Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-1151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Facility-scale inventory of dairy methane emissions in California: implications for mitigation
Department of Environmental
Science, University of California Riverside, Riverside, CA 92521, USA
Deanne Meyer
Department of Animal Science, University of California Davis, One
Shields Avenue, Davis, CA 95616, USA
Marc L. Fischer
Lawrence Berkeley National Laboratory, Energy Technologies Area, 1
Cyclotron Road, Berkeley, CA 94720, USA
Seongeun Jeong
Lawrence Berkeley National Laboratory, Energy Technologies Area, 1
Cyclotron Road, Berkeley, CA 94720, USA
Talha Rafiq
Department of Environmental
Science, University of California Riverside, Riverside, CA 92521, USA
Michelle Carr
Department of Environmental
Science, University of California Riverside, Riverside, CA 92521, USA
Francesca M. Hopkins
Department of Environmental
Science, University of California Riverside, Riverside, CA 92521, USA
Related authors
No articles found.
Sina Hasheminassab, David M. Tratt, Olga V. Kalashnikova, Clement S. Chang, Morad Alvarez, Kerry N. Buckland, Michael J. Garay, Francesca M. Hopkins, Eric R. Keim, Le Kuai, Yaning Miao, Payam Pakbin, William C. Porter, and Mohammad H. Sowlat
Atmos. Chem. Phys., 25, 11935–11950, https://doi.org/10.5194/acp-25-11935-2025, https://doi.org/10.5194/acp-25-11935-2025, 2025
Short summary
Short summary
Ammonia (NH3) is a key air pollutant linked to fine particle pollution, yet its sources remain poorly understood. Using airborne infrared imaging and ground sensors, we mapped NH3 emissions in California’s Salton Sea region with unprecedented detail. We found high emissions from farms, geothermal plants, and waste sites, including sources missing from inventories. These findings highlight the need for better NH3 monitoring to improve air quality models and guide pollution reduction strategies.
Matthew S. Johnson, Sofia D. Hamilton, Seongeun Jeong, Yu Yan Cui, Dien Wu, Alex Turner, and Marc Fischer
Atmos. Chem. Phys., 25, 8475–8492, https://doi.org/10.5194/acp-25-8475-2025, https://doi.org/10.5194/acp-25-8475-2025, 2025
Short summary
Short summary
Satellites, such as NASA's Orbiting Carbon Observatory-2 and -3 (OCO-2 and OCO-3, respectively), retrieve carbon dioxide (CO2) concentrations, which provide vital information for estimating surface CO2 emissions. Here, we investigate the ability of OCO-2/3 retrievals to constrain CO2 emissions for the state of California for the major emission sectors (i.e., fossil fuels, net ecosystem exchange, and wildfire).
Zihan Zhu, Javier González-Rocha, Yifan Ding, Isis Frausto-Vicencio, Sajjan Heerah, Akula Venkatram, Manvendra Dubey, Don Collins, and Francesca M. Hopkins
Atmos. Meas. Tech., 17, 3883–3895, https://doi.org/10.5194/amt-17-3883-2024, https://doi.org/10.5194/amt-17-3883-2024, 2024
Short summary
Short summary
Increases in agriculture, oil and gas, and waste management activities have contributed to the increase in atmospheric methane levels and resultant climate warming. In this paper, we explore the use of small uncrewed aircraft systems (sUASs) and AirCore technology to detect and quantify methane emissions. Results from field experiments demonstrate that sUASs and AirCore technology can be effective for detecting and quantifying methane emissions in near real time.
Eric Simley, Dev Millstein, Seongeun Jeong, and Paul Fleming
Wind Energ. Sci., 9, 219–234, https://doi.org/10.5194/wes-9-219-2024, https://doi.org/10.5194/wes-9-219-2024, 2024
Short summary
Short summary
Wake steering is a wind farm control technology in which turbines are misaligned with the wind to deflect their wakes away from downstream turbines, increasing total power production. In this paper, we use a wind farm control model and historical electricity prices to assess the potential increase in market value from wake steering for 15 US wind plants. For most plants, we find that the relative increase in revenue from wake steering exceeds the relative increase in energy production.
