Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-1167-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1167-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the global ground-based Network for Observation of Volcanic and Atmospheric Change
Santiago Arellano
CORRESPONDING AUTHOR
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
Fredy Apaza
Instituto Geológico, Minero y Metalúrgico (INGEMMET), Arequipa, Peru
Geoffroy Avard
Observatorio Vulcanológico y Sismológico de Costa Rica
(OVSICORI), Heredia, Costa Rica
Charlotte Barrington
Earth Observatory of Singapore
(EOS), Nanyang Technological University, Singapore
Nicole Bobrowski
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Claudia Bucarey
Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco,
Chile
Viviana Burbano
Servicio Geológico Colombiano (SGC), Bogotá, Colombia
deceased
Mike Burton
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
now at: Department of Earth and
Environmental Sciences, University of Manchester, Manchester, UK
Zoraida Chacón
Servicio Geológico Colombiano (SGC), Bogotá, Colombia
Gustavo Chigna
Instituto Nacional de Sismología, Vulcanología,
Meteorología e Hidrología (INSIVUMEH), Guatemala City, Guatemala
Christian Joseph Clarito
Philippine Institute of Volcanology and Seismology (PHIVOLCS), Quezon City,
Philippines
Vladimir Conde
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
Fidel Costa
Earth Observatory of Singapore
(EOS), Nanyang Technological University, Singapore
Maarten De Moor
Observatorio Vulcanológico y Sismológico de Costa Rica
(OVSICORI), Heredia, Costa Rica
Hugo Delgado-Granados
Instituto
de Geofísica, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
Andrea Di Muro
Observatoire
Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris (IPGP), Paris, France
Deborah Fernandez
Philippine Institute of Volcanology and Seismology (PHIVOLCS), Quezon City,
Philippines
Gustavo Garzón
Servicio Geológico Colombiano (SGC), Bogotá, Colombia
Hendra Gunawan
Center for Volcanology and Geological Hazard Mitigation (CVGHM), Bandung,
Indonesia
Nia Haerani
Center for Volcanology and Geological Hazard Mitigation (CVGHM), Bandung,
Indonesia
Thor H. Hansteen
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Silvana Hidalgo
Instituto Geofísico (IGEPN), Escuela Politécnica Nacional, Quito, Ecuador
Salvatore Inguaggiato
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
Mattias Johansson
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
Christoph Kern
Volcano Disaster Assistance Program (VDAP), United States Geological Survey (USGS), Vancouver, WA, United States
Manne Kihlman
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
Philippe Kowalski
Observatoire
Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris (IPGP), Paris, France
Pablo Masias
Instituto Geológico, Minero y Metalúrgico (INGEMMET), Arequipa, Peru
Francisco Montalvo
Servicio Nacional de Estudios Territoriales (SNET), San Salvador, El Salvador
Joakim Möller
Möller Data Workflow Systems AB (MolFlow), Gothenburg, Sweden
Ulrich Platt
Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
Claudia Rivera
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
now at: Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
Armando Saballos
Instituto Nicaragüense de Estudios Territoriales (INETER), Managua,
Nicaragua
Giuseppe Salerno
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
Benoit Taisne
Earth Observatory of Singapore
(EOS), Nanyang Technological University, Singapore
Freddy Vásconez
Instituto Geofísico (IGEPN), Escuela Politécnica Nacional, Quito, Ecuador
Gabriela Velásquez
Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco,
Chile
Fabio Vita
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
Mathieu Yalire
Observatoire Volcanologique de Goma (OVG), Goma, Democratic Republic of the Congo
Related authors
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
This article is included in the Encyclopedia of Geosciences
Maja Rüth, Nicole Bobrowski, Ellen Bräutigam, Alexander Nies, Jonas Kuhn, Thorsten Hoffmann, Niklas Karbach, Bastien Geil, Ralph Kleinschek, Stefan Schmitt, and Ulrich Platt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3976, https://doi.org/10.5194/egusphere-2025-3976, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
UV absorption and electrochemical O3 sensor measurement techniques suffer from interferences, especially from SO2, which is a main constituent of volcanic plumes. Only chemiluminescence (CL) O3 monitors have no known interference with SO2. However, modern CL O3 monitors are impractical because they are heavy and bulky. We developed and applied a lightweight version of a CL O3 instrument (l.5 kg, shoebox size) and present the result of those drone based CL O3 measurements.
This article is included in the Encyclopedia of Geosciences
Bianca Lauster, Udo Frieß, Jan-Marcus Nasse, Ulrich Platt, and Thomas Wagner
Atmos. Meas. Tech., 18, 3393–3405, https://doi.org/10.5194/amt-18-3393-2025, https://doi.org/10.5194/amt-18-3393-2025, 2025
Short summary
Short summary
Remote sensing measurements of scattered sunlight use the atmospheric absorption of O2–O2 (or O4) to derive cloud and aerosol properties. However, inconsistencies between measurements and radiative transfer simulations were found recently, and, so far, there has been no consensus on how to deal with these appropriately. In this study, long-term long-path differential optical absorption spectroscopy (LP-DOAS) observations were analysed and very good agreement with laboratory measurements was found.
This article is included in the Encyclopedia of Geosciences
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 24, 4585–4608, https://doi.org/10.5194/nhess-24-4585-2024, https://doi.org/10.5194/nhess-24-4585-2024, 2024
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
This article is included in the Encyclopedia of Geosciences
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
This article is included in the Encyclopedia of Geosciences
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024, https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
Short summary
Submarine volcanic eruptions represent the majority of eruptions taking place on Earth. Still, they are vastly understudied worldwide. Here we compile a new dataset and assess the morphology, depth, and height of submarine volcanoes in Southeast Asia and its surroundings to understand their hazard-exposure potential in the region. This study will serve as a stepping stone for future quantitative hazard assessments from submarine eruptions in Southeast Asia and neighbouring countries.
This article is included in the Encyclopedia of Geosciences
Jessica Salas-Navarro, John Stix, and J. Maarten de Moor
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-265, https://doi.org/10.5194/amt-2023-265, 2024
Revised manuscript not accepted
Short summary
Short summary
We identified and quantified the effects of H2S on CO2 and CH4 concentrations and their respective isotopic compositions using a Picarro instrument model G2201-i. This interference was used to develop a new method to accurately quantify H2S concentrations with a G2201-i. Measuring CO2, CH4, and H2S concentrations in the gas phase within 20 minutes using a single instrument will significantly improve current analytical routines and has the potential to be a powerful tool for volcano monitoring.
