10 Oct 2018
10 Oct 2018
A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges
Nico Mölg et al.
Related authors
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Tazio Strozzi, Andreas Wiesmann, Andreas Kääb, Thomas Schellenberger, and Frank Paul
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-44, https://doi.org/10.5194/essd-2022-44, 2022
Preprint under review for ESSD
Short summary
Short summary
Knowledge on surface velocity of glaciers and ice caps contributes to a better understanding of a wide range of processes related to glacier dynamics, mass change and response to climate. Based on the release of historical satellite radar data from various space agencies we compiled nearly complete mosaics of winter ice surface velocities for the 1990's over the Eastern Arctic. Compared to the present state, we observe a general increase of ice velocities along with a retreat of glacier fronts.
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022, https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
Short summary
The new Caucasus glacier inventory derived from manual delineation of glacier outlines based on medium-resolution (Landsat, Sentinel) and high-resolution (SPOT) satellite imagery shows the accelerated glacier area loss over the last 2 decades (2000–2020). This new glacier inventory will improve our understanding of climate change impacts at a regional scale and support related modelling studies by providing high-quality validation data.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne Hvidtfeldt Christiansen, Margaret Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne Staalesen Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-342, https://doi.org/10.5194/tc-2021-342, 2022
Revised manuscript accepted for TC
Short summary
Short summary
We present the guidelines developed by the IPA Action Group (within the ESA Permafrost CCI project) to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to eleven regions worldwide; more than 3,600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Simon Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-167, https://doi.org/10.5194/nhess-2021-167, 2021
Revised manuscript has not been submitted
Short summary
Short summary
This study examines how the formation of a new glacial lake, in response to future glacial melting, could enhance the flood threat to a transboundary basin flowing between Tibet and Nepal. A flood resulting from a catastrophic outburst from this future lake could lead to higher flood levels than currently anticipated, and the flood wave would travel faster. These results can help ensure that hazard mapping and early warning systems in the basin remain robust over future decades.
Jan Beutel, Andreas Biri, Ben Buchli, Alessandro Cicoira, Reynald Delaloye, Reto Da Forno, Isabelle Gaertner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Phillipe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapoza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Samuel Weber, and Vanessa Wirz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-176, https://doi.org/10.5194/essd-2021-176, 2021
Revised manuscript has not been submitted
Short summary
Short summary
Using standard GPS receivers it is possible to track terrain movements at the sub centimeter scale. This paper documents experiments using this technique monitoring different cryosphere-related mass movement in high-alpine terrain: rock glaciers, landslides as well as steep bedrock. The data serves basic research but also decision making and mitigation of natural hazard as well as adaptation to climate change. It is the largest data set of it’s kind comprising over 209’000 daily positions.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Frank Paul, Philipp Rastner, Roberto Sergio Azzoni, Guglielmina Diolaiuti, Davide Fugazza, Raymond Le Bris, Johanna Nemec, Antoine Rabatel, Mélanie Ramusovic, Gabriele Schwaizer, and Claudio Smiraglia
Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, https://doi.org/10.5194/essd-12-1805-2020, 2020
Short summary
Short summary
We have used Sentinel-2 satellite data from 2015 and 2016 to create a new glacier inventory for the European Alps. Outlines from earlier national inventories were used to guide manual corrections (e.g. ice in shadow or under debris cover) of the automatically mapped clean ice. We mapped 4395 glaciers, covering 1806 km2, an area loss of about 14 % (or −1.2 % per year) compared to the last inventory of 2003. We conclude that glacier shrinkage in the Alps has continued unabated since the mid-1980s.
Tazio Strozzi, Dora Carreon-Freyre, and Urs Wegmüller
Proc. IAHS, 382, 179–182, https://doi.org/10.5194/piahs-382-179-2020, https://doi.org/10.5194/piahs-382-179-2020, 2020
Luigi Tosi, Cristina Da Lio, Sandra Donnici, Tazio Strozzi, and Pietro Teatini
Proc. IAHS, 382, 689–695, https://doi.org/10.5194/piahs-382-689-2020, https://doi.org/10.5194/piahs-382-689-2020, 2020
Short summary
Short summary
The Venice coastland forms the major low-lying area in Italy and encompasses a variety of environments, such as farmlands, estuaries, deltas, lagoons and urbanized areas. Since most of the territory lies at a ground elevation below or slightly above the mean sea-level, also a few mm/yr of land subsidence can seriously impacts on the coastal system. In this study, we present an analysis of the vulnerability to relative sea-level rise (RSLR) considering an uneven land subsidence distribution.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Cristian Scapozza, Christian Ambrosi, Massimiliano Cannata, and Tazio Strozzi
Geogr. Helv., 74, 125–139, https://doi.org/10.5194/gh-74-125-2019, https://doi.org/10.5194/gh-74-125-2019, 2019
Short summary
Short summary
A glacial lake outburst flood hazard assessment by satellite Earth observation and numerical modelling was done for the lakes linked to the Thangothang Chhu glacier, Chomolhari area (Bhutan), combining detailed geomorphological mapping, landslide and rock glacier inventories, as well as surface displacements quantified by satellite InSAR. Outburst scenario modelling revealed that only a flood wave can have an impact on the two human settlements located downslope of the glacier.
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Tazio Strozzi, Andreas Kääb, and Thomas Schellenberger
The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194/tc-11-553-2017, 2017
Short summary
Short summary
The strong atmospheric warming observed since the 1990s in polar regions requires quantifying the contribution to sea level rise of glaciers and ice caps, but for large areas we do not have much information on ice dynamic fluctuations. The recent increase in satellite data opens up new possibilities to monitor ice flow. We observed over Stonebreen on Edgeøya (Svalbard) a strong increase since 2012 in ice surface velocity along with a decrease in volume and an advance in frontal extension.
Tobias Bolch, Tino Pieczonka, Kriti Mukherjee, and Joseph Shea
The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, https://doi.org/10.5194/tc-11-531-2017, 2017
Short summary
Short summary
Previous geodetic estimates of glacier mass changes in the Karakoram have revealed balanced budgets or a possible slight mass gain since the year ∼ 2000. We used old US reconnaissance imagery and could show that glaciers in the Hunza River basin (Central Karakoram) experienced on average no significant mass changes also since the 1970s. Likewise the glaciers had heterogeneous behaviour with frequent surge activities during the last 40 years.
Jacqueline Huber, Alison J. Cook, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 9, 115–131, https://doi.org/10.5194/essd-9-115-2017, https://doi.org/10.5194/essd-9-115-2017, 2017
Short summary
Short summary
A glacier inventory of the AP (63°–70° S), consisting of glacier outlines accompanied by glacier-specific parameters (i.e., elevation distribution, slope, aspect, thickness and volume), was achieved by digitally combining already-existing data sets. This resulted in 1589 glaciers, covering an area of 95 273 km2. These freely available data provide new insights into AP glaciers, their behavior in response to a changing climate and their corresponding contribution to sea level rise.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Michel Wortmann, Tobias Bolch, Valentina Krysanova, and Su Buda
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-272, https://doi.org/10.5194/hess-2016-272, 2016
Revised manuscript not accepted
F. Paul
The Cryosphere, 9, 2201–2214, https://doi.org/10.5194/tc-9-2201-2015, https://doi.org/10.5194/tc-9-2201-2015, 2015
Short summary
Short summary
This study uses animations of freely available Landsat images (acquired over 25 years) to reveal glacier flow and surge dynamics in the central Karakoram. The animations provide a holistic view on the timing and variability of glacier dynamics that is hard to obtain by other more quantitative methods. Among others, the study reveals that most surging glaciers are comparably small, steep and debris-free, with a wide range of advance rates and durations, overlapping with non-surge-type glaciers.