Isis Frausto-Vicencio, Sajjan Heerah, Aaron G. Meyer, Harrison A. Parker, Manvendra Dubey, and Francesca M. Hopkins
Atmos. Chem. Phys., 23, 4521–4543, https://doi.org/10.5194/acp-23-4521-2023, https://doi.org/10.5194/acp-23-4521-2023, 2023
Short summary
Short summary
Wildfires are increasing in the western USA, making it critical to understand the impacts of greenhouse gases and air pollutants on the atmosphere. We used a ground-based remote sensing technique to measure the greenhouse gases and aerosol in the atmosphere. We isolate a large smoke plume from a nearby wildfire and calculate variables to understand the fuel properties and combustion phases. We find that a significant amount of methane is emitted from the 2020 California wildfire season.
Cited articles
Ahn, H. K., Mulbry, W., White, J. W., and Konrad, S. L.: Pile mixing increases greenhouse gas emissions during composting of dairy manure, Bioresource Technol., 102, 2904–2909, https://doi.org/10.1016/j.biortech.2010.10.142, 2011.
Appuhamy, R. and Kebreab, E.: Characterizing California-specific cattle feed rations and
improved modeling of enteric fermentation for California's greenhouse gas
inventory 2018, 1–41, available at: https://ww2.arb.ca.gov/sites/default/files/classic//research/apr/past/16rd001.pdf (last access: 4 March 2021), 2018.
Arndt, C., Leytem, A. B., Hristov, A. N., Zavala-Araiza, D., Cativiela, J.
P., Conley, S., Daube, C., Faloona, I., and Herndon, S. C.: Short-term
methane emissions from 2 dairy farms in California estimated by different
measurement techniques and US Environmental Protection Agency inventory
methodology: A case study, J. Dairy Sci., 101, 11461–11479,
https://doi.org/10.3168/jds.2017-13881, 2018.
California Air Resources Board: 2014 Edition California's 2000–2012
Greenhouse Gas Emissions Inventory Technical Support Document State of
California Air Resources Board Air Quality Planning and Science Division,
1–168, available at: https://ww3.arb.ca.gov/cc/inventory/doc/methods_00-14/ghg_inventory_00-14_technical_support_document.pdf (last access: 4 March 2021), 2014.
California Department of Food and Agriculture: Annual Statistics Report
2017–2018, available at: https://www.cdfa.ca.gov/statistics/PDFs/2017-18AgReport.pdf (last access: 12 March 2020), 2018.
California Department of Food and Agriculture: Alternative Manure Management
Program, available at: https://www.cdfa.ca.gov/oefi/AMMP/
(last access: 12 March 2020), 2020a.
California Department of Food and Agriculture: Dairy Digester Research and
Development Program, available at: https://www.cdfa.ca.gov/oefi/ddrdp/ (last access: 12 March 2020), 2020b.
California Integrated Water Quality System: California Integrated Water
Quality System Regulated Facility Reports, available at:
https://ciwqs.waterboards.ca.gov/ciwqs/readOnly/CiwqsReportServlet?inCommand=reset&reportName=RegulatedFacility (last access: 4 March 2021), 2019.
California Integrated Water Quality System: Regulated Facility Reports,
https://ciwqs.waterboards.ca.gov/ciwqs/readOnly/CiwqsReportServlet?inCommand=reset&reportName=RegulatedFacility, 2017.
California Regional Water Quality Control Board: Reissued waste discharge
requirements general order for existing milk cow dairies, 1–167, available at: https://www.waterboards.ca.gov/centralvalley/board_decisions/adopted_orders/general_orders/r5-2013-0122.pdf (last access: 4 March 2021), 2013.
Chang, A., Harter, T., Letey, J., Meyer, D., Meyer, R. D., Mastthews, M. C.,
Mitloehner, F., Pettygrove, S., Robinson, P., and Zhang, R.: Managing Dairy
Manure in the Central Valley of California, available at: http://groundwater.ucdavis.edu/files/136450.pdf (last access: 4 March 2021), 2004.