This article is included in the Encyclopedia of Geosciences
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
This article is included in the Encyclopedia of Geosciences
Simon Warnach, Holger Sihler, Christian Borger, Nicole Bobrowski, Steffen Beirle, Ulrich Platt, and Thomas Wagner
Atmos. Meas. Tech., 16, 5537–5573, https://doi.org/10.5194/amt-16-5537-2023, https://doi.org/10.5194/amt-16-5537-2023, 2023
Short summary
Short summary
BrO inside volcanic gas plumes but can be used in combination with SO2 to characterize the volcanic property and its activity state. High-quality satellite observations can provide a global inventory of this important quantity. This paper investigates how to accurately detect BrO inside volcanic plumes from the satellite UV spectrum. A sophisticated novel non-volcanic background correction scheme is presented, and systematic errors including cross-interference with formaldehyde are minimized.
This article is included in the Encyclopedia of Geosciences
Herizo Narivelo, Paul David Hamer, Virginie Marécal, Luke Surl, Tjarda Roberts, Sophie Pelletier, Béatrice Josse, Jonathan Guth, Mickaël Bacles, Simon Warnach, Thomas Wagner, Stefano Corradini, Giuseppe Salerno, and Lorenzo Guerrieri
Atmos. Chem. Phys., 23, 10533–10561, https://doi.org/10.5194/acp-23-10533-2023, https://doi.org/10.5194/acp-23-10533-2023, 2023
Short summary
Short summary
Volcanic emissions emit large quantities of gases and primary aerosols that can play an important role in atmospheric chemistry. We present a study of the fate of volcanic bromine emissions from the eruption of Mount Etna around Christmas 2018. Using a numerical model and satellite observations, we analyse the impact of the volcanic plume and how it modifies the composition of the air over the whole Mediterranean basin, in particular on tropospheric ozone through the bromine-explosion cycle.
This article is included in the Encyclopedia of Geosciences
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Hisahiro Takashima, Yugo Kanaya, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data, 15, 1831–1870, https://doi.org/10.5194/essd-15-1831-2023, https://doi.org/10.5194/essd-15-1831-2023, 2023
Short summary
Short summary
This paper presents the theoretical basis as well as verification and validation of the Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products.
This article is included in the Encyclopedia of Geosciences
Thomas Wagner, Simon Warnach, Steffen Beirle, Nicole Bobrowski, Adrian Jost, Janis Puķīte, and Nicolas Theys
Atmos. Meas. Tech., 16, 1609–1662, https://doi.org/10.5194/amt-16-1609-2023, https://doi.org/10.5194/amt-16-1609-2023, 2023
Short summary
Short summary
We investigate 3D effects of volcanic plumes on the retrieval results of satellite and ground-based UV–Vis observations. With its small ground pixels of 3.5 x 5.5 km², the TROPOMI instrument can detect much smaller volcanic plumes than previous instruments. At the same time, 3D effects become important. The effect of horizontal photon paths especially can lead to a strong underestimation of the derived plume contents of up to > 50 %, which can be further increased for strong absorbers like SO2.
This article is included in the Encyclopedia of Geosciences
Henning Finkenzeller, Denis Pöhler, Martin Horbanski, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 16, 1343–1356, https://doi.org/10.5194/amt-16-1343-2023, https://doi.org/10.5194/amt-16-1343-2023, 2023
Short summary
Short summary
Optical resonators enhance the light path in compact instruments, thereby improving their sensitivity. Determining the established path length in the instrument is a prerequisite for the accurate determination of trace gas concentrations but can be a significant complication in the use of such resonators. Here we show two calibration techniques which are relatively simple and free of consumables but still provide accurate calibrations. This facilitates the use of optical resonators.
This article is included in the Encyclopedia of Geosciences
Udo Frieß, Karin Kreher, Richard Querel, Holger Schmithüsen, Dan Smale, Rolf Weller, and Ulrich Platt
Atmos. Chem. Phys., 23, 3207–3232, https://doi.org/10.5194/acp-23-3207-2023, https://doi.org/10.5194/acp-23-3207-2023, 2023
Short summary
Short summary
Reactive bromine compounds, emitted by the sea ice during polar spring, play an important role in the atmospheric chemistry of the coastal regions of Antarctica. We investigate the sources and impacts of reactive bromine in detail using many years of measurements at two Antarctic sites located at opposite sides of the Antarctic continent. Using a multitude of meteorological observations, we were able to identify the main triggers and source regions for reactive bromine in Antarctica.
This article is included in the Encyclopedia of Geosciences
Beatriz Herrera, Alejandro Bezanilla, Thomas Blumenstock, Enrico Dammers, Frank Hase, Lieven Clarisse, Adolfo Magaldi, Claudia Rivera, Wolfgang Stremme, Kimberly Strong, Camille Viatte, Martin Van Damme, and Michel Grutter
Atmos. Chem. Phys., 22, 14119–14132, https://doi.org/10.5194/acp-22-14119-2022, https://doi.org/10.5194/acp-22-14119-2022, 2022
Short summary
Short summary
This work investigates atmospheric ammonia (NH3), a key trace gas with consequences for the environment and human health, in Mexico City. The results from the ground-based and satellite instruments show the variability and spatial distribution of NH3 over this region. NH3 in Mexico City has been increasing for the past 10 years and most of its sources are urban. This work contributes to a better understanding of NH3 sources and variability in urban and remote areas.
This article is included in the Encyclopedia of Geosciences
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
This article is included in the Encyclopedia of Geosciences
Maximilian Herrmann, Moritz Schöne, Christian Borger, Simon Warnach, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 22, 13495–13526, https://doi.org/10.5194/acp-22-13495-2022, https://doi.org/10.5194/acp-22-13495-2022, 2022
Short summary
Short summary
Ozone depletion events (ODEs) are a common occurrence in the boundary layer during Arctic spring. Ozone is depleted by bromine species in an autocatalytic reaction cycle. Previous modeling studies assumed an infinite bromine source at the ground. An alternative emission scheme is presented in which a finite amount of bromide in the snow is tracked over time. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to study ODEs in the Arctic from February to May 2019.
This article is included in the Encyclopedia of Geosciences
Nicolas Theys, Christophe Lerot, Hugues Brenot, Jeroen van Gent, Isabelle De Smedt, Lieven Clarisse, Mike Burton, Matthew Varnam, Catherine Hayer, Benjamin Esse, and Michel Van Roozendael
Atmos. Meas. Tech., 15, 4801–4817, https://doi.org/10.5194/amt-15-4801-2022, https://doi.org/10.5194/amt-15-4801-2022, 2022
Short summary
Short summary
Sulfur dioxide plume height after a volcanic eruption is an important piece of information for many different scientific studies and applications. Satellite UV retrievals are useful in this respect, but available algorithms have shown so far limited sensitivity to SO2 height. Here we present a new technique to improve the retrieval of SO2 plume height for SO2 columns as low as 5 DU. We demonstrate the algorithm using TROPOMI measurements and compare with other height estimates.
