Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1629-2019
https://doi.org/10.5194/essd-11-1629-2019
Data description paper
 | 
06 Nov 2019
Data description paper |  | 06 Nov 2019

A new merge of global surface temperature datasets since the start of the 20th century

Xiang Yun, Boyin Huang, Jiayi Cheng, Wenhui Xu, Shaobo Qiao, and Qingxiang Li

Related authors

Updates of C-LSAT 2.1 and the development of high-resolution LSAT and DTR datasets
Sihao Wei, Qingxiang Li, Qiya Xu, Zicheng Li, Hanyu Zhang, and Jiaxue Lin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-70,https://doi.org/10.5194/essd-2025-70, 2025
Revised manuscript accepted for ESSD
Short summary
A Unified System for Evaluating, Ranking and Clustering in Diverse Scientific Domains
Zengyun Hu, Xi Chen, Deliang Chen, Zhuo Zhang, Qiming Zhou, and Qingxiang Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-82,https://doi.org/10.5194/gmd-2024-82, 2024
Preprint withdrawn
Short summary
An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023,https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Description of the China global Merged Surface Temperature version 2.0
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022,https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Construction of homogenized daily surface air temperature for the city of Tianjin during 1887–2019
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021,https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary

Related subject area

Meteorology
An updated reconstruction of Antarctic near-surface air temperatures at monthly intervals since 1958
David Bromwich, Sheng-Hung Wang, Xun Zou, and Alexandra Ensign
Earth Syst. Sci. Data, 17, 2953–2962, https://doi.org/10.5194/essd-17-2953-2025,https://doi.org/10.5194/essd-17-2953-2025, 2025
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia R. Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data, 17, 2809–2829, https://doi.org/10.5194/essd-17-2809-2025,https://doi.org/10.5194/essd-17-2809-2025, 2025
Short summary
Estimation of long-term gridded cloud radiative kernel and radiative effects based on cloud fraction
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025,https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Two sets of bias-corrected regional UK Climate Projections 2018 (UKCP18) of temperature, precipitation and potential evapotranspiration for Great Britain
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025,https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Over three decades, and counting, of near-surface turbulent flux measurements from the Atmospheric Radiation Measurement (ARM) user facility
Ryan C. Sullivan, David P. Billesbach, Sebastien Biraud, Stephen Chan, Richard Hart, Evan Keeler, Jenni Kyrouac, Sujan Pal, Mikhail Pekour, Sara L. Sullivan, Adam Theisen, Matt Tuftedal, and David R. Cook
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-168,https://doi.org/10.5194/essd-2025-168, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Anderson, B. T.: Near-term increase in frequency of seasonal temperature extremes prior to the 2 global warming target, Clim. Change, 108, 581–589, https://doi.org/10.1007/s10584-011-0196-4, 2011. 
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., and Payne, A. J.: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Sea level change, 1137–1216, 2013. 
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends, Q. J. Roy. Meteor. Soc., 140, 1935–1944, https://doi.org/10.1002/qj.2297, 2014. 
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry, D. I., Brohan P., Eastman, R., Gates, L., Gloeden, W., Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G. S., and Shawn R.: ICOADS Release 3.0: a major update to the historical marine climate record, Int. J. Climatol., 37, 2211–2232, https://doi.org/10.1002/joc.4775, 2017. 
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010. 
Download
Short summary
Global ST datasets have been blamed for underestimating the recent warming trend. This study merged ERSSTv5 with our newly developed C-LSAT, producing a global land and marine surface temperature dataset – CMST. Comparing with existing datasets, the statistical significance of the GMST warming trend during the past century remains unchanged, while the recent warming trend since 1998 increases slightly and is statistically significant.
Share
Altmetrics
Final-revised paper
Preprint