Charrier, J.: 2016 Edition California's 2000–2014 Greenhouse Gas Emission
Inventory Technical Support Document, State of California Air Resources Board, Air Quality Planning and Science Division, September 2016, 1–174, available at: https://ww3.arb.ca.gov/cc/inventory/pubs/reports/2000_2014/ghg_inventory_00-14_technical_support_document.pdf (last access: 4 March 2021), 2016.
Cui, Y. Y., Brioude, J., Angevine, W. M., Peischl, J., McKeen, S. A., Kim,
S.-W., Neuman, J. A., Henze, D. K., Bousserez, N., Fischer, M. L., Jeong,
S., Michelsen, H. A., Bambha, R. P., Liu, Z., Santoni, G. W., Daube, B. C.,
Kort, E. A., Frost, G. J., Ryerson, T. B., Wofsy, S. C., and Trainer, M.:
Top-down estimate of methane emissions in California using a mesoscale
inverse modeling technique: The San Joaquin Valley, J. Geophys. Res.-Atmos.,
122, 3686–3699, https://doi.org/10.1002/2016JD026398, 2017.
Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D.: Global
atmospheric methane: budget, changes and dangers, Philos. Trans. R. Soc.
London A, 369, 2058–2072, https://doi.org/10.1098/rsta.2010.0341, 2011.
Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M.,
Yadav, V., Bue, B. D., Thompson, D. R., Conley, S., Colombi, N. K.,
Frankenberg, C., McCubbin, I. B., Eastwood, M. L., Falk, M., Herner, J. D.,
Croes, B. E., Green, R. O., and Miller, C. E.: California's methane
super-emitters, Nature, 575, 180–184, https://doi.org/10.1038/s41586-019-1720-3, 2019.
Hamilton, D. W., Fathepure, B., Fulhage, C. D., Clarkson, W., and Lalman, J.: Treatment lagoons for animal agriculture, in: Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers, edited by: Rice, J. M., Caldwell, D. F., and Humenik, F. J., ASABE, St. Joseph, Michigan, Pub. Number 913C0306, 547–574, 2006.
Hristov, A. N., Harper, M., Meinen, R., Day, R., Lopes, J., Ott, T.,
Venkatesh, A., and Randles, C. A.: Discrepancies and Uncertainties in
Bottom-up Gridded Inventories of Livestock Methane Emissions for the
Contiguous United States, Environ. Sci. Technol., 51, 13668–13677,
https://doi.org/10.1021/acs.est.7b03332, 2017.
IPCC: IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 –
Agriculture, Forestry and Other Land Use, Chapter 10: Emissions from
Livestock and Manure Management, available at:
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf (last access: 4 March 2021), edited by: Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., IGES, Japan, 2006.
Jeong, S., Zhao, C., Andrews, A. E., Bianco, L., Wilczak, J. M., and Fischer,
M. L.: Seasonal variation of CH4 emissions from central California, J. Geophys. Res., 117, D11306, https://doi.org/10.1029/2011JD016896, 2012.
Jeong, S., Newman, S., Zhang, J., Andrews, A. E., Bianco, L., Bagley, J.,
Cui, X., Graven, H., Kim, J., Salameh, P., LaFranchi, B. W., Priest, C.,
Campos-Pineda, M., Novakovskaia, E., Sloop, C. D., Michelsen, H. A., Bambha,
R. P., Weiss, R. F., Keeling, R., and Fischer, M. L.: Estimating methane
emissions in California's urban and rural regions using multitower
observations, J. Geophys. Res.-Atmos., 121, 13031–13049,
https://doi.org/10.1002/2016JD025404, 2016.
Lory, J. A., Massey, R. E. and Zulovich, J. M.: An Evaluation of the USEPA
Calculations of Greenhouse Gas Emissions from Anaerobic Lagoons, J.
Environ. Qual., 39, 776–778, https://doi.org/10.2134/jeq2009.0319, 2010.
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M.,
Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad,
L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.: Gridded
National Inventory of U.S. Methane Emissions, Environ. Sci. Technol.,
50, 13123–13133, https://doi.org/10.1021/acs.est.6b02878, 2016.
Marklein, A. R. and Hopkins, F. M.: Dairy Sources of Methane Emissions in
California, ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1814, 2020.