This article is included in the Encyclopedia of Geosciences
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
This article is included in the Encyclopedia of Geosciences
Jan-Lukas Tirpitz, Udo Frieß, Robert Spurr, and Ulrich Platt
Atmos. Meas. Tech., 15, 2077–2098, https://doi.org/10.5194/amt-15-2077-2022, https://doi.org/10.5194/amt-15-2077-2022, 2022
Short summary
Short summary
MAX-DOAS is a widely used measurement technique for the remote detection of atmospheric aerosol and trace gases. It relies on the analysis of ultra-violet and visible radiation spectra of skylight. To date, information contained in the skylight's polarisation state has not been utilised. On the basis of synthetic data, we carried out sensitivity analyses to assess the potential of polarimetry for MAX-DOAS applications.
This article is included in the Encyclopedia of Geosciences
Leon Kuhn, Jonas Kuhn, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 15, 1395–1414, https://doi.org/10.5194/amt-15-1395-2022, https://doi.org/10.5194/amt-15-1395-2022, 2022
Short summary
Short summary
We present a novel instrument for imaging measurements of NO2 with high spatiotemporal resolution based on gas correlation spectroscopy, called the GCS NO2 camera. The instrument works by placing two gas cells (cuvettes) in front of two photosensor arrays, one filled with air and one filled with a high concentration of NO2, acting as a non-dispersive spectral filter. NO2 images are then generated on the basis of the signal ratio of the two channels in the spectral region of 430–445 nm.
This article is included in the Encyclopedia of Geosciences
Jonas Kuhn, Nicole Bobrowski, Thomas Wagner, and Ulrich Platt
Atmos. Meas. Tech., 14, 7873–7892, https://doi.org/10.5194/amt-14-7873-2021, https://doi.org/10.5194/amt-14-7873-2021, 2021
Short summary
Short summary
We propose spectrograph implementations using Fabry–Pérot interferometers for atmospheric trace gas remote sensing. Compared with widely used grating spectrographs, we find substantial light throughput and mobility advantages for high resolving powers. Besides lowering detection limits and increasing the spatial and temporal resolution of many atmospheric trace gas measurements, this approach might enable remote sensing of further important gases such as tropospheric OH radicals.
This article is included in the Encyclopedia of Geosciences
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
This article is included in the Encyclopedia of Geosciences
Ulrich Platt, Thomas Wagner, Jonas Kuhn, and Thomas Leisner
Atmos. Meas. Tech., 14, 6867–6883, https://doi.org/10.5194/amt-14-6867-2021, https://doi.org/10.5194/amt-14-6867-2021, 2021
Short summary
Short summary
Absorption spectroscopy of scattered sunlight is extremely useful for the analysis of atmospheric trace gas distributions. A central parameter for the achievable sensitivity of spectroscopic instruments is the light throughput, which can be enhanced in a number of ways. We present new ideas and considerations of how instruments could be optimized. Particular emphasis is on arrays of massively parallel instruments. Such arrays can reduce the size and weight of instruments by orders of magnitude.
This article is included in the Encyclopedia of Geosciences
Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, and Thorsten Hoffmann
Atmos. Meas. Tech., 14, 6395–6406, https://doi.org/10.5194/amt-14-6395-2021, https://doi.org/10.5194/amt-14-6395-2021, 2021
Short summary
Short summary
Motivated by a special interest in bromine chemistry in volcanic plumes, the study presented here describes a new method for the quantitative collection of gaseous hydrogen bromide in gas diffusion denuders. The hydrogen bromide reacted during sampling with appropriate epoxides applied to the denuder walls. The denuder sampling assembly was successfully deployed in the volcanic plume of Masaya volcano, Nicaragua.
This article is included in the Encyclopedia of Geosciences
Isabelle De Smedt, Gaia Pinardi, Corinne Vigouroux, Steven Compernolle, Alkis Bais, Nuria Benavent, Folkert Boersma, Ka-Lok Chan, Sebastian Donner, Kai-Uwe Eichmann, Pascal Hedelt, François Hendrick, Hitoshi Irie, Vinod Kumar, Jean-Christopher Lambert, Bavo Langerock, Christophe Lerot, Cheng Liu, Diego Loyola, Ankie Piters, Andreas Richter, Claudia Rivera Cárdenas, Fabian Romahn, Robert George Ryan, Vinayak Sinha, Nicolas Theys, Jonas Vlietinck, Thomas Wagner, Ting Wang, Huan Yu, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-12561-2021, https://doi.org/10.5194/acp-21-12561-2021, 2021
Short summary
Short summary
This paper assess the performances of the TROPOMI formaldehyde observations compared to its predecessor OMI at different spatial and temporal scales. We also use a global network of MAX-DOAS instruments to validate both satellite datasets for a large range of HCHO columns. The precision obtained with daily TROPOMI observations is comparable to monthly OMI observations. We present clear detection of weak HCHO column enhancements related to shipping emissions in the Indian Ocean.
This article is included in the Encyclopedia of Geosciences
Magdalena Oryaëlle Chevrel, Massimiliano Favalli, Nicolas Villeneuve, Andrew J. L. Harris, Alessandro Fornaciai, Nicole Richter, Allan Derrien, Patrice Boissier, Andrea Di Muro, and Aline Peltier
Nat. Hazards Earth Syst. Sci., 21, 2355–2377, https://doi.org/10.5194/nhess-21-2355-2021, https://doi.org/10.5194/nhess-21-2355-2021, 2021
Short summary
Short summary
At Piton de la Fournaise, eruptions are typically fissure-fed and form extensive lava flow fields. Most historical events have occurred inside an uninhabited caldera, but rarely has lava flowed where population and infrastructure might be at risk. We present an up-to-date lava flow hazard map to visualize the probability of inundation by a lava flow per unit area that is an essential tool for hazard mitigation and guiding crises response management.
This article is included in the Encyclopedia of Geosciences
Florian Dinger, Timo Kleinbek, Steffen Dörner, Nicole Bobrowski, Ulrich Platt, Thomas Wagner, Martha Ibarra, and Eveling Espinoza
Atmos. Chem. Phys., 21, 9367–9404, https://doi.org/10.5194/acp-21-9367-2021, https://doi.org/10.5194/acp-21-9367-2021, 2021
Short summary
Short summary
Monitoring magnitude or chemical composition of volcanic gas emissions can help to forecast volcanic eruptions and provides empirical data on the impact of volcanoes on the chemistry in the local and global atmosphere. This study reports and discusses continuous time series of the sulfur and bromine emission fluxes of Masaya from 2014 to 2020. We observed an annual cyclicity in the BrO / SO2 molar ratio, possibly caused by the annual variability in the atmospheric humidity.
