Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-1005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Country-resolved combined emission and socio-economic pathways based on the Representative Concentration Pathway (RCP) and Shared Socio-Economic Pathway (SSP) scenarios
Johannes Gütschow
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam, Germany
M. Louise Jeffery
Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam, Germany
NewClimate Institute, Berlin, Germany
Annika Günther
Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam, Germany
Malte Meinshausen
Climate & Energy College, School of Earth Sciences, The University of Melbourne, Melbourne, Australia
Related authors
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Francesco N. Tubiello, Kevin Karl, Alessandro Flammini, Johannes Gütschow, Griffiths Obli-Laryea, Giulia Conchedda, Xueyao Pan, Sally Yue Qi, Hörn Halldórudóttir Heiðarsdóttir, Nathan Wanner, Roberta Quadrelli, Leonardo Rocha Souza, Philippe Benoit, Matthew Hayek, David Sandalow, Erik Mencos Contreras, Cynthia Rosenzweig, Jose Rosero Moncayo, Piero Conforti, and Maximo Torero
Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022, https://doi.org/10.5194/essd-14-1795-2022, 2022
Short summary
Short summary
The paper presents results from the new FAOSTAT database on food system emissions, covering all countries over the time series 1990–2019. Results indicate and further clarify – updated to 2019 – the relevance of emissions from crop and livestock production processes within the farm gate; from conversion of natural ecosystems to agriculture, such as deforestation and peat degradation; and from use of fossil fuels for energy and other industrial processes along food supply chains.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Anna Zehrung, Andrew D. King, Zebedee Nicholls, Mark D. Zelinka, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2252, https://doi.org/10.5194/egusphere-2025-2252, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Gregory method is a common approach for calculating the equilibrium climate sensitivity (ECS). However, studies which apply this method lack transparency in how model data is processed prior to calculating the ECS, inhibiting replicability. Different choices of global and annual mean weighting, anomaly calculation, and linear regression fit can affect the ECS estimates. We investigate the impact of these choices and propose a standardised method for future ECS calculations.
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025, https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Short summary
We studied carbon–nitrogen coupling in Earth system models by developing a global carbon–nitrogen cycle model (CNit v1.0) within the widely used emulator MAGICC. CNit effectively reproduced the global carbon–nitrogen cycle dynamics observed in complex models. Our results show persistent nitrogen limitations on plant growth (net primary production) from 1850 to 2100, suggesting that nitrogen deficiency may constrain future land carbon sequestration.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025, https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from various Earth system models. Our findings reveal significant discrepancies between flux and pool size data, where cumulative imbalances can reach hundreds of gigatons of carbon or nitrogen. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land-use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Francesco N. Tubiello, Kevin Karl, Alessandro Flammini, Johannes Gütschow, Griffiths Obli-Laryea, Giulia Conchedda, Xueyao Pan, Sally Yue Qi, Hörn Halldórudóttir Heiðarsdóttir, Nathan Wanner, Roberta Quadrelli, Leonardo Rocha Souza, Philippe Benoit, Matthew Hayek, David Sandalow, Erik Mencos Contreras, Cynthia Rosenzweig, Jose Rosero Moncayo, Piero Conforti, and Maximo Torero
Earth Syst. Sci. Data, 14, 1795–1809, https://doi.org/10.5194/essd-14-1795-2022, https://doi.org/10.5194/essd-14-1795-2022, 2022
Short summary
Short summary
The paper presents results from the new FAOSTAT database on food system emissions, covering all countries over the time series 1990–2019. Results indicate and further clarify – updated to 2019 – the relevance of emissions from crop and livestock production processes within the farm gate; from conversion of natural ecosystems to agriculture, such as deforestation and peat degradation; and from use of fossil fuels for energy and other industrial processes along food supply chains.
