Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2705-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2705-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe
Felix Nieberding
CORRESPONDING AUTHOR
Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, Germany
GFZ German Research Center for Geosciences, Potsdam, Germany
Christian Wille
GFZ German Research Center for Geosciences, Potsdam, Germany
Gerardo Fratini
LI-COR Biosciences Inc., Lincoln, Nebraska, USA
Magnus O. Asmussen
Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Braunschweig, Germany
Yuyang Wang
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China
Torsten Sachs
GFZ German Research Center for Geosciences, Potsdam, Germany
Institute of Flight Guidance, Technische Universität Braunschweig, Braunschweig, Germany
Related authors
Nithin D. Pillai, Christian Wille, Felix Nieberding, Manuel Helbig, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2025-530, https://doi.org/10.5194/egusphere-2025-530, 2025
Preprint archived
Short summary
Short summary
The Tibetan Plateau is warming rapidly, affecting carbon cycles in its ecosystems. Using two measurement heights (3 m and 19 m) in an alpine steppe near Nam Co, we explored how spatial scale impacts CO2 fluxes. CO2 fluxes varied with spatial scale due to landscape heterogeneity. This variability shows that the measurement scale can shift the ecosystem's carbon balance from CO2 sink to either carbon neutral or CO2 source, highlighting the importance of considering spatial scale in carbon studies.
Minqiang Zhou, Yilong Wang, Minzheng Duan, Xiangjun Tian, Jinzhi Ding, Jianrong Bi, Yaoming Ma, Weiqiang Ma, and Zhenhua Xi
Atmos. Meas. Tech., 18, 4311–4324, https://doi.org/10.5194/amt-18-4311-2025, https://doi.org/10.5194/amt-18-4311-2025, 2025
Short summary
Short summary
The Qinghai–Tibetan Plateau is a key system that impacts the global carbon balance. This study presents the greenhouse gas (GHG) mole fraction measurement campaign in May 2022 at Mt. Qomolangma station, including ground-based remote sensing and in situ measurements. The GHG measurements are carried out in this region for the first time and used for satellite validation.
Amanda Sellmaier, Ellen Damm, Torsten Sachs, Benjamin Kirbus, Inge Wiekenkamp, Annette Rinke, Falk Pätzold, Daiki Nomura, Astrid Lampert, and Markus Rex
EGUsphere, https://doi.org/10.5194/egusphere-2025-3778, https://doi.org/10.5194/egusphere-2025-3778, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents continuous ship-borne measurements of methane (CH4) concentration and its isotopic composition monitored during the ice drift MOSAiC expedition in 2020. By applying trajectory analysis, we linked atmospheric CH4 variabilities to air mass pathways transported either over open water or sea ice. This study will contribute to reveal the potential role of ship-borne measurements for filing significant observational gaps in the high Arctic.
Haipeng Yu, Guantian Wang, Zeyong Hu, Yaoming Ma, Maoshan Li, Weiqiang Ma, Lianglei Gu, Fanglin Sun, Hongchun Gao, Shujin Wang, and Fuquan Lu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-356, https://doi.org/10.5194/essd-2025-356, 2025
Preprint under review for ESSD
Short summary
Short summary
The Nagqu Observation Network, located in Central Tibetan Plateau (CTP), has functioned as the primary source of land-atmosphere interaction observations and published a near-surface meteorological observational dataset which spans a period of nine years (2014–2022) with hourly temporal resolution. This dataset will contribute to the understanding of the mechanism of land-atmosphere interactions on the TP and support comprehensive research of the energy-water cycle and climate change.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Binbin Wang, Yaoming Ma, Zeyong Hu, Weiqiang Ma, Xuelong Chen, Cunbo Han, Zhipeng Xie, Yuyang Wang, Maoshan Li, Bin Ma, Xingdong Shi, Weimo Li, and Zhengling Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-195, https://doi.org/10.5194/essd-2025-195, 2025
Preprint under review for ESSD
Short summary
Short summary
This study reveals distinct patterns in water, heat, and carbon exchange over the Tibetan Plateau. Heat transfer peaks in spring, while water vapor release is highest in summer. Most stations act as carbon sinks, but one in a forested valley is a carbon source, likely due to vegetation loss and human activity. The findings highlight the strong connections between water, heat, and carbon fluxes, offering valuable insights into climate change and weather forecasting.