This article is included in the Encyclopedia of Geosciences
Bo Galle, Santiago Arellano, Nicole Bobrowski, Vladimir Conde, Tobias P. Fischer, Gustav Gerdes, Alexandra Gutmann, Thorsten Hoffmann, Ima Itikarai, Tomas Krejci, Emma J. Liu, Kila Mulina, Scott Nowicki, Tom Richardson, Julian Rüdiger, Kieran Wood, and Jiazhi Xu
Atmos. Meas. Tech., 14, 4255–4277, https://doi.org/10.5194/amt-14-4255-2021, https://doi.org/10.5194/amt-14-4255-2021, 2021
Short summary
Short summary
Measurements of volcanic gases are important for geophysical research, risk assessment and environmental impact studies. Some gases, like SO2 and BrO, may be studied from the ground at a safe distance using remote sensing techniques. Many other gases require in situ access to the gas plume. Here, a drone may be an attractive alternative. This paper describes a drone specially adapted for volcanic gas studies and demonstrates its use in a field campaign at Manam volcano in Papua New Guinea.
This article is included in the Encyclopedia of Geosciences
Maximilian Herrmann, Holger Sihler, Udo Frieß, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 21, 7611–7638, https://doi.org/10.5194/acp-21-7611-2021, https://doi.org/10.5194/acp-21-7611-2021, 2021
Short summary
Short summary
Time-dependent 3D numerical simulations of tropospheric bromine release and ozone depletion events (ODEs) in the Arctic polar spring of 2009 are compared to observations. Simulation results agree well with the observations at both Utqiaġvik, Alaska, and at Summit, Greenland. In a parameter study, different settings for the bromine release mechanism are evaluated. An enhancement of the bromine release mechanism improves the agreement regarding the occurrence of ODEs with the observations.
This article is included in the Encyclopedia of Geosciences
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
This article is included in the Encyclopedia of Geosciences
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
This article is included in the Encyclopedia of Geosciences
Claudia Rivera Cárdenas, Cesar Guarín, Wolfgang Stremme, Martina M. Friedrich, Alejandro Bezanilla, Diana Rivera Ramos, Cristina A. Mendoza-Rodríguez, Michel Grutter, Thomas Blumenstock, and Frank Hase
Atmos. Meas. Tech., 14, 595–613, https://doi.org/10.5194/amt-14-595-2021, https://doi.org/10.5194/amt-14-595-2021, 2021
Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Henk J. Eskes, Kai-Uwe Eichmann, Ann Mari Fjæraa, José Granville, Sander Niemeijer, Alexander Cede, Martin Tiefengraber, François Hendrick, Andrea Pazmiño, Alkiviadis Bais, Ariane Bazureau, K. Folkert Boersma, Kristof Bognar, Angelika Dehn, Sebastian Donner, Aleksandr Elokhov, Manuel Gebetsberger, Florence Goutail, Michel Grutter de la Mora, Aleksandr Gruzdev, Myrto Gratsea, Georg H. Hansen, Hitoshi Irie, Nis Jepsen, Yugo Kanaya, Dimitris Karagkiozidis, Rigel Kivi, Karin Kreher, Pieternel F. Levelt, Cheng Liu, Moritz Müller, Monica Navarro Comas, Ankie J. M. Piters, Jean-Pierre Pommereau, Thierry Portafaix, Cristina Prados-Roman, Olga Puentedura, Richard Querel, Julia Remmers, Andreas Richter, John Rimmer, Claudia Rivera Cárdenas, Lidia Saavedra de Miguel, Valery P. Sinyakov, Wolfgang Stremme, Kimberly Strong, Michel Van Roozendael, J. Pepijn Veefkind, Thomas Wagner, Folkard Wittrock, Margarita Yela González, and Claus Zehner
Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, https://doi.org/10.5194/amt-14-481-2021, 2021
Short summary
Short summary
This paper reports on the ground-based validation of the NO2 data produced operationally by the TROPOMI instrument on board the Sentinel-5 Precursor satellite. Tropospheric, stratospheric, and total NO2 columns are compared to measurements collected from MAX-DOAS, ZSL-DOAS, and PGN/Pandora instruments respectively. The products are found to satisfy mission requirements in general, though negative mean differences are found at sites with high pollution levels. Potential causes are discussed.
This article is included in the Encyclopedia of Geosciences
Christopher Fuchs, Jonas Kuhn, Nicole Bobrowski, and Ulrich Platt
Atmos. Meas. Tech., 14, 295–307, https://doi.org/10.5194/amt-14-295-2021, https://doi.org/10.5194/amt-14-295-2021, 2021
Short summary
Short summary
We present first measurements of volcanic SO2 emissions with a novel imaging technique for atmospheric trace gases in the UV and visible spectral range. Periodic spectral Fabry–Pérot interferometer transmission features are matched to differential absorption cross sections of the investigated trace gas, yielding high selectivity and sensitivity. The technique can be extended to measure many other trace gases with high spatio-temporal resolution.
This article is included in the Encyclopedia of Geosciences
Jan-Lukas Tirpitz, Udo Frieß, François Hendrick, Carlos Alberti, Marc Allaart, Arnoud Apituley, Alkis Bais, Steffen Beirle, Stijn Berkhout, Kristof Bognar, Tim Bösch, Ilya Bruchkouski, Alexander Cede, Ka Lok Chan, Mirjam den Hoed, Sebastian Donner, Theano Drosoglou, Caroline Fayt, Martina M. Friedrich, Arnoud Frumau, Lou Gast, Clio Gielen, Laura Gomez-Martín, Nan Hao, Arjan Hensen, Bas Henzing, Christian Hermans, Junli Jin, Karin Kreher, Jonas Kuhn, Johannes Lampel, Ang Li, Cheng Liu, Haoran Liu, Jianzhong Ma, Alexis Merlaud, Enno Peters, Gaia Pinardi, Ankie Piters, Ulrich Platt, Olga Puentedura, Andreas Richter, Stefan Schmitt, Elena Spinei, Deborah Stein Zweers, Kimberly Strong, Daan Swart, Frederik Tack, Martin Tiefengraber, René van der Hoff, Michel van Roozendael, Tim Vlemmix, Jan Vonk, Thomas Wagner, Yang Wang, Zhuoru Wang, Mark Wenig, Matthias Wiegner, Folkard Wittrock, Pinhua Xie, Chengzhi Xing, Jin Xu, Margarita Yela, Chengxin Zhang, and Xiaoyi Zhao
Atmos. Meas. Tech., 14, 1–35, https://doi.org/10.5194/amt-14-1-2021, https://doi.org/10.5194/amt-14-1-2021, 2021
Short summary
Short summary
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) is a ground-based remote sensing measurement technique that derives atmospheric aerosol and trace gas vertical profiles from skylight spectra. In this study, consistency and reliability of MAX-DOAS profiles are assessed by applying nine different evaluation algorithms to spectral data recorded during an intercomparison campaign in the Netherlands and by comparing the results to colocated supporting observations.
This article is included in the Encyclopedia of Geosciences
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
This article is included in the Encyclopedia of Geosciences
Cited articles
Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial
volcanic sulfur emissions, J. Geophys. Res., 103, 251–261, https://doi.org/10.1029/98JD02091, 1998.