Meyer, D.: Characterize Physical and Chemical Properties of Manure in
California Dairy Systems to Improve Greenhouse Gas Emission Estimates,
1–70, available at: https://ww2.arb.ca.gov/sites/default/files/classic/research/apr/past/16rd002.pdf (last access: 4 March 2021), 2019.
Meyer, D., Price, P. L., Rossow, H. A., Silva-del-Rio, N., Karle, B. M.,
Robinson, P. H., DePeters, E. J., and Fadel, J. G.: Survey of dairy housing and manure management practices in California, J. Dairy Sci., 94,
4744–4750, https://doi.org/10.3168/jds.2010-3761, 2011.
Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E.,
Biraurd, S. C., Dlugokencky, E. J., Eluszkiewicz, J., and Fischer, M. L.:
Anthropogenic emissions of methane in the United States, P. Natl. Acad. Sci. USA, 575, 180–184, https://doi.org/10.1073/pnas.1314392110, 2013.
Miranda, N. D., Granell, R., Tuomisto, H., and Mcculloch, M. D.: Meta-analysis of methane yields from anaerobic digestion of dairy cattle manure, Biomass Bioenerg., 86, 65–75, https://doi.org/10.1016/j.biombioe.2016.01.012, 2016.
NASEM (National Academies of Sciences, Engineering, and Medicine): Improving
Characterization of Anthropogenic Methane Emissions in the United States,
National Academies Press, Washington, D.C., 2018.
Owen, J. J. and Silver, W. L.: Greenhouse gas emissions from dairy manure
management: a review of field-based studies, Glob. Change Biol., 21,
550–565, https://doi.org/10.1111/gcb.12687, 2014.
Rafiq, T., Duren, R. M., Thorpe, A. K., Foster, K., Patarsuk,
R., Miller, C. E., and Hopkins, F. M.: Attribution of Methane
Point Source Emissions using Airborne Imaging Spectroscopy and the
Vista-California Methane Infrastructure Dataset, Environ. Res.
Lett., 15, 2020.
R Core Team: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/ (last access: 4 March 2021), 2013.
Ross, K.: California Agricultural Statistics Review, 1–121, available at: https://www.nass.usda.gov/Statistics_by_State/California/Publications/Annual_Statistical_Reviews/2019/2018cas-all.pdf (last access: 4 March 2021), 2019.
State of California: Senate Bill 1383, available at: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB1383 (last access: 4 March 2021), 2016.
Trousdell, J. F., Conley, S. A., Post, A., and Faloona, I. C.: Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework, Atmos. Chem. Phys., 16, 15433–15450, https://doi.org/10.5194/acp-16-15433-2016, 2016.
USDA NASS: Census of Agriculture, 1–20, available at:
http://www.nass.usda.gov/AgCensus (last access: 4 March 2021), 2017.
US EPA, O. C. C. D.: Inventory of U.S. Greenhouse Gas Emissions and Sinks:
1990–2015 – Annexes, 1–475, available at: https://www.epa.gov/sites/production/files/2017-02/documents/2017_all_annexes.pdf (last access: 4 March 2021), 2017.
Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bösch, H., and Worden, J.: Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations, Atmos. Chem. Phys., 14, 8173–8184, https://doi.org/10.5194/acp-14-8173-2014, 2014.
Wolf, J., Asrar, G. R., and West, T. O.: Revised methane emissions factors
and spatially distributed annual carbon fluxes for global livestock, Carbon
Balance and Management, 12, 16, https://doi.org/10.1186/s13021-017-0084-y, 2017.
Short summary
Dairy cow farms produce half of California's (CA) methane (CH4) emissions. Current CH4 emission inventories lack regional variation in management and are inadequate to assess CH4 mitigation measures. We develop a spatial database of CH4 emissions for CA dairy farms including farm-scale herd demographics and management data. This database is useful to predict CH4 emission reductions from mitigation efforts, to compare with atmospheric CH4 observations and to attribute emissions to specific farms.
Dairy cow farms produce half of California's (CA) methane (CH4) emissions. Current CH4 emission...
Altmetrics
Final-revised paper
Preprint