Nithin D. Pillai, Christian Wille, Felix Nieberding, Manuel Helbig, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2025-530, https://doi.org/10.5194/egusphere-2025-530, 2025
Preprint archived
Short summary
Short summary
The Tibetan Plateau is warming rapidly, affecting carbon cycles in its ecosystems. Using two measurement heights (3 m and 19 m) in an alpine steppe near Nam Co, we explored how spatial scale impacts CO2 fluxes. CO2 fluxes varied with spatial scale due to landscape heterogeneity. This variability shows that the measurement scale can shift the ecosystem's carbon balance from CO2 sink to either carbon neutral or CO2 source, highlighting the importance of considering spatial scale in carbon studies.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
Atmos. Meas. Tech., 18, 749–772, https://doi.org/10.5194/amt-18-749-2025, https://doi.org/10.5194/amt-18-749-2025, 2025
Short summary
Short summary
Airborne eddy covariance platforms are crucial to measure three-dimensional wind and turbulent matter and energy transport between the surface and the atmosphere at larger scales. In this study, we introduce a new airborne eddy covariance platform (Schleicher ASK-16) and demonstrate that this platform is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and remote-sensing-based products.
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024, https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
Short summary
Permafrost landscapes in the Arctic are rapidly changing due to climate warming. Here, we publish aerial images and elevation models with very high spatial detail that help study these landscapes in northwestern Canada and Alaska. The images were collected using the Modular Aerial Camera System (MACS). This dataset has significant implications for understanding permafrost landscape dynamics in response to climate change. It is publicly available for further research.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Pia Gottschalk, Aram Kalhori, Zhan Li, Christian Wille, and Torsten Sachs
Biogeosciences, 21, 3593–3616, https://doi.org/10.5194/bg-21-3593-2024, https://doi.org/10.5194/bg-21-3593-2024, 2024
Short summary
Short summary
To improve the accuracy of spatial carbon exchange estimates, we evaluated simple linear models for net ecosystem exchange (NEE) and gross primary productivity (GPP) and how they can be used to upscale the CO2 exchange of agricultural fields. The models are solely driven by Sentinel-2-derived vegetation indices (VIs). Evaluations show that different VIs have variable power to estimate NEE and GPP of crops in different years. The overall performance is as good as results from complex crop models.
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1963, https://doi.org/10.5194/egusphere-2024-1963, 2024
Preprint archived
Short summary
Short summary
Wind speed spectra analysis is very important for understanding boundary layer turbulence characteristics, atmospheric numerical model development, and wind energy assessment. However, wind speed spectra studies in mountainous areas are extremely scarce. In this study, using a 15-year time series of wind speed observed by a PBL tower and eddy-covariance tower at a site on the north slope of Mt. Everest, we investigated the characteristics of wind speed and wind speed spectrum.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Daniel Wesley, Scott Dallimore, Roger MacLeod, Torsten Sachs, and David Risk
The Cryosphere, 17, 5283–5297, https://doi.org/10.5194/tc-17-5283-2023, https://doi.org/10.5194/tc-17-5283-2023, 2023
Short summary
Short summary
The Mackenzie River delta (MRD) is an ecosystem with high rates of methane production from biologic and geologic sources, but little research has been done to determine how often geologic or biogenic methane is emitted to the atmosphere. Stable carbon isotope analysis was used to identify the source of CH4 at several sites. Stable carbon isotope (δ13C-CH4) signatures ranged from −42 to −88 ‰ δ13C-CH4, indicating that CH4 emission in the MRD is caused by biologic and geologic sources.