Arellano, S.: Studies of Volcanic Plumes with Remote Spectroscopic Sensing
Techniques, PhD thesis, Chalmers University of Technology, Gothenburg, 96
pp., 2014.
Arellano, S., Hall, M., Samaniego, P., Le Pennec, J.-L., Ruiz, A., Molina,
I., and Yepes, H.: Degassing patterns of Tungurahua volcano (Ecuador) during
the 1999–2006 eruptive period, inferred from remote spectroscopic
measurements of SO2 emissions, J. Volcanol. Geoth.
Res., 176, 151–162, https://doi.org/10.1016/j.jvolgeores.2008.07.007, 2008.
Avard, G., Arellano, S., De Moor, M., Duarte, E., Martínez, M., and Galle, B.: SO2 flux of -ARENAL- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.arenal.001, 2020a.
Avard, G., Arellano, S., De Moor, M., Duarte, E., Martínez, M., and Galle, B.: SO2 flux of -TURRIALBA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.turrialba.001, 2020b.
Bluth, G. J. S., Shannon, J. M., Watson, I. M., Prata, A. J., and Realmuto, V.J.: Development of an ultra-violet digital camera for volcanic SO2 imaging, J. Volcanol. Geoth. Res., 161, 47–56,
https://doi.org/10.1016/j.jvolgeores.2006.11.004, 2007.
Bobrowski, N., Hönninger, G., Lohberger, F., and Platt, U.: IDOAS: A new
monitoring technique to study 2D distribution of volcanic gas emissions,
J. Volcanol. Geoth. Res., 150, 329–338, https://doi.org/10.1016/j.jvolgeores.2005.05.004, 2006.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann,
O. C., Vogel, A., Hartmann, M., Bovensmann, H., Frerick, J., and Burrows,
J. P.: Measurements of molecular absorption spectra with the SCIAMACHY
pre-flight model: Instrument characterization and reference data for
atmospheric remote sensing in the 230–2380 nm region, J.
Photoch. Photobio. A, 157, 167–184,
https://doi.org/10.1016/S1010-6030(03)00062-5, 2003.
Bornas, A., Arellano, S., Costa, F., Fernandez, D., Barrington, C.,
Redabulla, R, Clarito, J., Taisne, B., Newhall, C., and Galle, B.: SO2 flux of -MAYON- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.mayon.001, 2020.
Brantley, S. and Koepenick, K.: Measured carbon dioxide emissions from
Oldoinyo Lengai and the skewed distribution of passive volcanic fluxes,
Geology, 23, 933–936, https://doi.org/10.1130/0091-7613(1995)023<0933:MCDEFO>2.3.CO;2, 1995.
Bredemeyer, S. and Hansteen, T. H.: Synchronous degassing patterns of the
neighbouring volcanoes Llaima and Villarrica in south-central Chile: the
influence of tidal forces, Int. J. Earth Sci., 103,
1999–2012. https://doi.org/10.1007/s00531-014-1029-2, 2014.
Bucarey, C., Arellano, S., Velásquez, G., and Galle, B.: SO2 flux of -ISLUGA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database,
https://doi.org/10.17196/novac.isluga.001, 2020a.
Bucarey, C., Arellano, S., Velásquez, G., and Galle, B.: SO2 flux of -LASCAR- volcano from the NOVAC data-base, [Data set], v.001,
https://doi.org/10.17196/novac.lascar.001, 2020b.
Bucarey, C., Arellano, S., Velásquez, G., and Galle, B.: SO2 flux of -LLAIMA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database,
https://doi.org/10.17196/novac.llaima.001, 2020c.
Burton, M. R., Caltabiano, T., Murè, F., Salerno G., and Randazzo, D.:
SO2 flux from Stromboli during the 2007 eruption: Results from the
FLAME network and traverse measurements, J. Volcanol. Geoth. Res., 18, 214–220, https://doi.org/10.1016/j.jvolgeores.2008.11.025, 2008.
Carn, S., Krotkov, N., Yang, K., and Krueger, A. J.: Measuring global
volcanic degassing with the Ozone Monitoring Instrument (OMI), Geol.
Soc. Spec. Pub., 380, 229–257, https://doi.org/10.1144/SP380.12, 2013.
Carn, S., Fioletov, V., McLinden, C., Li, C., and Krotkov, N.: A decade of
global volcanic SO2 emissions measured from space, Sci. Rep.-UK,
7, 44095, https://doi.org/10.1038/srep44095, 2017.
Chacón, Z., Arellano, S., Burbano, V., Garzón, G., Laverde, C., and
Galle, B.: SO2 flux of -GALERAS- volcano from the NOVAC data-base, [Dataset], v.001, The NOVAC Database, https://doi.org/10.17196/novac.galeras.001, 2020a.
Chacón, Z., Arellano, S., Garzón, G., López, C., and Galle, B.: SO2 flux of -NEVADO.DEL.RUIZ- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.nevadodelruiz.001, 2020b.
Chance, K. and Kurucz, R. L.: An improved high-resolution solar reference
spectrum for earth's atmosphere measurements in the ultraviolet, visible,
and near infrared, J. Quant. Spectrosc. Ra., 111, 1289–1295, https://doi.org/10.1016/j.jqsrt.2010.01.036, 2010.
Chigna, G., Arellano, S., Cáceres, V., Sánchez, E., and Galle, B.: SO2 flux of -FUEGO.GUATEMALA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.fuegoguatemala.001, 2020a.
Chigna, G., Arellano, S., Cáceres, V., Sánchez, E., and Galle, B.: SO2 flux of -SANTIAGUITO- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.santiaguito.001, 2020b.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delgado, H., Arellano, S., Rivera, C., Fickel, M., Álvarez, J., and Galle, B.: SO2 flux of -FUEGO.DE.COLIMA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.fuegodecolima.001, 2020a.
Delgado, H., Arellano, S., Rivera, C., Fickel, M., Álvarez, J., and Galle B.: SO2 flux of -POPOCATEPETL- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.popocatepetl.001, 2020b.
Di Muro, A., Arellano, S., Kowalski, P., Staudacher, T., Garofalo, K., and
Galle, B.: SO2 flux of -PITON.DE.LA.FOURNAISE- volcano from the NOVAC
data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.pitondelafournaise.001,
2020.
Dinger, F., Bobrowski, N., Warnach, S., Bredemeyer, S., Hidalgo, S., Arellano, S., Galle, B., Platt, U., and Wagner, T.: Periodicity in the BrO∕SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015, Solid Earth, 9, 247–266, https://doi.org/10.5194/se-9-247-2018, 2018.