L. Tosi, T. Strozzi, C. Da Lio, and P. Teatini
Proc. IAHS, 372, 199–205, https://doi.org/10.5194/piahs-372-199-2015, https://doi.org/10.5194/piahs-372-199-2015, 2015
Short summary
Short summary
Eighty regular TerraSAR-X acquisitions over the 2008-2011 period significantly improve the subsidence monitoring at the Venice coastland. Settlements of 30-35 mm/yr have been detected at the three lagoon inlets in correspondence of the MoSE works. The Venice and Chioggia historical centers show local sinking bowls up to 10 mm/yr connected with the construction of new large buildings or restoration works. In the city of Venice, the mean subsidence of 1.1±1.0 mm/yr confirms its general stability.
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015, https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Short summary
Investigations of glacier mass-balance and area changes at Muztagh Ata (eastern Pamir) are based on Hexagon KH-9 (1973), ALOS-PRISM (2009), Pléiades (2013) and Landsat 7 ETM+/SRTM-3 (2000). Surface velocities of Kekesayi Glacier are derived by TerraSAR-X (2011) amplitude tracking. Glacier variations differ spatially and temporally, but on average not significantly for the entire massif. Stagnant Kekesayi and other debris-covered glaciers indicate no visual length changes, but clear down-wasting.
I. Beck, R. Ludwig, M. Bernier, T. Strozzi, and J. Boike
Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, https://doi.org/10.5194/esurf-3-409-2015, 2015
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015, https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
Short summary
Glacier velocity, glacier area, surface elevation and mass changes of the Southern and Northern Inylchek Glacier were investigated by using multi-temporal space-borne data sets. The mass balance of both SIG and NIG was negative(-0.43 ± 0.10 m w.e. a-1 and -0.25 ± 0.10 m w.e. a-1) from ~1975 to 2007. The thinning at the lake dam was higher, likely caused by calving into Lake Merzbacher. Thus, glacier thinning and glacier flow are significantly influenced by the lake.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger
The Cryosphere, 8, 1951–1973, https://doi.org/10.5194/tc-8-1951-2014, https://doi.org/10.5194/tc-8-1951-2014, 2014
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014, https://doi.org/10.5194/tc-8-1393-2014, 2014
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014, https://doi.org/10.5194/tc-8-1297-2014, 2014
R. Bhambri, T. Bolch, P. Kawishwar, D. P. Dobhal, D. Srivastava, and B. Pratap
The Cryosphere, 7, 1385–1398, https://doi.org/10.5194/tc-7-1385-2013, https://doi.org/10.5194/tc-7-1385-2013, 2013
L. Carturan, R. Filippi, R. Seppi, P. Gabrielli, C. Notarnicola, L. Bertoldi, F. Paul, P. Rastner, F. Cazorzi, R. Dinale, and G. Dalla Fontana
The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013, https://doi.org/10.5194/tc-7-1339-2013, 2013
P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul
The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, https://doi.org/10.5194/tc-6-1483-2012, 2012
Related subject area
Glaciology
A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard)
A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers
The Greenland Firn Compaction Verification and Reconnaissance (FirnCover) dataset, 2013–2019
Black carbon and organic carbon dataset over the Third Pole
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet
Greenland ice sheet mass balance from 1840 through next week
Elevation Change of the Antarctic Ice Sheet: 1985 to 2020
Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data
GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland
A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations
Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns
Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017
Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data
Greenland ice velocity maps from the PROMICE project
The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet
Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya, India
Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies
Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017
More dynamic than expected: an updated survey of surging glaciers in the Pamir
Worldwide version-controlled database of glacier thickness observations
Greenland liquid water discharge from 1958 through 2019
Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2
Greenland Ice Sheet solid ice discharge from 1986 through March 2020
Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: impacts of regional climate variability
Historical porosity data in polar firn
Sval_Imp: a gridded forcing dataset for climate change impact research on Svalbard
Glaciers and climate of the Upper Susitna basin, Alaska
Age stratigraphy in the East Antarctic Ice Sheet inferred from radio-echo sounding horizons
Greenland Ice Sheet solid ice discharge from 1986 through 2017
Long-term records of glacier surface velocities in the Ötztal Alps (Austria)
A high-resolution image time series of the Gorner Glacier – Swiss Alps – derived from repeated unmanned aerial vehicle surveys
Geology datasets in North America, Greenland and surrounding areas for use with ice sheet models
The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland
Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard
Historical glacier outlines from digitized topographic maps of the Swiss Alps
A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet
Modulation of glacier ablation by tephra coverage from Eyjafjallajökull and Grímsvötn volcanoes, Iceland: an automated field experiment
Strong tidal variations in ice flow observed across the entire Ronne Ice Shelf and adjoining ice streams
A 14-year dataset of in situ glacier surface velocities for a tidewater and a land-terminating glacier in Livingston Island, Antarctica
A high-resolution synthetic bed elevation grid of the Antarctic continent
A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 2000 to 2002 and other preexisting data sets
Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015
A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry
Geomatic methods applied to the study of the front position changes of Johnsons and Hurd Glaciers, Livingston Island, Antarctica, between 1957 and 2013
Ice crystal c-axis orientation and mean grain size measurements from the Dome Summit South ice core, Law Dome, East Antarctica
Subglacial landforms beneath Rutford Ice Stream, Antarctica: detailed bed topography from ice-penetrating radar
Measurement of the fracture toughness of polycrystalline bubbly ice from an Antarctic ice core
Dariusz Ignatiuk, Małgorzata Błaszczyk, Tomasz Budzik, Mariusz Grabiec, Jacek A. Jania, Marta Kondracka, Michał Laska, Łukasz Małarzewski, and Łukasz Stachnik
Earth Syst. Sci. Data, 14, 2487–2500, https://doi.org/10.5194/essd-14-2487-2022, https://doi.org/10.5194/essd-14-2487-2022, 2022
Short summary
Short summary
This paper presents details of the glaciological and meteorological dataset (2009–2020) from the Werenskioldbreen (Svalbard). These high-quality and long-term observational data already have been used to assess hydrological models and glaciological studies. The objective of releasing these data is to improve their usage for calibration and validation of the remote sensing products and models, as well as to increase data reuse.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Diarmuid Corr, Amber Leeson, Malcolm McMillan, Ce Zhang, and Thomas Barnes
Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022, https://doi.org/10.5194/essd-14-209-2022, 2022
Short summary
Short summary
We identify 119 km2 of meltwater area over West Antarctica in January 2017. In combination with Stokes et al., 2019, this forms the first continent-wide assessment helping to quantify the mass balance of Antarctica and its contribution to global sea level rise. We apply thresholds for meltwater classification to satellite images, mapping the extent and manually post-processing to remove false positives. Our study provides a high-fidelity dataset to train and validate machine learning methods.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Johan Nilsson, Alex Gardner, and Fernando Paolo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-287, https://doi.org/10.5194/essd-2021-287, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
The longest observational record available to study the mass balance of the Earth’s ice sheets comes from satellite altimeters. This record consists of multiple satellite missions with different measurements and quality, and must be cross-calibrated and integrated into a consistent record for scientific use. Here, we present a novel approach for generating such a record providing a seamless record of elevation change for the Antarctic Ice Sheet that spans the period 1985 to 2020.