Peizhen Li, Lei Zhong, Yaoming Ma, Yunfei Fu, Meilin Cheng, Xian Wang, Yuting Qi, and Zixin Wang
Atmos. Chem. Phys., 23, 9265–9285, https://doi.org/10.5194/acp-23-9265-2023, https://doi.org/10.5194/acp-23-9265-2023, 2023
Short summary
Short summary
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau (TP) at a spatial resolution of 1 km was estimated using an improved parameterization scheme. The influence of topography and different radiative attenuations were comprehensively taken into account. The derived DSR showed good agreement with in situ measurements. The accuracy was better than six other DSR products. The derived DSR also provided more reasonable and detailed spatial patterns.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Lutz Beckebanze, Benjamin R. K. Runkle, Josefine Walz, Christian Wille, David Holl, Manuel Helbig, Julia Boike, Torsten Sachs, and Lars Kutzbach
Biogeosciences, 19, 3863–3876, https://doi.org/10.5194/bg-19-3863-2022, https://doi.org/10.5194/bg-19-3863-2022, 2022
Short summary
Short summary
In this study, we present observations of lateral and vertical carbon fluxes from a permafrost-affected study site in the Russian Arctic. From this dataset we estimate the net ecosystem carbon balance for this study site. We show that lateral carbon export has a low impact on the net ecosystem carbon balance during the complete study period (3 months). Nevertheless, our results also show that lateral carbon export can exceed vertical carbon uptake at the beginning of the growing season.
Maoshan Li, Wei Fu, Na Chang, Ming Gong, Pei Xu, Yaoming Ma, Zeyong Hu, Yaoxian Yang, and Fanglin Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-257, https://doi.org/10.5194/acp-2022-257, 2022
Revised manuscript not accepted
Short summary
Short summary
Compared with the plain area, the land-atmosphere interaction on the Tibetan Plateau (TP) is intense and complex, which affects the structure of the boundary layer. The observed height of the convective boundary layer on the TP under the influence of the southern branch of the westerly wind was higher than that during the Asian monsoon season. The height of the boundary layer was positively correlated with the sensible heat flux and negatively correlated with latent heat flux.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Lutz Beckebanze, Zoé Rehder, David Holl, Christian Wille, Charlotta Mirbach, and Lars Kutzbach
Biogeosciences, 19, 1225–1244, https://doi.org/10.5194/bg-19-1225-2022, https://doi.org/10.5194/bg-19-1225-2022, 2022
Short summary
Short summary
Arctic permafrost landscapes feature many water bodies. In contrast to the terrestrial parts of the landscape, the water bodies release carbon to the atmosphere. We compare carbon dioxide and methane fluxes from small water bodies to the surrounding tundra and find not accounting for the carbon dioxide emissions leads to an overestimation of the tundra uptake by 11 %. Consequently, changes in hydrology and water body distribution may substantially impact the overall carbon budget of the Arctic.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Yunshuai Zhang, Qian Huang, Yaoming Ma, Jiali Luo, Chan Wang, Zhaoguo Li, and Yan Chou
Atmos. Chem. Phys., 21, 15949–15968, https://doi.org/10.5194/acp-21-15949-2021, https://doi.org/10.5194/acp-21-15949-2021, 2021
Short summary
Short summary
The source region of the Yellow River has an important role in issues related to water resources, ecological environment, and climate changes in China. We utilized large eddy simulation to understand whether the surface heterogeneity promotes or inhibits the boundary-layer turbulence, the great contribution of the thermal circulations induced by surface heterogeneity to the water and heat exchange between land/lake and air. Moreover, the turbulence in key locations is characterized.
Lian Liu, Yaoming Ma, Massimo Menenti, Rongmingzhu Su, Nan Yao, and Weiqiang Ma
Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, https://doi.org/10.5194/hess-25-4967-2021, 2021
Short summary
Short summary
Albedo is a key factor in land surface energy balance, which is difficult to successfully reproduce by models. Here, we select eight snow events on the Tibetan Plateau to evaluate the universal improvements of our improved albedo scheme. The RMSE relative reductions for temperature, albedo, sensible heat flux and snow depth reach 27%, 32%, 13% and 21%, respectively, with remarkable increases in the correlation coefficients. This presents a strong potential of our scheme for modeling snow events.