Edmonds, M., Herd, H., Galle, B., and Oppenheimer, C.: Automated, high
time-resolution measurements of SO2 flux at Soufrière Hills
Volcano, Montserrat, West Indies, B. Volcanol., 65, 578–586,
https://doi.org/10.1007/s00445-003-0286-x, 2003.
Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S., and Moran, M. D.: A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, 2016.
Fischer, T. P., Arellano, S., Carn, S., Aiuppa, A., Galle, B., Allard, P.,
Lopez, T., Shinohara, H., Kelly, P., Werner, C., Cardellini, C., and
Chiodini, G.: The emissions of CO2 and other volatiles from the world'ssubaerial volcanoes, Nat. Sci. Rep., 9, 18716,
https://doi.org/10.1038/s41598-019-54682-1, 2019.
Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A., Edmonds, M., and
Horrocks, L.: A miniaturised ultraviolet spectrometer for remote sensing of
SO2 fluxes: a new tool for volcano surveillance, J. Volcanol. Geoth. Res., 119, 241–254, https://doi.org/10.1016/S0377-0273(02)00356-6, 2003.
Galle, B., Johansson, M., Rivera, C., Zhang, Y., Kihlman, M., Kern, C.,
Lehmann, T., Platt, U., Arellano S., and Hidalgo, S.: Network for
Observation of Volcanic and Atmospheric Change (NOVAC): A global network for
volcanic gas monitoring -Network layout and instrument description, J. Geophys. Res., 115, D05304 https://doi.org/10.1029/2009JD011823, 2010.
Galle, B., Delgado, H., Garzón, G., Vogel, L., and Platt, U.: NOVAC
project Final Report, EU-FP6,, Chalmers University of Technology,
Gothenburg, Sweden, 100 pp, 2011.
Global Volcanism Program: Volcanoes of the World, v. 4.3.4, edited by: Venzke, E., Smithsonian Institution, https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
Granieri, D., Vita F., and Inguaggiato, S.: Volcanogenic SO2, a natural
pollutant: Measurements, modeling and hazard assessment at Vulcano Island
(Aeolian Archipelago, Italy), Environ. Pollut., 231, 219-228,
doi.org/10.1016/j.envpol.2017.07.101, 2017.
Halmer, M. M., Schmincke, H. U., and Graf, H. F.: The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, J. Volcanol. Geoth. Res., 115, 511–528, https://doi.org/10.1016/S0377-0273(01)00318-3, 2002.
Hidalgo, S., Arellano, S., Vásconez, F., Arráis, S., Bourquin, J.,
Córdova, J., and Galle, B.: SO2 flux of -COTOPAXI- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.cotopaxi.001, 2020a.
Hidalgo, S., Arellano, S., Vásconez, F., Arráis, S., Bourquin, J., and Galle, B.: SO2 flux of -TUNGURAHUA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.tungurahua.001, 2020b.
Hidalgo, S., Arellano, S., Vásconez, F., Arráis, S., Córdova,
J., and Galle, B.: SO2 flux of -SANGAY- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.sangay.001, 2020c.
Horton, K. A., Williams-Jones, G., Garbeil, H., Elias, T., Sutton, A. J.,
Mouginnis-Mark, P., Porter, J. N., and Clegg, S.: Real-time measurement of
volcanic SO2 emissions: Validation of a new UV correlation spectrometer (FLYSPEC), B. Volcanol., 68, 323–327, 2006a,
https://doi.org/10.1007/s00445-005-0014-9, 2006.
Johansson, M.: Application of Passive DOAS for Studies of Megacity Air
Pollution and Volcanic Gas Emissions, PhD thesis, Chalmers University of
Technology, Gothenburg, 64 pp., 2009.
Johansson, M.: NOVACProject/NovacPPP: NovacPPP (Post Processing Program) (Version 2.0.0), Zenodo, https://doi.org/10.5281/zenodo.4615189, 2021.
Johansson, M., Galle, B., Zhang, Y., and Rivera, C.: The dual-beam mini-DOAS
technique–measurements of volcanic gas emission, plume height and plume
speed with a single instrument, B. Volcanol., 71, 747–751,
https://doi.org/10.1007/s00445-008-0260-8, 2009.
Kasbani, K., Arellano, S., Gunawan, H., Haerani, N., Kunrat, S., Kern, C., and Galle, B.: SO2 flux of -SINABUNG- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.sinabung.001, 2020.
Keller-Rudek, H., Moortgat, G. K., Sander, R., and Sörensen, R.: The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest, Earth Syst. Sci. Data, 5, 365–373, https://doi.org/10.5194/essd-5-365-2013, 2013.
Kern, C.: Spectroscopic Measurements of Volcanic Gas Emissions in the
Ultra-Violet Wavelength Region, PhD thesis, University of Heidelberg,
Heidelberg, 318 pp, 2009.
Kern, C., Deutschmann, T., Vogel, L., Wöhrbach, M., Wagner, T., and
Platt, U.: Radiative transfer corrections for accurate spectroscopic
measurements of volcanic gas emissions, B. Volcanol., 72, 233–247, https://doi.org/10.1007/s00445-009-0313-7, 2010a.
Kern, C., Kick, F., Lübcke, P., Vogel, L., Wöhrbach, M., and Platt, U.: Theoretical description of functionality, applications, and limitations of SO2 cameras for the remote sensing of volcanic plumes, Atmos. Meas. Tech., 3, 733–749, https://doi.org/10.5194/amt-3-733-2010, 2010b.
Khokhar, M., Frankenberg, C., Van Roozendael, M., Beirle, S., Kühl, S.,
Richter, A., Platt, U., and Wagner T.: Satellite observations of atmospheric
SO2 from volcanic eruptions during the time-period of 1996–2002,
Adv. Space Res., 36, 5, 879-887, https://doi.org/10.1016/j.asr.2005.04.114,
2005.
Kraus, S.: DOASIS: A Framework Design for DOAS, PhD thesis, University of
Heidelberg, Heidelberg, 143 pp., 2006.
Krueger, A. J.: Sighting of El Chichón Sulfur Dioxide Clouds with the
Nimbus 7 Total Ozone Mapping Spectrometer, Science, 220, 1377–1379,
https://doi.org/10.1126/science.220.4604.1377, 1983.
Krueger, A. J., Walter, L., Bhartia, P., Schnetzler C., Krotokov, N., Sprod,
I., and Bluth, G.: Volcanic sulfur dioxide measurements from the total ozone
mapping spectrometer instrument, J. Geophys. Res., 100, 14057–14076, https://doi.org/10.1029/95JD01222, 1995.
Kuhn, J., Bobrowski, N., Lübcke, P., Vogel, L., and Platt, U.: A Fabry–Perot interferometer-based camera for two-dimensional mapping of SO2 distributions, Atmos. Meas. Tech., 7, 3705–3715, https://doi.org/10.5194/amt-7-3705-2014, 2014.