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Short summary
A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2, and the average calving rate was measured as 770.3 Gt yr-1. Iceberg calving is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. This annual iceberg calving dataset provides consistent and precise calving observations with the longest time coverage.
Gunnar Johnson, Heejun Chang, and Andrew Fountain
Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, https://doi.org/10.5194/essd-13-3979-2021, 2021
Short summary
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Yetang Wang, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Shugui Hou, and Cunde Xiao
Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021, https://doi.org/10.5194/essd-13-3057-2021, 2021
Short summary
Short summary
Accurate observation of surface mass balance (SMB) under climate change is essential for the reliable present and future assessment of Antarctic contribution to global sea level. This study presents a new quality-controlled dataset of Antarctic SMB observations at different temporal resolutions and is the first ice-sheet-scale compilation of multiple types of measurements. The dataset can be widely applied to climate model validation, remote sensing retrievals, and data assimilation.
Arindam Chowdhury, Milap Chand Sharma, Sunil Kumar De, and Manasi Debnath
Earth Syst. Sci. Data, 13, 2923–2944, https://doi.org/10.5194/essd-13-2923-2021, https://doi.org/10.5194/essd-13-2923-2021, 2021
Short summary
Short summary
This is an integrated watershed-based study of glacier change across the Chhombo Chhu Watershed in the Sikkim Himalaya, 1975–2018. This glacier analysis comprised 74 glaciers with a total area of 44.8 ± 1.5 km2 including 64 debris-free glaciers with an area of 28.4 ± 1.1 km2 (63.4 % of total glacier area) in 2018. Mean glacier area of the watershed stands at 0.61 km2, with dominance of small-sized glaciers. Our mapping revealed that there has been a glacier area recession of 17.9 ± 1.7 km2.
Dhiraj Pradhananga, John W. Pomeroy, Caroline Aubry-Wake, D. Scott Munro, Joseph Shea, Michael N. Demuth, Nammy Hang Kirat, Brian Menounos, and Kriti Mukherjee
Earth Syst. Sci. Data, 13, 2875–2894, https://doi.org/10.5194/essd-13-2875-2021, https://doi.org/10.5194/essd-13-2875-2021, 2021
Short summary
Short summary
This paper presents hydrological, meteorological, glaciological and geospatial data of Peyto Glacier Basin in the Canadian Rockies. They include high-resolution DEMs derived from air photos and lidar surveys and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xin Wang, Xiaoyu Guo, Chengde Yang, Qionghuan Liu, Junfeng Wei, Yong Zhang, Shiyin Liu, Yanlin Zhang, Zongli Jiang, and Zhiguang Tang
Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, https://doi.org/10.5194/essd-12-2169-2020, 2020
Short summary
Short summary
The theoretical and methodological bases for all processing steps including glacial lake definition and classification and lake boundary delineation are discussed based on satellite remote sensing data and GIS techniques. The relative area errors of each lake in 2018 varied 1 %–79 % with average relative area errors of ±13.2 %. In high-mountain Asia, 30 121 glacial lakes with a total area of 2080.12 ± 2.28 km2 were catalogued in 2018 with a 15.2 % average rate of increase in area in 1990–2018.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Frank Paul, Philipp Rastner, Roberto Sergio Azzoni, Guglielmina Diolaiuti, Davide Fugazza, Raymond Le Bris, Johanna Nemec, Antoine Rabatel, Mélanie Ramusovic, Gabriele Schwaizer, and Claudio Smiraglia
Earth Syst. Sci. Data, 12, 1805–1821, https://doi.org/10.5194/essd-12-1805-2020, https://doi.org/10.5194/essd-12-1805-2020, 2020
Short summary
Short summary
We have used Sentinel-2 satellite data from 2015 and 2016 to create a new glacier inventory for the European Alps. Outlines from earlier national inventories were used to guide manual corrections (e.g. ice in shadow or under debris cover) of the automatically mapped clean ice. We mapped 4395 glaciers, covering 1806 km2, an area loss of about 14 % (or −1.2 % per year) compared to the last inventory of 2003. We conclude that glacier shrinkage in the Alps has continued unabated since the mid-1980s.
Kenneth D. Mankoff, Anne Solgaard, William Colgan, Andreas P. Ahlstrøm, Shfaqat Abbas Khan, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, https://doi.org/10.5194/essd-12-1367-2020, 2020
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 to 2020. Our results show three modes at the the total ice sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2019. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level-rise estimates.
Aparna Shukla, Siddhi Garg, Manish Mehta, Vinit Kumar, and Uma Kant Shukla
Earth Syst. Sci. Data, 12, 1245–1265, https://doi.org/10.5194/essd-12-1245-2020, https://doi.org/10.5194/essd-12-1245-2020, 2020
Short summary
Short summary
This research presents an updated glacier inventory (2017) of the Suru sub-basin, western Himalaya, India, which is useful for glacier-modelling studies. Glaciers here occur in two major Himalayan ranges: the Ladakh Range and the Greater Himalayan Range (GHR). Temporal glacier changes (46 years) suggest an overall degenerating pattern and a transitional response between the Karakoram and GHR glaciers. Local climate variability and unique topography induce heterogeneity in glacier response.
Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola
Earth Syst. Sci. Data, 12, 1171–1177, https://doi.org/10.5194/essd-12-1171-2020, https://doi.org/10.5194/essd-12-1171-2020, 2020
Short summary
Short summary
Measurements of the porosity of three polar firns were conducted in the 1990s by Jean-Marc Barnola using the method of gas pycnometry. From these data, a parametrization of firn pore closure was produced and used in different published articles. However, the data have not been published in their own right yet. We have made the data publicly accessible on the PANGAEA database and here propose describing how they were obtained and used to produce the pore closure parametrization.
Thomas Vikhamar Schuler and Torbjørn Ims Østby
Earth Syst. Sci. Data, 12, 875–885, https://doi.org/10.5194/essd-12-875-2020, https://doi.org/10.5194/essd-12-875-2020, 2020
Short summary
Short summary
Atmospheric variables needed to force terrestrial process models (permafrost, glacier mass balance, seasonal snow, surface energy balance) have been downscaled from the ERA-40 and ERA-Interim reanalyses using methodology described in the accompanying paper. The gridded dataset has a horizontal resolution of 1 km and covers the entire Svalbard archipelago. The data have a temporal resolution of 6 h and cover the entire ERA-40 period (1957–2002) and the ERA-Interim period (1979–2017).