Zhipeng Xie, Yaoming Ma, Weiqiang Ma, Zeyong Hu, and Genhou Sun
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-260, https://doi.org/10.5194/tc-2021-260, 2021
Preprint withdrawn
Short summary
Short summary
Wind-driven snow transport greatly influences spatial-temporal distribution of snow in mountainous areas. Knowledge of the spatiotemporal variability of blowing snow is in its infancy because of inaccuracies in satellite-based blowing snow algorithms and the absence of quantitative assessments. Here, we present the spatiotemporal variability and magnitude of blowing snow events, and explore the potential links with ambient meteorological conditions using near surface blowing snow observations.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Zhipeng Xie, Weiqiang Ma, Yaoming Ma, Zeyong Hu, Genhou Sun, Yizhe Han, Wei Hu, Rongmingzhu Su, and Yixi Fan
Hydrol. Earth Syst. Sci., 25, 3783–3804, https://doi.org/10.5194/hess-25-3783-2021, https://doi.org/10.5194/hess-25-3783-2021, 2021
Short summary
Short summary
Ground information on the occurrence of blowing snow has been sorely lacking because direct observations of blowing snow are sparse in time and space. In this paper, we investigated the potential capability of the decision tree model to detect blowing snow events in the European Alps. Trained with routine meteorological observations, the decision tree model can be used as an efficient tool to detect blowing snow occurrences across different regions requiring limited meteorological variables.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu
Geosci. Model Dev., 14, 2827–2841, https://doi.org/10.5194/gmd-14-2827-2021, https://doi.org/10.5194/gmd-14-2827-2021, 2021
Short summary
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Genhou Sun, Zeyong Hu, Yaoming Ma, Zhipeng Xie, Jiemin Wang, and Song Yang
Hydrol. Earth Syst. Sci., 24, 5937–5951, https://doi.org/10.5194/hess-24-5937-2020, https://doi.org/10.5194/hess-24-5937-2020, 2020
Short summary
Short summary
We investigate the influence of soil conditions on the planetary boundary layer (PBL) thermodynamics and convective cloud formations over a typical underlying surface, based on a series of simulations on a sunny day in the Tibetan Plateau, using the Weather Research and Forecasting (WRF) model. The real-case simulation and sensitivity simulations indicate that the soil moisture could have a strong impact on PBL thermodynamics, which may be favorable for the convective cloud formations.
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary
Short summary
In comparison with other terrestrial regions of the world, meteorological observations are scarce over the Tibetan Plateau.
This has limited our understanding of the mechanisms underlying complex interactions between the different earth spheres with heterogeneous land surface conditions.
The release of this continuous and long-term dataset with high temporal resolution is expected to facilitate broad multidisciplinary communities in understanding key processes on the
Third Pole of the world.
Cited articles
Babel, W., Biermann, T., Coners, H., Falge, E., Seeber, E., Ingrisch, J., Schleuß, P.-M., Gerken, T., Leonbacher, J., Leipold, T., Willinghöfer, S., Schützenmeister, K., Shibistova, O., Becker, L., Hafner, S., Spielvogel, S., Li, X., Xu, X., Sun, Y., Zhang, L., Yang, Y., Ma, Y., Wesche, K., Graf, H.-F., Leuschner, C., Guggenberger, G., Kuzyakov, Y., Miehe, G., and Foken, T.: Pasture degradation modifies the water and carbon cycles of the Tibetan highlands, Biogeosciences, 11, 6633–6656, https://doi.org/10.5194/bg-11-6633-2014, 2014. a
Bate, G. C. and Smith, V. R.: Photosynthesis and respiration in the
Sub-Antarctic tussock grass Poa cookii, New Phytol., 95, 533–543,
https://doi.org/10.1111/j.1469-8137.1983.tb03518.x, 1983. a
Biermann, T., Babel, W., Ma, W., Chen, X., Thiem, E., Ma, Y., and Foken, T.:
Turbulent flux observations and modelling over a shallow lake and a wet
grassland in the Nam Co basin, Tibetan Plateau, Theor. Appl.