Langmann, B.: On the role of climate forcing by volcanic sulphate and
volcanic ash, Adv. Meteorol., 2014, 340123,
https://doi.org/10.1155/2014/340123, 2014.
Louban, I., Bobrowski, N., Rouwet, D., Inguaggiato, S., and Platt, U.:
Imaging DOAS for volcanological applications, Bulletin of Volcanology, 71,
7, 753-765, https://doi.org/10.1007/s00445-008-0262-6, 2009.
Lübcke, P., Bobrowski, N., Arellano, S., Galle, B., Garzón, G., Vogel, L., and Platt, U.: BrO/SO2 molar ratios from scanning DOAS measurements in the NOVAC network, Solid Earth, 5, 409–424, https://doi.org/10.5194/se-5-409-2014, 2014.
Lübcke, P., Lampel, J., Arellano, S., Bobrowski, N., Dinger, F., Galle, B., Garzón, G., Hidalgo, S., Chacón Ortiz, Z., Vogel, L., Warnach, S., and Platt, U.: Retrieval of absolute SO2 column amounts from scattered-light spectra: implications for the evaluation of data from automated DOAS networks, Atmos. Meas. Tech., 9, 5677–5698, https://doi.org/10.5194/amt-9-5677-2016, 2016.
Masias, P., Arellano, S., Apaza, F., and Galle, B.: SO2 flux of -UBINAS- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.ubinas.001, 2020a.
Masias, P., Arellano, S., Apaza, F., Kern, C., and Galle, B.: SO2 flux of -SABANCAYA- volcano from the NOVAC data-base, [Data set], v.001,
https://doi.org/10.17196/novac.sabancaya.001, 2020b.
McGonigle, A., Pering, T., Wilkes, T., Tamburello, G., D'aleo, R., Bitetto,
M., Aiuppa, A., and Wilmott, J.: Ultraviolet imaging of volcanic plumes: a
new paradigm in volcanology, Geosci., 3, 68,
https://doi.org/10.3390/geosciences7030068, 2017.
Millán, M.: Remote sensing of air pollutants: A study of some
atmospheric scattering effects, Atmos. Environ., 14, 1241–1253,
https://doi.org/10.1016/0004-6981(80)90226-7, 1980.
Moffat, A. J. and Millan, M. M.: The applications of optical correlation
techniques to the remote sensing of SO2 plumes using sky light,
Atmos. Environ., 5, 677–690, https://doi.org/10.1016/0004-6981(71)90125-9,
1971.
Montalvo, F., Arellano, S., Conde, V., Escobar, D., Barahona, F., Olmos, R., and Galle, B.: SO2 flux of -SAN.MIGUEL- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.sanmiguel.001, 2020a.
Montalvo, F., Arellano, S., Conde, V., Escobar, D., Barahona, F., Olmos, R., and Galle, B.: SO2 flux of -SANTA.ANA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.santaana.001, 2020b.
Mori, T. and Burton, M.: The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes, Geophys. Res. Lett., 33, L24804, https://doi.org/10.1029/2006GL027916, 2006.
Mori, T., Mori, T., Kazahaya, K., Ohwada, M., Hirabayashi, J., and
Yoshikawa, S.: Effect of UV scattering on SO2 emission rate
measurements, Geophys. Res. Lett., 33, L17315,
https://doi.org/10.1029/2006GL026285, 2006.
Mori, T., Hirabayashi, J., Kazahaya, K., Mori, T., Ohwada, M., Miyashita,
M., and Iino, H.: A compact ultraviolet spectrometer system (COMPUSS) for
monitoring volcanic SO2 emission: Validation and preliminary
observation, B. Volcanol. Soc. Jpn, 52, 105–112,
https://doi.org/10.18940/kazan.52.2_105, 2007.
Mori, T., Shinohara, H., Kazahaya, K., Hirabayashi, J.-I., Matsushima, T., Mori, T., Ohwada, M., Odai, M., Iino, H., and Miyashita, M.: Time-averaged SO2 fluxes of subduction-zone volcanoes: Example of a 32-year exhaustive survey for Japanese volcanoes, J. Geophys. Res.-Atmos., 118, 8662–8674, https://doi.org/10.1002/jgrd.50591, 2013.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing. In: IPCC, 2013: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Oppenheimer, C.: Sulfur: Ultraviolet Sensing of Volcanic Sulfur Emissions,
Elements, 6, 87–92, 2010.
Pfeffer, M., Bergsson, B., Barsotti, S., Stefánsdóttir, G., Galle,
B., Arellano, S., Conde, V., Donovan, A., Ilyinskaya, E., Burton, M.,
Aiuppa, A., Whitty, R., Simmons, I., Arason, Þ., Jónasdóttir,
E., Keller, N., Yeo, R., Arngrímsson, H., Jóhannsson, Þ.,
Butwin, M., Askew, R., Dumont, S., von Löwis, S., Ingvarsson, Þ., La
Spina, A., Thomas, H., Prata, F., Grassa, F., Giudice, G., Stefánsson,
A., Marzano, F., Montopoli, M., and Mereu, L.: Ground-Based Measurements of
the 2014–2015 Holuhraun Volcanic Cloud (Iceland), Geosciences, 8, 29,
https://doi.org/10.3390/geosciences8010029, 2018.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy
Principles and Applications, Physics of Earth and Space Environments,
Springer-Verlag, Berlin, Heidelberg, 597 pp., ISBN 978-3-540-75776-4, 2008.
Platt, U., Lübcke, P., Kuhn, J., Bobrowski, N., Prata, F., Burton, M.,
and Kern, C.: Quantitative imaging of volcanic plumes–Results, needs, and
future trends, J. Volcanol. Geoth. Res., 300, 7–21,
https://doi.org/10.1016/j.jvolgeores.2014.10.006, 2015.
Prata, A. J. and Bernardo, C.: Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera, Atmos. Meas. Tech., 7, 2807–2828, https://doi.org/10.5194/amt-7-2807-2014, 2014.
Queißer, M., Burton, M., Theys, N., Pardini, F., Salerno, G.,
Caltabiano, T., Varnam, M., Esse, B., and Kazahaya, R.: TROPOMI enables high
resolution of SO2 flux observations from Mt. Etna, Italy, and beyond, Sci. Rep.-UK, 9, 957, https://doi.org/10.1038/s41598-018-37807-w, 2019.
Retscher, C., De Mazière, M., Meijer, Y., Vik, A., Boyd, I., Niemeijer,
S., Koopman, R., and Bojkov, B.: The Generic Earth Observation Metadata
Standard (GEOMS), Version 1.0, available at: https://avdc.gsfc.nasa.gov/index.php?site=1925698559 (last access: 17 March 2021), 2011.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054, 2000.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography synthesis,
Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008GC002332,
2009.
Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and
Galle, B.: SO2 flux of -CONCEPCION- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.concepcion.001, 2020a.
Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and
Galle, B.: SO2 flux of -MASAYA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.masaya.001, 2020b.
Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and
Galle, B.: SO2 flux of -MOMOTOMBO- volcano from the NOVAC data-base, [Data set], v.001,The NOVAC Database, https://doi.org/10.17196/novac.momotombo.001, 2020c.
Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and
Galle, B.: SO2 flux of -SAN.CRISTOBAL- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.sancristobal.001, 2020d.
Saballos, A., Arellano, S., Mendoza, E., Álvarez, J., Muñoz, A., and
Galle, B.: SO2 flux of -TELICA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database, https://doi.org/10.17196/novac.telica.001, 2020e.
Salerno, G. G., Burton, M. R., Oppenheimer, C., Caltabiano, T., Randazzo, D.,
Bruno, N., and Longo, V.: Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: Comparison with conventional
traverses and uncertainties in flux retrieval, J. Volcanol.
Geoth. Rese., 183, 76–83, https://doi.org/10.1016/j.jvolgeores.2009.02.013,
2009.
Salerno, G., Arellano, S., Burton, M., and Galle, B.: SO2 flux of -ETNA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database , https://doi.org/10.17196/novac.etna.001, 2020.
Schmidt, A., Mills, M. J., Ghan, S., Gregory, J. M., Allan, R. P., Andrews,
T., Bardeen, C., Conley, A., Forster, P., Gettelman A., Portmann, R.,
Solomon S., and Toon, O. B.: Volcanic radiative forcing from 1979 to 2015,
J. Geophys. Res.-Atmos., 123, 12491–12508, https://doi.org/10.1029/2018JD028776, 2018.
Schnetzler, C. C., Bluth, G. J. S., Krueger, A. J., and Walter, L. S.: A
proposed volcanic sulfur dioxide index (VSI), J. Geophys. Res., 102, 20087–20091, https://doi.org/10.1029/97JB01142, 1997.
Smekens, J. F. and Gouhier, M.: Observation of SO2 degassing at
Stromboli volcano using a hyperspectral thermal infrared imager, J.
Volcanol. Geoth. Res., 356, 75–89,
https://doi.org/10.1016/j.jvolgeores.2018.02.018, 2018.
Sparks, R. S. J.: Dynamics of magma degassing, Geol. Soc.
Spec. Pub., 213, 5–22, https://doi.org/10.1144/GSL.SP.2003.213.01.02, 2003.
Sparks, R. S. J., Biggs, J., and Neuberg, J. W.: Monitoring volcanoes, Science, 335, 1310–1311, https://doi.org/10.1126/science.1219485, 2012.
Stoiber, R. E. and Jepsen, A.: Sulfur dioxide contributions to the atmosphere
by volcanoes, Science, 182, 577–578, https://doi.org/10.1126/science.182.4112.577,
1973.
Stoiber, R., Williams, S., and Huebert, B.: Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geoth. Res., 33, 1–3, https://doi.org/10.1016/0377-0273(87)90051-, 1987.
Stremme, W., Krueger, A., Harig, R., and Grutter, M.: Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios, Atmos. Meas. Tech., 5, 275–288, https://doi.org/10.5194/amt-5-275-2012, 2012.
Theys, N., Campion, R., Clarisse, L., Brenot, H., van Gent, J., Dils, B., Corradini, S., Merucci, L., Coheur, P.-F., Van Roozendael, M., Hurtmans, D., Clerbaux, C., Tait, S., and Ferrucci, F.: Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS, Atmos. Chem. Phys., 13, 5945–5968, https://doi.org/10.5194/acp-13-5945-2013, 2013.
Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J.,
Pedergnana, M., Arellano, S., Galle, B., Fernandez, D., Carlito, C.,
Barrington, C., Taisne, B., Delgado-Granados, H., Loyola, D., and Van
Roozendael, M.: Global monitoring of volcanic SO2 degassing with
unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor,
Sci. Rep.-UK, 9, 2643, https://doi.org/10.1038/s41598-019-39279-y, 2019.
Velásquez, G., Arellano, S., Bucarey, C., and Galle, B.: SO2 flux of -COPAHUE- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database ,
https://doi.org/10.17196/novac.copahue.001, 2020a.
Velásquez, G., Arellano, S., Bucarey, C., and Galle, B.: SO2 flux of -PLANCHON.PETEROA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database ,
https://doi.org/10.17196/novac.planchonpeteroa.001, 2020b.
Velásquez, G., Arellano, S., Bucarey, C., Hansteen, T., Bredemeyer, S., and Galle, B.: SO2 flux of -VILLARRICA- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database , https://doi.org/10.17196/novac.villarrica.001, 2020c.
Vita, F., Inguaggiato, S., Bobrowski, N., Calderone L., Galle, B., and Parello, F.: Continuous SO2 flux measurements for Vulcano Island, Italy, Ann. Geophys. 55, 2, https://doi.org/10.4401/ag-5759, 2012.
Vita, F., Arellano, S., Inguaggiato, S., and Galle, B.: SO2 flux of -VULCANO- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database ,
https://doi.org/10.17196/novac.vulcano.001, 2020.
Voigt, S., Orphal, J., Bogumil, K., and Burrows, J. P.: The temperature
dependence (203-293 K) of the absorption cross sections of O3 in the
230-850 nm region measured by Fourier-transform spectroscopy, J.
Photochem. Photobiol. A, 143, 1-9,
https://doi.org/10.1016/S1010-6030(01)00480-4, 2001.
Warnach, S., Bobrowski, N., Hidalgo, S., Arellano, S., Sihler, H., Dinger,
F, Lübcke, P., Battaglia, J., Steele, A., Galle, B., Platt, U., and
Wagner, T.: Variation of the BrO/SO2 Molar Ratio in the Plume of
Tungurahua Volcano Between 2007 and 2017 and Its Relationship to Volcanic
Activity, Front. Earth Sci., 7, 132, https://doi.org/10.3389/feart.2019.00132,
2019.
Yalire, M., Arellano, S., Kasareka, M., Karume, K., and Galle, B.: SO2 flux of -NYIRAGONGO- volcano from the NOVAC data-base, [Data set], v.001, The NOVAC Database , https://doi.org/10.17196/novac.nyiragongo.001, 2020.
Download
- Article
(5990 KB) - Full-text XML
Short summary
This study presents a dataset of volcanic sulfur dioxide (SO2) emissions from 2005–2017. Measurements were obtained by Network for Observation of Volcanic and Atmospheric Change (NOVAC) scanning differential optical absorption spectrometer (ScanDOAS) instruments at 32 volcanoes and processed using a standardized procedure. We show statistics of volcanic gas emissions under a variety of conditions and compare them with averages derived from measurements from space and historical inventories.
This study presents a dataset of volcanic sulfur dioxide (SO2) emissions from 2005–2017....
Altmetrics
Final-revised paper
Preprint