Andrew Bliss, Regine Hock, Gabriel Wolken, Erin Whorton, Caroline Aubry-Wake, Juliana Braun, Alessio Gusmeroli, Will Harrison, Andrew Hoffman, Anna Liljedahl, and Jing Zhang
Earth Syst. Sci. Data, 12, 403–427, https://doi.org/10.5194/essd-12-403-2020, https://doi.org/10.5194/essd-12-403-2020, 2020
Short summary
Short summary
Extensive field observations were conducted in the Upper Susitna basin in central Alaska in 2012–2014. This paper describes the weather, glacier mass balance, snow cover, and soils of the basin. We found that temperatures over the glacier are cooler than over land at the same elevation. The glaciers have been losing mass faster in recent years than in the 1980s. Measurements of glacier mass change with traditional methods closely matched radar measurements.
Anna Winter, Daniel Steinhage, Timothy T. Creyts, Thomas Kleiner, and Olaf Eisen
Earth Syst. Sci. Data, 11, 1069–1081, https://doi.org/10.5194/essd-11-1069-2019, https://doi.org/10.5194/essd-11-1069-2019, 2019
Kenneth D. Mankoff, William Colgan, Anne Solgaard, Nanna B. Karlsson, Andreas P. Ahlstrøm, Dirk van As, Jason E. Box, Shfaqat Abbas Khan, Kristian K. Kjeldsen, Jeremie Mouginot, and Robert S. Fausto
Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, https://doi.org/10.5194/essd-11-769-2019, 2019
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 through 2017. Our results show three modes at the total ice-sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2017. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level rise estimates.
Martin Stocker-Waldhuber, Andrea Fischer, Kay Helfricht, and Michael Kuhn
Earth Syst. Sci. Data, 11, 705–715, https://doi.org/10.5194/essd-11-705-2019, https://doi.org/10.5194/essd-11-705-2019, 2019
Lionel Benoit, Aurelie Gourdon, Raphaël Vallat, Inigo Irarrazaval, Mathieu Gravey, Benjamin Lehmann, Günther Prasicek, Dominik Gräff, Frederic Herman, and Gregoire Mariethoz
Earth Syst. Sci. Data, 11, 579–588, https://doi.org/10.5194/essd-11-579-2019, https://doi.org/10.5194/essd-11-579-2019, 2019
Short summary
Short summary
This dataset provides a collection of 10 cm resolution orthomosaics and digital elevation models of the Gornergletscher glacial system (Switzerland). Raw data have been acquired every 2 weeks by intensive UAV surveys and cover the summer 2017. A careful photogrammetric processing ensures the geometrical coherence of the whole dataset.
Evan J. Gowan, Lu Niu, Gregor Knorr, and Gerrit Lohmann
Earth Syst. Sci. Data, 11, 375–391, https://doi.org/10.5194/essd-11-375-2019, https://doi.org/10.5194/essd-11-375-2019, 2019
Short summary
Short summary
The speed of ice sheet flow is largely controlled by the strength of the ice–bed interface. We present three datasets on the geological properties of regions in North America, Greenland and Iceland that were covered by Quaternary ice sheets. These include the grain size of glacial sediments, the continuity of sediment cover and bedrock geology. Simple ice modelling experiments show that altering the basal strength of the ice sheet on the basis of these datasets impacts ice thickness.
Lynn Montgomery, Lora Koenig, and Patrick Alexander
Earth Syst. Sci. Data, 10, 1959–1985, https://doi.org/10.5194/essd-10-1959-2018, https://doi.org/10.5194/essd-10-1959-2018, 2018
Short summary
Short summary
The SUMup dataset is a standardized, expandable, community dataset of Arctic and Antarctic observations of surface mass balance components, including snow/firn density, snow accumulation on land ice, and snow depth on sea ice. The measurements in this dataset were compiled from field notes, papers, technical reports, and digital files. We use these observations to monitor change in the polar regions and evaluate model output as well as remote sensing measurements.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Hafeez Jeofry, Neil Ross, Hugh F. J. Corr, Jilu Li, Mathieu Morlighem, Prasad Gogineni, and Martin J. Siegert
Earth Syst. Sci. Data, 10, 711–725, https://doi.org/10.5194/essd-10-711-2018, https://doi.org/10.5194/essd-10-711-2018, 2018
Short summary
Short summary
Accurately characterizing the complexities of the ice-sheet dynamic specifically close to the grounding line across the Weddell Sea (WS) sector in the ice-sheet models provides challenges to the scientific community. Our main objective is to comprehend these complexities, adding accuracy to the projection of future ice-sheet dynamics. Therefore, we have developed a new bed elevation digital elevation model across the WS sector, which will be of value to ice-sheet modelling experiments.
Rebecca Möller, Marco Möller, Peter A. Kukla, and Christoph Schneider
Earth Syst. Sci. Data, 10, 53–60, https://doi.org/10.5194/essd-10-53-2018, https://doi.org/10.5194/essd-10-53-2018, 2018
Short summary
Short summary
Deposits of volcanic tephra alter the energy balance at the surface of a glacier. The effects reach from intensified melt to complete insulation, mainly depending on tephra thickness. Data from a field experiment on Iceland reveal an additional minor dependency on tephra type and suggest a substantially different behavior of tephra-covered snowpacks than of tephra-covered glacier ice. The related 50-day dataset of hourly records can readily be used for model calibration and validation purposes.
Sebastian H. R. Rosier, G. Hilmar Gudmundsson, Matt A. King, Keith W. Nicholls, Keith Makinson, and Hugh F. J. Corr
Earth Syst. Sci. Data, 9, 849–860, https://doi.org/10.5194/essd-9-849-2017, https://doi.org/10.5194/essd-9-849-2017, 2017
Short summary
Short summary
Tides can affect the flow of ice at hourly to yearly timescales. In some cases the ice responds at a different frequency than is found in the tidal forcing; for example, on Rutford Ice Stream the strongest response is at a fortnightly period. A new compilation of GPS data across the Ronne Ice Shelf and adjoining ice streams shows that this fortnightly modulation in ice flow is found across the entire region. Measurements of this kind can provide insights into ice rheology and basal processes.
Francisco Machío, Ricardo Rodríguez-Cielos, Francisco Navarro, Javier Lapazaran, and Jaime Otero
Earth Syst. Sci. Data, 9, 751–764, https://doi.org/10.5194/essd-9-751-2017, https://doi.org/10.5194/essd-9-751-2017, 2017
Felicity S. Graham, Jason L. Roberts, Ben K. Galton-Fenzi, Duncan Young, Donald Blankenship, and Martin J. Siegert
Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, https://doi.org/10.5194/essd-9-267-2017, 2017
Short summary
Short summary
Antarctic bed topography datasets are interpolated onto low-resolution grids because our observed topography data are sparsely sampled. This has implications for ice-sheet model simulations, especially in regions prone to instability, such as grounding lines, where detailed knowledge of the topography is required. Here, we constructed a high-resolution synthetic bed elevation dataset using observed covariance properties to assess the dependence of simulated ice-sheet dynamics on grid resolution.
Jacqueline Huber, Alison J. Cook, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 9, 115–131, https://doi.org/10.5194/essd-9-115-2017, https://doi.org/10.5194/essd-9-115-2017, 2017
Short summary
Short summary
A glacier inventory of the AP (63°–70° S), consisting of glacier outlines accompanied by glacier-specific parameters (i.e., elevation distribution, slope, aspect, thickness and volume), was achieved by digitally combining already-existing data sets. This resulted in 1589 glaciers, covering an area of 95 273 km2. These freely available data provide new insights into AP glaciers, their behavior in response to a changing climate and their corresponding contribution to sea level rise.