Climatol., 116, 301–316, https://doi.org/10.1007/s00704-013-0953-6, 2014. a
Burba, G. G., McDermitt, D. K., Grelle, A., Anderson, D., and XU, L.:
Addressing the influence of instrument surface heat exchange on the
measurements of CO2 flux from open-path gas analyzers, Glob. Change
Biol., 14, 1854–1876, https://doi.org/10.1111/j.1365-2486.2008.01606.x, 2008. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Cuo, L. and Zhang, Y.: Spatial patterns of wet season precipitation vertical
gradients on the Tibetan Plateau and the surroundings, Scientific reports, 7,
5057, https://doi.org/10.1038/s41598-017-05345-6,
2017. a
Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., and Thoning,
K. W.: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML
Carbon Cycle Cooperative Global Air Sampling Network, 1968–2019: Version:
2020-07, https://doi.org/10.15138/wkgj-f215, 2020. a
El-Madany, T. S., Reichstein, M., Perez-Priego, O., Carrara, A., Moreno, G.,
Pilar Martín, M., Pacheco-Labrador, J., Wohlfahrt, G., Nieto, H.,
Weber, U., Kolle, O., Luo, Y.-P., Carvalhais, N., and Migliavacca, M.:
Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in
a Mediterranean savanna ecosystem, Agr. Forest Meteorol., 262,
258–278, https://doi.org/10.1016/j.agrformet.2018.07.010, 2018. a
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C.,
Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P.,
Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G. G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E.,
Munger, W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, A., Tenhunen,
J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling
strategies for defensible annual sums of net ecosystem exchange, Agr. Forest Meteorol., 107, 43–69, https://doi.org/10.1016/S0168-1923(00)00225-2,
2001. a
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux
measurements, Agr. Forest Meteorol., 78, 83–105,
https://doi.org/10.1016/0168-1923(95)02248-1, 1996. a, b
Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.:
Post-Field Data Quality Control, in: Handbook of micrometeorology, edited by:
Lee, X., Massman, W. J., and Law, B. E., vol. 29 of Atmospheric and Oceanographic Sciences Library, pp. 181–208, Kluwer Academic
Publishers, Dordrecht and Boston and London, 2004. a
Ganjurjav, H., Gao, Q., Gornish, E. S., Schwartz, M. W., Liang, Y., Cao, X.,
Zhang, W., Zhang, Y., Li, W., Wan, Y., Li, Y., Danjiu, L., Guo, H., and Lin,
E.: Differential response of alpine steppe and alpine meadow to climate
warming in the central Qinghai–Tibetan Plateau, Agr. Forest
Meteorol., 223, 233–240, https://doi.org/10.1016/j.agrformet.2016.03.017, 2016. a
Gu, S., Tang, Y., Du, M., Kato, T., Li, Y., Cui, X., and Zhao, X.: Short-term
variation of CO2 flux in relation to environmental controls in an alpine
meadow on the Qinghai-Tibetan Plateau, J. Geophys. Res.-Atmos., 108, 711, https://doi.org/10.1029/2003JD003584, 2003. a
Hafner, S., Unteregelsbacher, S., Seeber, E., Lena, B., Xu, X., Li, X.,
Guggenberger, G., Miehe, G., and Kuzyakov, Y.: Effect of grazing on carbon
stocks and assimilate partitioning in a Tibetan montane pasture revealed by
13CO2 pulse labeling, Glob. Change Biol., 18, 528–538,
https://doi.org/10.1111/j.1365-2486.2011.02557.x, 2012. a
Holl, D., Wille, C., Sachs, T., Schreiber, P., Runkle, B. R. K., Beckebanze, L., Langer, M., Boike, J., Pfeiffer, E.-M., Fedorova, I., Bolshianov, D. Y., Grigoriev, M. N., and Kutzbach, L.: A long-term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic, Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, 2019. a
Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M., and Hestmark, G.:
Cold resistance and metabolic activity of lichens below 0∘C, Adv.