Lea Beusch, Zebedee Nicholls, Lukas Gudmundsson, Mathias Hauser, Malte Meinshausen, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2085–2103, https://doi.org/10.5194/gmd-15-2085-2022, https://doi.org/10.5194/gmd-15-2085-2022, 2022
Short summary
Short summary
We introduce the first chain of computationally efficient Earth system model (ESM) emulators to translate user-defined greenhouse gas emission pathways into regional temperature change time series accounting for all major sources of climate change projection uncertainty. By combining the global mean emulator MAGICC with the spatially resolved emulator MESMER, we can derive ESM-specific and constrained probabilistic emulations to rapidly provide targeted climate information at the local scale.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Cited articles
Andres, R. J., Fielding, D. J., Marland, G., Boden, T. A., Kumar, N., and
Kearney, A. T.: Carbon Dioxide Emissions from Fossil-Fuel Use, Tellus B, 51, 759–765,
https://doi.org/10.1034/j.1600-0889.1999.t01-3-00002.x, 1999. a, b
Boden, T., Marland, G., and Andres, R.: Global, Regional, and National
Fossil-Fuel CO2 Emissions,
Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, USA,
https://doi.org/10.3334/CDIAC/00001_V2017, 2017. a, b
Bolt, J. and van Zanden, J. L.: The Maddison Project: Collaborative
Research on Historical National Accounts, Econ. Hist. Rev., 67,
627–651, https://doi.org/10.1111/1468-0289.12032, 2014. a
Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C.,
Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S.,
Waldhoff, S., and Wise, M.: The SSP4: A World of Deepening
Inequality, Global Environ. Chang., 42, 284–296,
https://doi.org/10.1016/j.gloenvcha.2016.06.010, 2017. a, b, c, d
Chang, C.-P. and Lee, C.-C.: Are per Capita Carbon Dioxide Emissions Converging
among Industrialized Countries? New Time Series Evidence with Structural
Breaks, Environ. Dev. Econ., 13, 497–515,
https://doi.org/10.1017/S1355770X08004361, 2008. a
Chertow, M.: The IPAT Equation and Its Variants, J. Ind.
Ecol., 4, 13–29,
2000. a
Climate Analytics and New Climate Institute: Climate Action Tracker, available at:
https://climateactiontracker.org/, last access: 31 January 2020. a
Crespo Cuaresma, J.: Income Projections for Climate Change Research: A
Framework Based on Human Capital Dynamics, Global Environ. Chang., 42,
226–236, https://doi.org/10.1016/j.gloenvcha.2015.02.012, 2017. a, b
Dellink, R., Chateau, J., Lanzi, E., and Magné, B.: Long-Term Economic
Growth Projections in the Shared Socioeconomic Pathways, Global
Environ. Chang., 42, 200–2014, https://doi.org/10.1016/j.gloenvcha.2015.06.004,
2017. a, b, c, d
du Pont, Y. R., Jeffery, M. L., Gütschow, J., Christoff, P., and
Meinshausen, M.: National Contributions for Decarbonizing the World Economy
in Line with the G7 Agreement, Environ. Res. Lett., 11,
054005, https://doi.org/10.1088/1748-9326/11/5/054005, 2016. a
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S.,
Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B.,
Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J.: Climate Change 2014: Mitigation of Climate Change:
Working Group III Contribution to the Fifth Assessment Report of the
Intergovernmental Panel On Climate Change, Cambridge University Press, Cambridge, UK,, available at:
https://www.ipcc.ch/report/ar5/wg3/ (last access: 22 February 2016), 2014. a
Ehrlich, P. R. and Holdren, J. P.: Impact of Population Growth, Science,
171, 1212–1217, 1971. a
Feenstra, R. C., Inklaar, R., and Timmer, M. P.: The Next Generation of the
Penn World Table, Am. Econ. Rev., 105, 3150–3182,
https://doi.org/10.1257/aer.20130954, 2015. a, b
Feenstra, R. C., Inklaar, R., and Timmer, M. P.: Penn World Table Version
9.1,
Am. Econ. Rev., 105, 3150–3182,
https://doi.org/10.15141/S50T0R, 2019. a, b
Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020. a
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp,
P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N.,
Herrero, M., Heyes, C., Kindermann, G., Krey, V., McCollum, D. L.,
Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., and Riahi,
K.: The Marker Quantification of the Shared Socioeconomic Pathway 2:
A Middle-of-the-Road Scenario for the 21st Century, Global Environ.