Adam M. Clark, Daniel B. Fagre, Erich H. Peitzsch, Blase A. Reardon, and Joel T. Harper
Earth Syst. Sci. Data, 9, 47–61, https://doi.org/10.5194/essd-9-47-2017, https://doi.org/10.5194/essd-9-47-2017, 2017
Short summary
Short summary
Most of the alpine glaciers in the world are shrinking. Because of the impact glaciers have on watershed hydrology, the US Geological Survey began a surface mass balance measurement program on Sperry Glacier in Glacier National Park, Montana, USA, in 2005. Between then and 2015 the USGS employed standard methods to estimate the mass changes across the surface of the glacier. During this 11-year period, Sperry Glacier had a cumulative mean mass balance loss of 4.37 m of water equivalent.
Janin Schaffer, Ralph Timmermann, Jan Erik Arndt, Steen Savstrup Kristensen, Christoph Mayer, Mathieu Morlighem, and Daniel Steinhage
Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, https://doi.org/10.5194/essd-8-543-2016, 2016
Short summary
Short summary
The RTopo-2 data set provides consistent maps of global ocean bathymetry and ice surface topographies for Greenland and Antarctica at 30 arcsec grid spacing. We corrected data from earlier products in the areas of Petermann, Hagen Bræ, and Helheim glaciers, incorporated original data for the floating ice tongue of Nioghalvfjerdsfjorden Glacier, and applied corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available from the PANGAEA database.
Ricardo Rodríguez Cielos, Julián Aguirre de Mata, Andrés Díez Galilea, Marina Álvarez Alonso, Pedro Rodríguez Cielos, and Francisco Navarro Valero
Earth Syst. Sci. Data, 8, 341–353, https://doi.org/10.5194/essd-8-341-2016, https://doi.org/10.5194/essd-8-341-2016, 2016
Short summary
Short summary
The study of glacier fronts combines different geomatics measurement techniques. It is practically impossible to realize, in the case of glacier fronts that end up in the sea (tide water glaciers). The images obtained from the front come from a non-metric digital camera. The result of observations obtained were applied to study the temporal evolution (1957–2014) of the position of the Johnsons glacier and the position of the Hurd glacier, near BAE Juan Carlos I in Livingston Island (Antarctica).
Adam Treverrow, Li Jun, and Tim H. Jacka
Earth Syst. Sci. Data, 8, 253–263, https://doi.org/10.5194/essd-8-253-2016, https://doi.org/10.5194/essd-8-253-2016, 2016
Short summary
Short summary
We present ice crystallographic c-axis orientation and grain size data from the Dome Summit South (DSS) ice core drilled 4.7 km SSW of the summit of Law Dome, East Antarctica. These data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. Observations of ice microstructures from polar ice cores play a vital role in the development and validation of ice flow relations for numerical ice sheet models.
Edward C. King, Hamish D. Pritchard, and Andrew M. Smith
Earth Syst. Sci. Data, 8, 151–158, https://doi.org/10.5194/essd-8-151-2016, https://doi.org/10.5194/essd-8-151-2016, 2016
Short summary
Short summary
Large, fast-moving glaciers create long, linear mounds of sediments covering large areas. Understanding how these features form has been hampered by a lack of data from the bed of modern-day ice sheets. We give a detailed view of the landscape beneath an Antarctic glacier called Rutford Ice Stream. We towed a radar system back and forth across the glacier to measure the ice thickness every few metres. This is the first place such a highly detailed view of the sub-ice landscape has been created.
J. Christmann, R. Müller, K. G. Webber, D. Isaia, F. H. Schader, S. Kipfstuhl, J. Freitag, and A. Humbert
Earth Syst. Sci. Data, 7, 87–92, https://doi.org/10.5194/essd-7-87-2015, https://doi.org/10.5194/essd-7-87-2015, 2015
Cited articles
Aizen, E. M., Aizen, V. B., Melack, J. M., Nakamura, T., and Ohta, T.:
Precipitation and atmospheric circulation patterns at mid-latitudes of Asia,
Int. J. Climatol., 21, 535–556, https://doi.org/10.1002/joc.626, 2001.
Aizen, V. B., Aizen, E. M., Melack, J. M., and Dozier, J.: Climatic and
Hydrologic Changes in the Tien Shan, Central Asia, J. Climate, 10,
1393–1404, 1997.
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers:
response to steady debris deposition, The Cryosphere, 10, 1105–1124,
https://doi.org/10.5194/tc-10-1105-2016, 2016.
Andreassen, L. M., Paul, F., Kääb, A., and Hausberg, J. E.:
Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced
glacier changes since the 1930s, The Cryosphere, 2, 131–145,
https://doi.org/10.5194/tc-2-131-2008, 2008.
Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in
precipitation in the Upper Indus Basin, global teleconnections and
hydrological implications, Hydrol. Earth Syst. Sci., 8, 47–61,
https://doi.org/10.5194/hess-8-47-2004, 2004.
Arendt, A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen,
J.-O., Hock, R., Huss, M., Kaser, G., Kienholz, C., Pfeffer, W. T., Moholdt,
G., Paul, F., Radić, V., Andreassen, L. M., Bajracharya, S., Barrand, N.
E., Beedle, M., Berthier, E., Bhambri, R., Brown, I., Burgess, E. W.,
Burgess, D., Cawkwell, F., Chinn, T., Copland, L., Davies, B., Angelis, H.
de, Dolgova, E., Earl, L., Filbert, K., Forester, R., Fountain, A. G., Frey,
H., Giffen, B., Glasser, N. F., Guo, W., Gurney, S. D., Hagg, W., Hall, D.,
Haritashya, U. K., Hartmann, G., Helm, C., Herreid, S., Howat, I., Kapustin,
G., Khromova, T. E., König, M., Kohler, J., Kriegel, D., Kutuzov, S.,
Lavrentiev, I., Le Bris, R., Liu, S., Lund, J., Manley, W., Marti, R., Mayer,
C., Miles, E. S., Li, X., Menounos, B., Mercer, A., Mölg, N., Mool, P.,
Nosenko, G., Negrete, A., Nuimura, T., Nuth, C., Pettersson, R., Racoviteanu,
A., Ranzi, R., Rastner, P., Rau, F., Raup, B., Rich, J., Rott, H., Sakai, A.,
Schneider, C., Seliverstov, Y., Sharp, M. J., Sigurðsson, O., Stokes, C.
R., Way, R. G., Wheate, R., Winsvold, S., Wolken, G., Wyatt, F., and
Zheltihyna, N.: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 5.0: GLIMS Technical Report, Global Land Ice Measurement
from Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-50 (last
access: 13 March 2018), 2015.
Atwood, D. K., Meyer, F., and Arendt, A.: Using L-band SAR coherence to
delineate glacier extent, Can. J. Remote Sens., 36, S186–S195,
https://doi.org/10.5589/m10-014, 2010.
Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Guo, W., Liu, S.,
Immerzeel, W., and Shrestha, B.: The glaciers of the Hindu Kush Himalayas:
Current status and observed changes from the 1980s to 2010, Int. J. Water
Resour. D., 31, 161–173, https://doi.org/10.1080/07900627.2015.1005731, 2015.
Barsch, D.: Rockglaciers: Indicators for the Present and Former Geoecology in
High Mountain Environments, in: Springer Series in Physical Environment,
Springer Berlin Heidelberg, Berlin, Heidelberg, 16, 331 pp., 1996.
Berthling, I.: Beyond confusion: Rock glaciers as cryo-conditioned landforms,
Geomorphology, 131, 98–106, https://doi.org/10.1016/j.geomorph.2011.05.002, 2011.
Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D. P., Srivastava, D., and
Pratap, B.: Heterogeneity in glacier response in the upper Shyok valley,
northeast Karakoram, The Cryosphere, 7, 1385–1398,
https://doi.org/10.5194/tc-7-1385-2013, 2013.
Bhambri, R., Hewitt, K., Kawishwar, P., and Pratap, B.: Surge-type and
surge-modified glaciers in the Karakoram, Scientific Reports, 7, 15391,
https://doi.org/10.1038/s41598-017-15473-8, 2017.
Bishop, M. P., Shroder, J. F., Ali, G., Bush, A. B. G., Haritashya, U. K.,
Roohi, R., Sarikaya, M. A., and Weihs, B. J.: Remote Sensing of Glaciers in
Afghanistan and Pakistan, in: Global Land Ice Measurements from Space, edited
by: Kargel, J. S., Leonard, G. J., Bishop, M. P., Kääb, A., and Raup,
B. H., Springer Berlin Heidelberg, Berlin, Heidelberg, 509–548, 2014.
Bliss, A., Hock, R., and Radić, V.: Global response of glacier runoff to
twenty-first century climate change, J. Geophys. Res. Earth, 119, 717–730,
https://doi.org/10.1002/2013JF002931, 2014.
Bodin, X., Rojas, F., and Brenning, A.: Status and evolution of the
cryosphere in the Andes of Santiago (Chile, 33.5∘S.), Geomorphology,
118, 453–464, https://doi.org/10.1016/j.geomorph.2010.02.016, 2010.
Böhner, J.: General climatic controls and topoclimatic variations in
Central and High Asia, Boreas, 35, 279–295,
https://doi.org/10.1111/j.1502-3885.2006.tb01158.x, 2006.
Bolch, T. and Gorbunov, A. P.: Characteristics and Origin of Rock Glaciers in
Northern Tien Shan (Kazakhstan/Kyrgyzstan), Permafrost Periglac., 25,
320–332, https://doi.org/10.1002/ppp.1825, 2014.
Bolch, T. and Kamp, U.: Glacier mapping in high mountains using DEMs, Landsat
and ASTER data, in: Proceedings of the 8th International Symposium on High
Mountain Remote Sensing Cartography, La Paz, Bolivia, 21–27 March 2005,
edited by: Kaufmann, V. and Sulzer, W., 2006.
Bolch, T., Buchroithner, M., Kunert, A., and Kamp, U.: Automated delineation
of debris-covered glaciers based on ASTER data, in: GeoInformation in Europe,
edited by: Gomarasca, A., Millpress, Rotterdam, 403–410, 2007.
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers
in western Canada, 1985-2005, Remote Sens. Environ., 114, 127–137,
https://doi.org/10.1016/j.rse.2009.08.015, 2010.
Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, J. G., Frey,
H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.:
The state and fate of Himalayan glaciers, Science, 336, 310–314,
https://doi.org/10.1126/science.1215828, 2012.
Bolch, T., Sandberg Sørensen, L., Simonsen, S. B., Mölg, N., Machguth,
H., Rastner, P., and Paul, F.: Mass loss of Greenland's glaciers and ice caps
2003–2008 revealed from ICESat laser altimetry data, Geophys. Res. Lett.,
40, 875–881, https://doi.org/10.1002/grl.50270, 2013.
Bolch, T., Pieczonka, T., Mukherjee, K., and Shea, J.: Brief communication:
Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since
the 1970s, The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, 2017.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their impact
on river discharge, J. Geophys. Res., 115, F03019,
https://doi.org/10.1029/2009JF001426, 2010.
Braithwaite, R. J. and Müller, F.: On the parameterization of glacier
equilibrium line altitude, in: Proceedings of the Workshop at Riederalp,
Switzerland, 17–22 September 1978, IAHS-AISH Publ. No. 126, 263–271, 1980.
Braithwaite, R. J. and Raper, S.C.B.: Estimating equilibrium-line altitude
(ELA) from glacier inventory data, Ann. Glaciol., 50, 127–132,
https://doi.org/10.3189/172756410790595930, 2009.
Brock, B. W., Mihalcea, C., Kirkbride, M. P., Diolaiuti, G., Cutler, M. E.
J., and Smiraglia, C.: Meteorology and surface energy fluxes in the
2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc
Massif, Italian Alps, J. Geophys. Res., 115, D09106,
https://doi.org/10.1029/2009JD013224, 2010.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances,
2000–2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/NGEO2999, 2017.
Copland, L., Sylvestre, T., Bishop, M. P., Shroder, J. F., Seong, Y. B.,
Owen, L. A., Bush, A., and Kamp, U.: Expanded and Recently Increased Glacier
Surging in the Karakoram, Arct. Antarct. Alp. Res., 43, 503–516,
https://doi.org/10.1657/1938-4246-43.4.503, 2011.
Dehecq, A., Gourmelen, N., and Trouve, E.: Deriving large-scale glacier
velocities from a complete satellite archive: Application to the
Pamir–Karakoram–Himalaya, Remote Sens. Environ., 162, 55–66,
https://doi.org/10.1016/j.rse.2015.01.031, 2015.
Dobreva, I., Bishop, M., and Bush, A.: Climate–Glacier Dynamics and
Topographic Forcing in the Karakoram Himalaya: Concepts, Issues and Research
Directions, Water, 9, 405, https://doi.org/10.3390/w9060405, 2017.
Falaschi, D., Bolch, T., Rastner, P., Lenzano, M. G., Lenzano, L., Lo Veccio,
A., and Moragues, S.: Mass changes of alpine glaciers at the eastern margin
of the Northern and Southern Patagonian Icefields between 2000 and 2012,
J. Glaciol., 63, 258–272, https://doi.org/10.1017/jog.2016.136, 2017.
Frey, H. and Paul, F.: On the suitability of the SRTM DEM and ASTER GDEM for
the compilation of topographic parameters in glacier inventories, Int.
J. Appl. Earth Obs., 18, 480–490, https://doi.org/10.1016/j.jag.2011.09.020, 2012.
Frey, H., Paul, F., and Strozzi, T.: Compilation of a glacier inventory for
the western Himalayas from satellite data: Methods, challenges, and results,
Remote Sens. Environ., 124, 832–843, https://doi.org/10.1016/j.rse.2012.06.020, 2012.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide
glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011,
The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr,
J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M.,
Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F.:
A reconciled estimate of glacier contributions to sea level rise: 2003 to
2009, Science, 340, 852–857, https://doi.org/10.1126/science.1234532, 2013.
