BAMS-D-18-0033.1, 2019.
Hong, S.-Y. and Lim, J.-O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jensen, A. A., Pinto, J. O., Bailey, S. C. C., Sobash, R. A., de Boer, G., Houston, A. L., Chilson, P. B., Bell, T., Romine, G., Smith, S. W., Lawerence, D. A., Dixon, C., Lundquist, J. K., Jacob, J. D., Elston, J., Waugh, S., and Steiner, M. : Assimilation of a coordinated fleet of UAS
observations in complex terrain. Part I: EnKF system design and preliminary
assessment, Mon. Weather Rev., in press, 2021.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A revised scheme for the WRF
surface layer formulation, Mon. Weather Rev., 140,
898–918, https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Jiménez, P. A., Muñoz-Esparza, D., and Kosović, B.: A high
resolution coupled fire-atmosphere forecasting system to minimize the
impacts of wildland fires: Applications to the Chimney Tops II wildland
event, Atmosphere, 9, 197, https://doi.org/10.3390/atmos9050197, 2018.
Klemp, J. B., Dudhia, J., and Hassiotis, A. D.: An upper gravity-wave
absorbing layer for NWP applications, Mon. Weather Rev., 136, 3987–4004,
https://doi.org/10.1175/2008MWR2596.1, 2008.
Lilly, D. K.: On the application of the eddy viscosity concept in the
inertial sub-range of turbulence, NCAR Tech. Rep. 123, NCAR Press, Boulder, Colorado, USA, 1966a.
Lilly, D. K.: The representation of small-scale Turbulence in numerical simulation experiments. Pre-publication Review Copy, NCAR Manuscript #281, Boulder, Colorado, USA, 24 pp., https://doi.org/10.5065/D62R3PMM, 1966b.
Liu, Y., Warner, T., Liu, Y., Vincent, C., Wu, W., Mahoney, B., Swerdlin,
S., Parks, K., and Boehnert, J.: Simultaneous nested modeling from the
synoptic scale to the LES scale for wind energy applications, J. Wind Eng. Ind. Aerodyn., 99,
308–319, 2011.
Liu, Y., Liu, Y., Muñoz-Esparza, D., Hu, F., Yan, C., and Miao, S.:
Simulation of flow fields in complex terrain with WRF-LES: sensitivity
assessment of different PBL treatments, J. Appl. Meteorol. Clim., 59, 1481–1501, https://doi.org/10.1175/JAMC-D-19-0304.1, 2020.
Markowski, P. M. and Bryan, G. H.: LES of laminar flow in the PBL: A
potential problem for convective storm simulations, Mon. Weather Rev., 144, 1841–1850,
2016.
Muñoz-Esparza, D. and Kosović, B.: Generation of inflow turbulence
in large-eddy simulations of non-neutral atmospheric boundary layers with
the cell perturbation method, Mon. Weather Rev., 146, 1889–1909, 2018.
Muñoz-Esparza, D., Kosović, B., Mirocha, J., and van Beeck, J.:
Bridging the transition from mesoscale to microscale turbulence in numerical
weather prediction models, Bound.-Lay. Meteorol., 153, 409–440, 2014.
Muñoz-Esparza, D., Lundquist, J. K., Sauer, J. A., Kosović, B., and
Linn, R. R.: Coupled mesoscale-LES modeling of a diurnal cycle during the
CWEX-13 field campaign: From weather to boundary-layer eddies, J. Adv. Model. Earth Syst., 9,
1572–1594, https://doi.org/10.1002/2017MS000960, 2017.
Muñoz-Esparza, D., Sharman, R., Sauer, J., and Kosović, B.: Toward
low-level turbulence forecasting at eddy-resolving scales, Geophys. Res. Lett., 45, 8655–8664,
https://doi.org/10.1029/2018GL078642, 2018.
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure
model for the atmospheric boundary layer, J. Meteorol. Soc. Jpn., 87,
895–912, https://doi.org/10.2151/jmsj.87.895, 2009.
Nolan, P. J., Pinto, J., González-Rocha, J., Jensen, J., Vezzi, C. N., Bailey, S. C. C., de Boer, G., Diehl, C., Laurence II., R., Powers, C. W., Foroutan, H., Ross, S. D., and Schmale III., D. G.: Coordinated Unmanned Aircraft System (UAS) and
ground-based weather measurements to predict Lagrangian Coherent Structures
(LCSs), Sensors, 18, 4448, https://doi.org/10.3390/s18124448, 2018.