Chang., 42, 251–267, https://doi.org/10.1016/j.gloenvcha.2016.06.004, 2017. a, b
Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai, H.,
Hijioka, Y., and Kainuma, M.: SSP3: AIM Implementation of Shared
Socioeconomic Pathways, Global Environ. Chang., 42, 268–283,
https://doi.org/10.1016/j.gloenvcha.2016.06.009, 2017. a, b
Geiger, T.: Continuous national gross domestic product (GDP) time series for 195 countries: past observations (1850–2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006–2100), Earth Syst. Sci. Data, 10, 847–856, https://doi.org/10.5194/essd-10-847-2018, 2018. a
Geiger, T. and Frieler, K.: Continuous National Gross Domestic Product
(GDP) Time Series for 195 Countries: Past Observations (1850–2005)
Harmonized with Future Projections According the Shared Socio-Economic
Pathways (2006–2100), GFZ Data Services, https://doi.org/10.5880/pik.2017.003, 2017. a
Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century, Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019. a, b, c
Gütschow, J.: The PRIMAP-Hist Socio-Eco Historical GDP and
Population Time Series (1850–2017) (v2.1), GFZ Data Services, https://doi.org/10.5880/PIK.2019.019, 2019. a, b, c
Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., and Rocha, M.: The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571–603, https://doi.org/10.5194/essd-8-571-2016, 2016. a, b, c
Gütschow, J., Jeffery, M. L., Gieseke, R., and Gebel, R.: The
PRIMAP-Hist National Historical Emissions Time Series (1850–2015) (v1.2), GFZ Data Services,
https://doi.org/10.5880/PIK.2018.003, 2018. a, b
Gütschow, J., Jeffery, M. L., Günther, A., and Meinshausen, M.: Country
Resolved Combined Emission and Socio-Economic Pathways Based on the RCP
and SSP Scenarios, Zenodo, https://doi.org/10.5281/zenodo.3638137, 2020. a, b, c
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018. a, b, c
Höhne, N., Blum, H., Fuglestvedt, J., Skeie, R. B., Kurosawa, A., Hu, G.,
Lowe, J., Gohar, L., Matthews, B., Nioac de Salles, A. C., and Ellermann,
C.: Contributions of Individual Countries' Emissions to Climate Change and
Their Uncertainty, Climatic Change, 106, 359–391,
https://doi.org/10.1007/s10584-010-9930-6, 2010. a, b
Houghton, J. T., Meira Filho, L., Callander, B., Harris, N., Kattenberg, A.,
and Maskell, K.: Climate Change 1995, The Science of Climate
Change, Cambridge University Press, Cambridge, UK, 1996. a
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012, Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019. a
Jewell, J. and Anderson, K.: Climate-Policy Models Debated, Nature, 573,
448–449, 2019. a
Jiang, L. and O'Neill, B. C.: Global Urbanization Projections for the Shared
Socioeconomic Pathways, Global Environ. Chang., 42, 192–199,
https://doi.org/10.1016/j.gloenvcha.2015.03.008, 2017. a
Jobert, T., Karanfil, F., and Tykhonenko, A.: Convergence of per Capita Carbon
Dioxide Emissions in the EU: Legend or Reality?, Energ. Econ.,
32, 1364–1373, https://doi.org/10.1016/j.eneco.2010.03.005, 2010. a
JRC and PBL: Emission Database for Global Atmospheric Research
Release Version 4.3.2, EDGAR, https://doi.org/10.2904/JRC_DATASET_EDGAR, 2017. a
KC, S. and Lutz, W.: The Human Core of the Shared Socioeconomic Pathways:
Population Scenarios by Age, Sex and Level of Education for All Countries
to 2100, Global Environ. Chang., 42, 181–192,
https://doi.org/10.1016/j.gloenvcha.2014.06.004, 2017. a, b, c, d
Klein Goldewijk, C.: Anthropogenic Land-Use Estimates for the Holocene,
HYDE 3.2, DANS, https://doi.org/10.17026/dans-25g-gez3, 2017. a
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017. a
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler,
J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I.,
Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G., Pehl, M., Pietzcker,