Space Res., 18, 119–128, https://doi.org/10.1016/0273-1177(96)00007-5, 1996. a
Kato, T., Tang, Y., Song, G., Hirota, M., Cui, X., Du, M., Li, Y., Zhao, X.,
and Oikawa, T.: Seasonal patterns of gross primary production and ecosystem
respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau,
J. Geophys. Res., 109, 711, https://doi.org/10.1029/2003JD003951, 2004. a
Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X.:
Temperature and biomass influences on interannual changes in CO2 exchange in
an alpine meadow on the Qinghai-Tibetan Plateau, Glob. Change Biol., 12,
1285–1298, https://doi.org/10.1111/j.1365-2486.2006.01153.x, 2006. a
Li, J., Yan, D., Pendall, E., Pei, J., Noh, N. J., He, J.-S., Li, B., Nie, M.,
and Fang, C.: Depth dependence of soil carbon temperature sensitivity across
Tibetan permafrost regions, Soil Biol. Biochem., 126, 82–90, 2018. a
Liu, H., Randerson, J. T., Lindfors, J., Massman, W. J., and Foken, T.:
Consequences of Incomplete Surface Energy Balance Closure for CO2 Fluxes from
Open-Path CO2/H2O Infrared Gas Analysers, Bound.-Lay. Meteorol., 120,
65–85, https://doi.org/10.1007/s10546-005-9047-z,
2006. a
Ma, Y., Wang, Y., Wu, R., Hu, Z., Yang, K., Li, M., Ma, W., Zhong, L., Sun, F., Chen, X., Zhu, Z., Wang, S., and Ishikawa, H.: Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 13, 1103–1111, https://doi.org/10.5194/hess-13-1103-2009, 2009. a, b
Mauder, M. and Foken, T.: Impact of post-field data processing on eddy
covariance flux estimates and energy balance closure, Meteorol.
Z., 15, 597–609, https://doi.org/10.1127/0941-2948/2006/0167, 2006. a
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P.,
Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agr. Forest
Meteorol., 169, 122–135, https://doi.org/10.1016/j.agrformet.2012.09.006, 2013. a
Miehe, G., Bach, K., Miehe, S., Kluge, J., Yongping, Y., La Duo, Co, S., and
Wesche, K.: Alpine steppe plant communities of the Tibetan highlands, Appl.
Veg. Sci., 14, 547–560, https://doi.org/10.1111/j.1654-109X.2011.01147.x,
2011. a, b
Miehe, G., Schleuss, P.-M., Seeber, E., Babel, W., Biermann, T., Braendle, M.,
Chen, F., Coners, H., Foken, T., Gerken, T., Graf, H.-F., Guggenberger, G.,
Hafner, S., Holzapfel, M., Ingrisch, J., Kuzyakov, Y., Lai, Z., Lehnert, L.,
Leuschner, C., Li, X., Liu, J., Liu, S., Ma, Y., Miehe, S., Mosbrugger, V.,
Noltie, H. J., Schmidt, J., Spielvogel, S., Unteregelsbacher, S., Wang, Y.,
Willinghöfer, S., Xu, X., Yang, Y., Zhang, S., Opgenoorth, L., and
Wesche, K.: The Kobresia pygmaea ecosystem of the Tibetan highlands – Origin,
functioning and degradation of the world's largest pastoral alpine ecosystem:
Kobresia pastures of Tibet, Sci. Total Environ., 648,
754–771, https://doi.org/10.1016/j.scitotenv.2018.08.164, 2019. a
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
Detrending, and Filtering of Eddy Covariance Time Series, in: Handbook of
Micrometeorology: A Guide for Surface Flux Measurement and Analysis, edited
by: Lee, X., Massman, W., and Law, B., pp. 7–31, Springer Netherlands,
Dordrecht, https://doi.org/10.1007/1-4020-2265-4_2, 2005. a
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T.,
Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A
system to measure surface fluxes of momentum, sensible heat, water vapour and
carbon dioxide, J. Hydrol., 188–189, 589–611,
https://doi.org/10.1016/S0022-1694(96)03194-0, 1997. a
NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team: ASTER
Global Digital Elevation Model V003, distributed by NASA EOSDIS Land
Processes DAAC, https://doi.org/10.5067/ASTER/ASTGTM.003, 2019. a
Nieberding, F., Ma, Y., Wille, C., Fratini, G., Asmussen, M. O., Wang, Y., Ma,
W., and Sachs, T.: A long term hourly eddy covariance dataset of consistently