Gorbunov, A. P. and Titkov, S. N.: Kamennye Gletchery Gor Srednej Azii (Rock
glaciers of the Central Asian Mountains), Akademia Nauk SSSR, Irkutsk, 1989.
Granshaw, F. D. and Fountain, A. G.: Glacier change (1958–1998) in the North
Cascades National Park Complex, Washington, USA, J. Glaciol., 52, 251–256,
https://doi.org/10.3189/172756506781828782, 2006.
Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W.,
Yu, P., Liu, Q., and Jiang, Z.: The second Chinese glacier inventory: Data,
methods and results, J. Glaciol., 61, 357–372, https://doi.org/10.3189/2015JoG14J209,
2015.
Haeberli, W. and Hoelzle, M.: Application of inventory data for estimating
characteristics of and regional climate-change effects on mountain glaciers:
A pilot study with the European Alps, Ann. Glaciol., 21, 206–212,
https://doi.org/10.3189/S0260305500015834, 1995.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb,
A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D.
V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17,
189–214, https://doi.org/10.1002/ppp.561, 2006.
Haritashya, U. K., Bishop, M. P., Shroder, J. F., Bush, A. B. G., and Bulley,
H. N. N.: Space-based assessment of glacier fluctuations in the Wakhan Pamir,
Afghanistan, Climatic Change, 94, 5–18, https://doi.org/10.1007/s10584-009-9555-9,
2009.
Herreid, S., Pellicciotti, F., Ayala, A., Chesnokova, A., Kienholz, C.,
Shea, J., and Shrestha, A.: Satellite observations show no net change in the
percentage of supraglacial debris-covered area in northern Pakistan from
1977 to 2014, J. Glaciol., 61, 524–536,
https://doi.org/10.3189/2015JoG14J227, 2015.
Hewitt, K.: The Karakoram Anomaly? Glacier Expansion and the 'Elevation
Effect' Karakoram Himalaya, Mt. Res. Dev., 25, 332–340, 2005.
Hewitt, K.: Glacier Change, Concentration, and Elevation Effects in the
Karakoram Himalaya, Upper Indus Basin, Mt. Res. Dev., 31, 188–200,
https://doi.org/10.1659/MRD-JOURNAL-D-11-00020.1, 2011.
Holzer, N., Golletz, T., Buchroithner, M., and Bolch, T.: Glacier Variations
in the Trans Alai Massif and the Lake Karakul Catchment (Northeastern Pamir)
Measured from Space, in: Climate Change, Glacier Response, and Vegetation
Dynamics in the Himalaya, edited by: Singh, R. B., Schickhoff, U., and Mal,
S., Springer International Publishing, Cham, 139–153, 2016.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, 382, https://doi.org/10.3389/feart.2015.00054, 2015.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the Asian water towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F.
P.: Reconciling high-altitude precipitation in the upper Indus basin with
glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687,
https://doi.org/10.5194/hess-19-4673-2015, 2015.
Iturrizaga, L.: Trends in 20th century and recent glacier fluctuations in the
Karakoram Mountains, Z. Geomorphol. Supp., 55, 205–231,
https://doi.org/10.1127/0372-8854/2011/0055S3-0059, 2011.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in the
Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kääb, A., Treichler, D., Nuth, C., and Berthier, E.: Brief
Communication: Contending estimates of 2003–2008 glacier mass balance over
the Pamir–Karakoram–Himalaya, The Cryosphere, 9, 557–564,
https://doi.org/10.5194/tc-9-557-2015, 2015.
Kääb, A., Winsvold, S., Altena, B., Nuth, C., Nagler, T., and Wuite,
J.: Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and
Geometric Performance, and Application to Ice Velocity, Remote Sensing, 8,
598, https://doi.org/10.3390/rs8070598, 2016.
Khromova, T. E., Osipova, G. B., Tsvetkov, D. G., Dyurgerov, M. B., and
Barry, R. G.: Changes in glacier extent in the eastern Pamir, Central Asia,
determined from historical data and ASTER imagery, Remote Sens. Environ.,
102, 24–32, https://doi.org/10.1016/j.rse.2006.01.019, 2006.
Kienholz, C., Hock, R., and Arendt, A. A.: A new semi-automatic approach for
dividing glacier complexes into individual glaciers, J. Glaciol., 59,
925–937, https://doi.org/10.3189/2013JoG12J138, 2013.
Kienholz, C., Herreid, S., Rich, J. L., Arendt, A. A., Hock, R., and Burgess,
E. W.: Derivation and analysis of a complete modern-date glacier inventory
for Alaska and northwest Canada, J. Glaciol., 61, 403–420,
https://doi.org/10.3189/2015JoG14J230, 2015.
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers
by primary dispersal from transverse englacial debris bands, Earth Surf.
Proc. Land., 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013.
Kotlyakov, V. M., Osipova, G. B., and Tsvetkov, D. G.: Monitoring surging
glaciers of the Pamirs, central Asia, from space, Ann. Glaciol., 48,
125–134, https://doi.org/10.3189/172756408784700608, 2008.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W.
W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's
glaciers, Nature, 549, 257–260, https://doi.org/10.1038/nature23878, 2017.
Le Bris, R., Paul, F., Frey, H., and Bolch, T.: A new satellite-derived
glacier inventory for western Alaska, Ann. Glaciol., 52, 135–143,
https://doi.org/10.3189/172756411799096303, 2011.
Lee, C., Oh, J., Hong, C., and Youn, J.: Automated Generation of a Digital
Elevation Model Over Steep Terrain in Antarctica From High-Resolution
Satellite Imagery, IEEE T. Geosci. Remote, 53, 1186–1194,
https://doi.org/10.1109/TGRS.2014.2335773, 2015.
Lin, H., Li, G., Cuo, L., Hooper, A., and Ye, Q.: A decreasing glacier mass
balance gradient from the edge of the Upper Tarim Basin to the Karakoram
during 2000–2014, Scientific Reports, 7, 6712,
https://doi.org/10.1038/s41598-017-07133-8, 2017.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, 587–592, https://doi.org/10.1038/nclimate2237,
2014.
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation Seasonality and Variability over the Tibetan
Plateau as Resolved by the High Asia Reanalysis*, J. Climate, 27,
1910–1927, https://doi.org/10.1175/JCLI-D-13-00282.1, 2014.
Minora, U., Bocchiola, D., D'Agata, C., Maragno, D., Mayer, C., Lambrecht,
A., Vuillermoz, E., Senese, A., Compostella, C., Smiraglia, C., and
Diolaiuti, G. A.: Glacier area stability in the Central Karakoram National
Park (Pakistan) in 2001–2010, Prog. Phys. Geog., 40, 629–660,
https://doi.org/10.1177/0309133316643926, 2016.
Mölg, N., Bolch, T., Rastner, P., Strozzi, T., and Paul, F.: Glacier
inventory of Pamir and Karakoram, https://doi.org/10.1594/PANGAEA.894707,
in review, 2018.