R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch, M., Giannousakis,
A., Kreidenweis, U., Müller, C., Rolinski, S., Schultes, A., Schwanitz,
J., Stevanovic, M., Calvin, K., Emmerling, J., Fujimori, S., and Edenhofer,
O.: Fossil-Fueled Development (SSP5): An Energy and Resource
Intensive Scenario for the 21st Century, Global Environ. Chang., 42,
297–315, https://doi.org/10.1016/j.gloenvcha.2016.05.015, 2017. a, b
Landman, W.: Book Review: Climate Change 2007: The Physical Science Basis, S. Afr. Geogr. J., 92, 86–87, https://doi.org/10.1080/03736245.2010.480842, 2010. a
Leimbach, M., Kriegler, E., Roming, N., and Schwanitz, J.: Future Growth
Patterns of World Regions – A GDP Scenario Approach, Global
Environ. Chang., 42, 215–225, https://doi.org/10.1016/j.gloenvcha.2015.02.005,
2017. a, b
Liddle, B.: Revisiting World Energy Intensity Convergence for Regional
Differences, Appl. Energ., 87, 3218–3225,
https://doi.org/10.1016/j.apenergy.2010.03.030, 2010. a, b
Maddison Project: The Maddison Project 2013 Version, available at:
http://www.ggdc.net/maddison/maddison-project/home.htm (last access: 16 June 2017), 2013. a
Markandya, A., Pedroso-Galinato, S., and Streimikiene, D.: Energy Intensity
in Transition Economies: Is There Convergence towards the EU
Average?, Energ. Econ., 28, 121–145, https://doi.org/10.1016/j.eneco.2005.10.005,
2006. a, b
Marland, G. and Rotty, R. M.: Carbon Dioxide Emissions from Fossil Fuels: A
Procedure for Estimation and Results for 1950–1982, Tellus B, 36, 232–261,
https://doi.org/10.1111/j.1600-0889.1984.tb00245.x, 1984. a, b
Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa, T., Ishiwatari,
S., Kato, E., Shukla, P. R., Yamagata, Y., and Kainuma, M.: An Emission
Pathway for Stabilization at 6 Wm−2 Radiative Forcing, Climatic Change,
109, 59–76, https://doi.org/10.1007/s10584-011-0150-5, 2011. a
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T.,
Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S. C. B., Riahi, K.,
Thomson, A., Velders, G. J. M., and Vuuren, D. P.: The RCP Greenhouse Gas
Concentrations and Their Extensions from 1765 to 2300, Climatic Change, 109,
213–241, https://doi.org/10.1007/s10584-011-0156-z, 2011. a
Meinshausen, M., Jeffery, L., Guetschow, J., Robiou du Pont, Y., Rogelj, J.,
Schaeffer, M., Höhne, N., den Elzen, M., Oberthür, S., and
Meinshausen, N.: National Post-2020 Greenhouse Gas Targets and
Diversity-Aware Leadership, Nat. Clim. Change, 5, 1098–1106,
https://doi.org/10.1038/nclimate2826, 2015. a
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017. a
Moss, R. H., Edmonds, J., Hibbard, K., Manning, M. R., Rose, S. K., van
Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G.,
Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
Generation of Scenarios for Climate Change Research and Assessment, Nature,
463, 747–56, https://doi.org/10.1038/nature08823, 2010. a
Nakicenovic, N. and Swart, R.: Special Report on Emissions Scenarios:
A Special Report of Working Group III of the Intergovernmental
Panel on Climate Change, Cambridge University Press, Cambridge, UK,
2000. a
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin,
S., Gregory, K., Grübler, A., Yong Jung, T., Kram, T., La Rovere, E. L.,
Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L.,
Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla,
P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.:
Emissions Scenarios, Special Report of Working Group III of the
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK,
2000. a
Nakicenovic, N., Lempert, R. J., and Janetos, A. C.: A Framework for the
Development of New Socio-Economic Scenarios for Climate Change
Research: Introductory Essay, Climatic Change, 122, 351–361,
https://doi.org/10.1007/s10584-013-0982-2, 2014. a
