Articles | Volume 10, issue 4
Earth Syst. Sci. Data, 10, 1807–1827, 2018
https://doi.org/10.5194/essd-10-1807-2018
Earth Syst. Sci. Data, 10, 1807–1827, 2018
https://doi.org/10.5194/essd-10-1807-2018
 
10 Oct 2018
10 Oct 2018

A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges

Nico Mölg et al.

Related authors

Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019,https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary

Related subject area

Glaciology
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022,https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022,https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022,https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
A new global dataset of mountain glacier centerlines and lengths
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022,https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Elevation change of the Antarctic Ice Sheet: 1985 to 2020
Johan Nilsson, Alex S. Gardner, and Fernando S. Paolo
Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022,https://doi.org/10.5194/essd-14-3573-2022, 2022
Short summary

Cited articles

Aizen, E. M., Aizen, V. B., Melack, J. M., Nakamura, T., and Ohta, T.: Precipitation and atmospheric circulation patterns at mid-latitudes of Asia, Int. J. Climatol., 21, 535–556, https://doi.org/10.1002/joc.626, 2001. 
Aizen, V. B., Aizen, E. M., Melack, J. M., and Dozier, J.: Climatic and Hydrologic Changes in the Tien Shan, Central Asia, J. Climate, 10, 1393–1404, 1997. 
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016. 
Andreassen, L. M., Paul, F., Kääb, A., and Hausberg, J. E.: Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s, The Cryosphere, 2, 131–145, https://doi.org/10.5194/tc-2-131-2008, 2008. 
Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications, Hydrol. Earth Syst. Sci., 8, 47–61, https://doi.org/10.5194/hess-8-47-2004, 2004. 
Download
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.