Olson, J. B., Kenyon, J. S., Djalalova, I., Bianco, L., Turner, D. D., Pichugina, Y., Choukulkar, A., Toy, M. D., Brown, J. M., Angevine, W. M., Akish, E., Bao, J.-W., Jiménez, P., Kosovic, B., Lundquist, K. A., Draxl, C., Lundquist, J. K., McCaa, J., McCaffery, K., Lantz, K., Long, C., Wilczak, J., Banta, R., Marquis, M., Redfern, S., Berg, L. K., Shaw, W., and Cline, J.: Improving wind energy forecasting through
numerical weather prediction model development, B. Am. Meteorol. Soc., 100, 2201–2220,
https://doi.org/10.1175/BAMS-D-18-0040.1, 2019
Pinto, J. O., Jiménez, P. A., Hertneky, T. J., Jensen, A. A., Muñoz-Esparza,
D., and Steiner, M.: WRF Large-Eddy Simulation Data from Realtime Runs Used to Support UAS Operations during LAPSE-RATE [Data set], UCAR/NCAR – DASH Repository, https://doi.org/10.5065/83r2-0579, 2020a.
Pinto, J. O., Jiménez, P. A., Jensen, A. A., Hertneky, T. J., Muñoz-Esparza,
D., and Steiner, M.: Realtime WRF Large-Eddy Simulation Data (Version V1)
[Data set], available at: https://zenodo.org/record/3706365#.X8VwZrd7mpo (last access: 15 January 2021), 2020b.
Rai, R. K., Berg, L. K., Kosović, B., Mirocha, J. D., Pekour, M. S., and
Shaw, W. J.: Comparison of measured and numerically simulated turbulence
statistics in a convective boundary layer over complex terrain,
Bound.-Lay. Meteorol., 163, 69–89, 2016.
Rai, R. K., Berg, L. K., Kosović, B., Haupt, S. E., Mirocha, J. D.,
Ennis, B., and Draxl, C.: Evaluation of the impact of horizontal grid
spacing in terra incognita on coupled mesoscale–microscale simulations
using the WRF framework, Mon. Weather Rev., 147, 1007–1027, https://doi.org/10.1175/MWR-D-18-0282.1,
2019.
Ranquist, E., Steiner, M., and Argrow, B.: Exploring the range of weather
impacts on UAS operations. 18th Conf. on Aviation, Range, and Aerospace
Meteorology, 22–27 January 2017, Seattle, WA, USA, Amer. Meteor. Soc., J3.1, available at: https://ams.confex.com/ams/97Annual/webprogram/Paper309274.html (last access: 15 August 2020), 2017.
Roseman, C. A. and Argrow, B. M.: Weather Hazard Risk Quantification for
SUAS Safety Risk Management, J. Atmos. Ocean. Tech., 37, 1251–1268,
https://doi.org/10.1175/JTECH-D-20-0009.1, 2020.
Silvestro, F., Rossi, L., Campo, L., Parodi, A., Fiori, E., Rudari, R., and
Ferraris, L.: Impact-based flash-flood forecasting system: Sensitivity to
high resolution numerical weather prediction systems and soil moisture, J. Hydrol.,
572, 388–402, 2019.
Skamarock, W. C. and Klemp, J.B.: A time-split non-hydrostatic atmospheric
model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485.
https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A description of the
advanced research WRF Version 3, National Center for Atmospheric Research,
NCAR, Boulder, CO, USA, TN-475+STR, 2008.
Steiner, M.: Urban Air Mobility: Opportunities for the weather community,
B. Am. Meteorol. Soc., 100, 2131–2133, https://doi.org/10.1175/BAMS-D-19-0148.1, 2019.
Tesfuhuney, W., Walker, S., van Rensburg, L., and Everson, C.: Water vapor,
temperature and wind profiles within maize canopy under in-field rainwater
harvesting with wide and narrow runoff strips, Atmosphere, 4, 428–444,
https://doi.org/10.3390/atmos4040428, 2013.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and
verification of the unified NOAH land surface model in the WRF model, 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 11–15 January 2004, Seattle, Washingtion, USA, 11–15, 2004.
Wyngaard, J. C.: Toward numerical modeling in the “terra incognita”, J. Atmos. Sci., 61,
1816–1826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2, 2004.
Zhou, B., Simon, J. S., and Chow, F. K.: The convective boundary layer in
the terra incognita, J. Atmos. Sci., 71, 2545–2563, https://doi.org/10.1175/JAS-D-13-0356.1, 2014.
Short summary
The dataset produced here was generated as part of a real-time demonstration of a new capability to provide fine-scale weather guidance to support small UAS operations. The nested model configuration enabled us to resolve large turbulent eddies that developed in response to daytime heating and demonstrated the current state of the science in coupling mesoscale forcing with a large eddy simulation (LES) model. Output from these real-time simulations was used for planning IOPs during LAPSE-RATE.
The dataset produced here was generated as part of a real-time demonstration of a new capability...
Altmetrics
Final-revised paper
Preprint