Ordás Criado, C. and Grether, J.-M.: Convergence in per Capita CO2
Emissions: A Robust Distributional Approach, Resour. Energy
Econ., 33, 637–665, https://doi.org/10.1016/j.reseneeco.2011.01.003, 2011. a
Owen, B., Lee, D. S., and Lim, L.: Flying into the Future: Aviation Emissions
Scenarios to 2050, Environ. Sci. Technol., 44, 2255–2260,
https://doi.org/10.1021/es902530z, 2010. a
Panopoulou, E. and Pantelidis, T.: Club Convergence in Carbon Dioxide
Emissions, Environ. Resour. Econ., 44, 47–70,
https://doi.org/10.1007/s10640-008-9260-6, 2009. a
Peters, G. P., Andrew, R. M., Canadell, J. G., Fuss, S., Jackson, R. B.,
Korsbakken, J. I., Le Quéré, C., and Nakicenovic, N.: Key Indicators
to Track Current Progress and Future Ambition of the Paris Agreement,
Nat. Clim. Change, 7, 118–122, https://doi.org/10.1038/nclimate3202, 2017. a
PRIMAP: Paris Reality Check, available at:
https://www.pik-potsdam.de/paris-reality-check/ (last access: 2 January 2020), 2020. a
QUANTIFY: QUANTIFY Project Website, available at:
https://www.pa.op.dlr.de/quantify/ (last access: 5 February 2017), 2010. a
Riahi, K., Grübler, A., and Nakicenovic, N.: Scenarios of Long-Term
Socio-Economic and Environmental Development under Climate Stabilization,
Technol. Forecast. Soc., 74, 887–935,
https://doi.org/10.1016/j.techfore.2006.05.026, 2007. a
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A Scenario of
Comparatively High Greenhouse Gas Emissions, Climatic Change, 109, 33–57,
https://doi.org/10.1007/s10584-011-0149-y, 2011. a
Riahi, K., van Vuuren, D., Kriegler, E., Edmonds, J., O'Neill, B., Fujimori,
S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A.,
Cuaresma, C. J., Samir, K., Leimback, M., Jiang, L., Kram, T., Rao, S.,
Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F.,
Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J., Kainuma, M., Klimont,
Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and
Tavoni, M.: The Shared Socioeconomic Pathways and Their Energy, Land Use, and
Greenhouse Gas Emissions Implications: An Overview, Global Environ.
Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. a, b, c, d, e, f, g, h
Robiou du Pont, Y. and Meinshausen, M.: Warming Assessment of the Bottom-up
Paris Agreement Emissions Pledges, Nat. Commun., 9, 4810,
https://doi.org/10.1038/s41467-018-07223-9, 2018. a
Robiou du Pont, Y., Jeffery, M. L., Gütschow, J., Rogelj, J., Christoff,
P., and Meinshausen, M.: Equitable Mitigation to Achieve the Paris
Agreement Goals, Nat. Clim. Change, 7, 38–43,
https://doi.org/10.1038/nclimate3186, 2016. a
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D.,
Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler,
E., Riahi, K., van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J.,
Fricko, O., Harmsen, M., Havlík, P., Humpenöder, F., Stehfest, E.,
and Tavoni, M.: Scenarios towards Limiting Global Mean Temperature Increase
below 1.5 ∘C, Nat. Clim. Change, 8, 325–332,
https://doi.org/10.1038/s41558-018-0091-3, 2018. a, b, c, d, e, f
Romero-Ávila, D.: Convergence in Carbon Dioxide Emissions among
Industrialised Countries Revisited, Energ. Econ., 30, 2265–2282,
https://doi.org/10.1016/j.eneco.2007.06.003, 2008. a
Smith, T., Jalkanen, J., Anderson, B., Corbett, J., Faber, J., Hanayama, S.,
O'Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M.,
Ettinger, S., Nelissen, D., Lee, D., Ng, S., Agrawal, A., Winebrake, J.,
Hoen, M., and Pandey, A.: Third IMO GHG Study 2014: Executive Summary
and Final Report, International Maritime Organization, available at:
http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Third%20Greenhouse%20Gas%20Study/GHG3%20Executive%20Summary%20and%20Report.pdf (last access: 21 January 2020),
2014. a
SSP: SSP Model Documentation, available at:
https://tntcat.iiasa.ac.at/SspDb/download/iam_scenario_doc/SSP_Model_Documentation.pdf (last access: 9 January 2020),