processed CO2 and H2O Fluxes from the Tibetan Alpine Steppe at Nam Co (2005–2019) [Data set], Zenodo, https://doi.org/10.5281/ZENODO.3733202, 2020a. a, b, c
Nieberding, F., Ma, Y., Wille, C., Fratini, G., Asmussen, M. O., Wang, Y., Ma,
W., and Sachs, T.: A long term hourly eddy covariance dataset of consistently
processed CO2 and H2O Fluxes from the Tibetan Alpine Steppe at Nam Co (2005–2019), National Tibetan Plateau Data Center,
https://doi.org/10.11888/Meteoro.tpdc.270333, 2020b. a, b, c
Nölling, J.: Satellitenbildgestützte Vegetationskartierung von
Hochweidegebieten des Tibetischen Plateaus auf Grundlage von plotbasierten
Vegetationsaufnahmen mit multivariater statistischer Analyse: Ein Beitrag zum
Umweltmonitoring, Diplomarbeit, Universität Marburg, Marburg, 2006. a
Oechel, W. C., Laskowski, C. A., Burba, G., Gioli, B., and Kalhori, A. A. M.:
Annual patterns and budget of CO2 flux in an Arctic tussock tundra
ecosystem, J. Geophys. Res.-Biogeosc., 119, 323–339,
https://doi.org/10.1002/2013JG002431, 2014. a, b
Ohtsuka, T., Hirota, M., Zhang, X., Shimono, A., Senga, Y., Du, M., Yonemura,
S., Kawashima, S., and Tang, Y.: Soil organic carbon pools in alpine to nival
zones along an altitudinal gradient (4400–5300 m) on the Tibetan Plateau,
Polar Sci., 2, 277–285, https://doi.org/10.1016/j.polar.2008.08.003, 2008. a
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006. a
Qiu, J.: China: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a,
2008. a
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier,
P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T.,
Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila,
A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-m.,
Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,
Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of
net ecosystem exchange into assimilation and ecosystem respiration: review
and improved algorithm, Glob. Change Biol., 11, 1424–1439,
https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. a, b, c, d, e
Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A.,
Lasslop, G., and Reichstein, M.: Uncertainty Quantification, in: Eddy
Covariance: A Practical Guide to Measurement and Data Analysis, edited by:
Aubinet, M., Vesala, T., and Papale, D., pp. 173–209, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-2351-1_7,
2012. a, b
Saito, M., Kato, T., and Tang, Y.: Temperature controls ecosystem CO2 exchange
of an alpine meadow on the northeastern Tibetan Plateau, Glob. Change
Biol., 15, 221–228, https://doi.org/10.1111/j.1365-2486.2008.01713.x, 2009. a
Serrano-Ortiz, P., Kowalski, A. S., Domingo, F., Ruiz, B., and
Alados-Arboledas, L.: Consequences of Uncertainties in CO2 Density for
Estimating Net Ecosystem CO2 Exchange by Open-path Eddy Covariance,
Bound.-Lay. Meteorol., 126, 209–218, https://doi.org/10.1007/s10546-007-9234-1,
2008. a, b, c
Vaisala: Vaisala HUMICAP® Humidity and Temperature Probes HMP45A/D:
HMP45A and HMP45D Operating Manual, available at:
https://www.vaisala.com/sites/default/files/documents/HMP45AD-User-Guide-U274EN.pdf (last access: 26 October 2020),
2006. a
Vickers, D. and Mahrt, L.: Quality Control and Flux Sampling Problems for Tower
and Aircraft Data, J. Atmos. Ocean. Tech., 14,
512–526,
https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2,
1997. a
Wang, L., Liu, H., Shao, Y., Liu, Y., and Sun, J.: Water and CO2 fluxes over
semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan
Plateau, Theor. Appl. Climatol., 131, 547–556,
https://doi.org/10.1007/s00704-016-1997-1, 2016. a
Wang, X., Pang, G., and Yang, M.: Precipitation over the Tibetan Plateau during
recent decades: a review based on observations and simulations, Int.