2015. a
Stegman, A. and McKibbin, W. J.: Convergence and per Capita Carbon Emissions,
Brookings Discussion Papers in International Economics, available at:
https://www.brookings.edu/research/convergence-and-per-capita-carbon-emissions/ (last access: 8 August 2013),
2005. a
Strazicich, M. and List, J.: Are CO2 Emission Levels Converging among
Industrial Countries?, Environ. Resour. Econ., 24, 263–271,
https://doi.org/10.1023/A:1022910701857, 2003. a
The World Bank: Global Purchasing Power Parities and Real Expenditures – 2005 International Comparison Program, The World Bank, available at:
http://pubdocs.worldbank.org/en/982121487105148964/2005ICPReport-FinalwithNewAppG.pdf (last access: 13 January 2020),
2008. a
The World Bank: Purchasing Power Parities and the Real Size of World
Economies: A Comprehensive Report of the 2011 International
Comparison Program, The World Bank, available at: https://elibrary.worldbank.org/doi/abs/10.1596/978-1-4648-0329-1 (last access: 13 January 2020),
2014. a
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P.,
Delgado-Arias, S., Bond-Lamberty, B., Wise, M., Clarke, L. E., and
Edmonds, J.: RCP4.5: A Pathway for Stabilization of Radiative Forcing
by 2100, Climatic Change, 109, 77–94, https://doi.org/10.1007/s10584-011-0151-4, 2011. a
van Vuuren, D. P., Lucas, P. L., and Hilderink, H. B. M.: Downscaling Drivers
of Global Environmental Change, Technical Report, Netherlands Environmental
Assessment Agency, available at: https://www.pbl.nl/en/publications/DownscalingDriversOfGlobalEnvironmentalChangeScenarios (last access: 17 October 2012),
2006. a, b, c, d, e
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
Representative Concentration Pathways: An Overview, Climatic Change, 109,
5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011a. a, b
van Vuuren, D. P., Stehfest, E., Elzen, M. G. J., Kram, T., Vliet, J.,
Deetman, S., Isaac, M., Klein Goldewijk, K., Hof, A., Mendoza Beltran, A.,
Oostenrijk, R., and Ruijven, B.: RCP2.6: Exploring the Possibility to
Keep Global Mean Temperature Increase below 2 ∘C, Climatic
Change, 109, 95–116, https://doi.org/10.1007/s10584-011-0152-3, 2011b. a
van Vuuren, D. P., Kriegler, E., O'Neill, B. C., Ebi, K. L., Riahi, K.,
Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., and
Winkler, H.: A New Scenario Framework for Climate Change Research:
Scenario Matrix Architecture, Climatic Change, 122, 373–386,
https://doi.org/10.1007/s10584-013-0906-1, 2014. a
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., Doelman, J. C., van
den Berg, M., Harmsen, M., de Boer, H. S., Bouwman, L. F., Daioglou, V.,
Edelenbosch, O. Y., Girod, B., Kram, T., Lassaletta, L., Lucas, P. L., van
Meijl, H., Müller, C., van Ruijven, B. J., van der Sluis, S., and
Tabeau, A.: Energy, Land-Use and Greenhouse Gas Emissions Trajectories under
a Green Growth Paradigm, Global Environ. Chang., 42, 237–250,
https://doi.org/10.1016/j.gloenvcha.2016.05.008, 2017. a, b
World Climate Research Programme: CMIP Phase 6 (CMIP6), available at: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6, last access: 14 March 2019. a
Short summary
Climate policy analysis needs scenarios of future greenhouse gas emission to assess countries' emission targets and current trends. The models generating these scenarios work on a regional resolution. Scenarios are often made available only on a very coarse regional resolution. In this paper we use per country projections of gross domestic product (GDP) from the Shared Socio-Economic Pathways (SSPs) to derive country-level data from published regional emission scenarios.
Climate policy analysis needs scenarios of future greenhouse gas emission to assess countries'...
Altmetrics
Final-revised paper
Preprint