J. Climatol., 38, 1116–1131, https://doi.org/10.1002/joc.5246, 2018. a
Wei, D., Ri, X., Wang, Y., Wang, Y., Liu, Y., and Yao, T.: Responses of CO2,
CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan
Plateau, China, Plant and Soil, 359, 45–55, https://doi.org/10.1007/s11104-011-1105-3,
2012. a, b
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, 2018. a, b, c
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate
changes over the Tibetan Plateau and their impacts on energy and water cycle:
A review, Global Planet. Change, 112, 79–91,
https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014. a
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau, W.
K.-M., Lettenmaier, D., Mosbrugger, V., Zhang, R., Xu, B., Dozier, J.,
Gillespie, T., Gu, Y., Kang, S., Piao, S., Sugimoto, S., Ueno, K., Wang, L.,
Wang, W., Zhang, F., Sheng, Y., Guo, W., Ailikun, Yang, X., Ma, Y., Shen, S.
S. P., Su, Z., Chen, F., Liang, S., Liu, Y., Singh, V. P., Yang, K., Yang,
D., Zhao, X., Qian, Y., Zhang, Y., and Li, Q.: Recent Third Pole's Rapid
Warming Accompanies Cryospheric Melt and Water Cycle Intensification and
Interactions between Monsoon and Environment: Multidisciplinary Approach with
Observations, Modeling, and Analysis, B. Am. Meteorol.
Soc., 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019. a
Zhang, T., Zhang, Y., Xu, M., Xi, Y., Zhu, J., Zhang, X., Wang, Y., Li, Y.,
Shi, P., Yu, G., and Sun, X.: Ecosystem response more than climate
variability drives the inter-annual variability of carbon fluxes in three
Chinese grasslands, Agr. Forest Meteorol., 225, 48–56,
https://doi.org/10.1016/j.agrformet.2016.05.004, 2016. a
Zhang, T., Zhang, Y., Xu, M., Zhu, J., Chen, N., Jiang, Y., Huang, K., Zu, J.,
Liu, Y., and Yu, G.: Water availability is more important than temperature in
driving the carbon fluxes of an alpine meadow on the Tibetan Plateau,
Agr. Forest Meteorol., 256–257, 22–31,
https://doi.org/10.1016/j.agrformet.2018.02.027, 2018. a
Zhou, Y., Webster, R., Viscarra Rossel, R. A., Shi, Z., and Chen, S.:
Baseline map of soil organic carbon in Tibet and its uncertainty in the
1980s, Geoderma, 334, 124–133, https://doi.org/10.1016/j.geoderma.2018.07.037, 2019. a
Zhu, Z., Ma, Y., Li, M., Hu, Z., Xu, C., Zhang, L., Han, C., Wang, Y., and
Ichiro, T.: Carbon dioxide exchange between an alpine steppe ecosystem and
the atmosphere on the Nam Co area of the Tibetan Plateau, Agr.
Forest Meteorol., 203, 169–179, https://doi.org/10.1016/j.agrformet.2014.12.013,
2015. a, b
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but...
Altmetrics
Final-revised paper
Preprint