Monnier, S. and Kinnard, C.: Reconsidering the glacier to rock glacier
transformation problem: New insights from the central Andes of Chile,
Geomorphology, 238, 47–55, https://doi.org/10.1016/j.geomorph.2015.02.025, 2015.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Nuimura, T., Sakai, A., Taniguchi, K., Nagai, H., Lamsal, D., Tsutaki, S.,
Kozawa, A., Hoshina, Y., Takenaka, S., Omiya, S., Tsunematsu, K., Tshering,
P., and Fujita, K.: The GAMDAM glacier inventory: a quality-controlled
inventory of Asian glaciers, The Cryosphere, 9, 849–864,
https://doi.org/10.5194/tc-9-849-2015, 2015.
Paul, F.: Revealing glacier flow and surge dynamics from animated satellite
image sequences: examples from the Karakoram, The Cryosphere, 9, 2201–2214,
https://doi.org/10.5194/tc-9-2201-2015, 2015.
Paul, F. and Kääb, A.: Perspectives on the production of a glacier
inventory from multispectral satellite data in Arctic Canada: Cumberland
Peninsula, Baffin Island, Ann. Glaciol., 42, 59–66,
https://doi.org/10.3189/172756405781813087, 2005.
Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.:
The new remote-sensing-derived Swiss glacier inventory: I. Methods,
Ann. Glaciol., 34, 355–361, https://doi.org/10.3189/172756402781817941, 2002.
Paul, F., Kääb, A., and Haeberli, W.: Mapping of rock glaciers with optical
satellite imagery, in: Permafrost: Extended Abstracts Reporting Current
Research and new Information, edited by: Haeberli, W. and Brandová, D.,
International Conference on Permafrost, Zurich, Switzerland, 20.-25. July,
Glaciology and Geomorphodynamics Group, Department of Geography, University
of Zurich, 125–126, 2003.
Paul, F., Huggel, C., and Kääb, A.: Combining satellite multispectral
image data and a digital elevation model for mapping debris-covered glaciers,
Remote Sens. Environ., 89, 510–518, https://doi.org/10.1016/j.rse.2003.11.007, 2004.
Paul, F., Frey, H., and Le Bris, R.: A new glacier inventory for the European
Alps from Landsat TM scenes of 2003: Challenges and results, Ann. Glaciol.,
52, 144–152, https://doi.org/10.3189/172756411799096295, 2011.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K.,
Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko,
G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K.,
Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines derived
from remote-sensing data, Ann. Glaciol., 54, 171–182,
https://doi.org/:10.3189/2013AoG63A296, 2013.
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M., McNabb, R.,
Nagler, T., Nuth, C., Rastner, P., Strozzi, T., and Wuite, J.: Error sources
and guidelines for quality assessment of glacier area, elevation change, and
velocity products derived from satellite data in the Glaciers_cci project,
Remote Sens. Environ., 203, 256–275, https://doi.org/10.1016/j.rse.2017.08.038, 2017.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B.
H., Rich, J., and Sharp, M. J.: The Randolph Glacier Inventory: A globally
complete inventory of glaciers, J. Glaciol., 60, 537–552,
https://doi.org/10.3189/2014JoG13J176, 2014.
Quincey, D. J., Glasser, N. F., Cook, S. J., and Luckman, A.: Heterogeneity
in Karakoram glacier surges, J. Geophys. Res.-Earth, 120, 1288–1300,
https://doi.org/10.1002/2015JF003515, 2015.
Racoviteanu, A. and Williams, M. W.: Decision Tree and Texture Analysis for
Mapping Debris-Covered Glaciers in the Kangchenjunga Area, Eastern Himalaya,
Remote Sensing, 4, 3078–3109, https://doi.org/10.3390/rs4103078, 2012.
Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L.,
Heynen, M., Shea, J. M., Stumm, D., Joshi, S., and Shrestha, A.: Unraveling
the hydrology of a Himalayan catchment through integration of high resolution
in situ data and remote sensing with an advanced simulation model, Adv.
Water Resour., 78, 94–111, https://doi.org/10.1016/j.advwatres.2015.01.013, 2015.
Ragettli, S., Bolch, T., and Pellicciotti, F.: Heterogeneous glacier thinning
patterns over the last 40 years in Langtang Himal, Nepal, The Cryosphere, 10,
2075–2097, https://doi.org/10.5194/tc-10-2075-2016, 2016.
Rankl, M. and Braun, M.: Glacier elevation and mass changes over the central
Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation
models, Ann. Glaciol., 57, 273–281, https://doi.org/10.3189/2016AoG71A024, 2016.
Rankl, M., Kienholz, C., and Braun, M.: Glacier changes in the Karakoram
region mapped by multimission satellite imagery, The Cryosphere, 8, 977–989,
https://doi.org/10.5194/tc-8-977-2014, 2014.
Raper, S. C. B. and Braithwaite, R. J.: Glacier volume response time and its
links to climate and topography based on a conceptual model of glacier
hypsometry, The Cryosphere, 3, 183–194, https://doi.org/10.5194/tc-3-183-2009, 2009.
Rastner, P., Bolch, T., Notarnicola, C., and Paul, F.: A Comparison of Pixel-
and Object-Based Glacier Classification With Optical Satellite Images, IEEE
J. Sel. Top. Appl., 7, 853–862, https://doi.org/10.1109/JSTARS.2013.2274668, 2014.
Raup, B. and Khalsa, S. J. S.: GLIMS Analysis Tutorial, Global Land Ice
Measurement from Space, available at: https://www.glims.org/MapsAndDocs/guides.html
(last access: 5 October 2018), 2007.
RGI Consortium: Randolph
Glacier Inventory – A Dataset of Global Glacier Outlines, Version 6.0,
Technical Report, Global Land Ice Measurements from Space, Colorado, USA,
Digital Media, https://doi.org/10.7265/N5-RGI-60 (last access: 31 March 2018), 2017.
Robson, B., Hölbling, D., Nuth, C., Stozzi, T., and Dahl, S.: Decadal
Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria)
Determined by Object-Based Image Analysis, Remote Sensing, 8, 67,
https://doi.org/10.3390/rs8010067, 2016.
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling
the feedbacks between mass balance, ice flow and debris transport to predict
the response to climate change of debris-covered glaciers in the Himalaya,
Earth Planet. Sc. Lett., 430, 427–438, https://doi.org/10.1016/j.epsl.2015.09.004,
2015.
Sakai, A., Nuimura, T., Fujita, K., Takenaka, S., Nagai, H., and Lamsal, D.:
Climate regime of Asian glaciers revealed by GAMDAM glacier inventory, The
Cryosphere, 9, 865–880, https://doi.org/10.5194/tc-9-865-2015, 2015.
Sarıkaya, M. A., Bishop, M. P., Shroder, J. F., and Ali, G.: Remote-sensing
assessment of glacier fluctuations in the Hindu Raj, Pakistan, Int. J. Remote
Sens., 34, 3968–3985, https://doi.org/10.1080/01431161.2013.770580, 2013.
Satgé, F., Bonnet, M. P., Timouk, F., Calmant, S., Pillco, R., Molina,
J., Lavado-Casimiro, W., Arsen, A., Crétaux, J. F., and Garnier, J.:
Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed
using ICESat/GLAS data, Int. J. Remote Sens., 36, 465–488,
https://doi.org/10.1080/01431161.2014.999166, 2015.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Hillslope-glacier coupling:
The interplay of topography and glacial dynamics in High Asia, J. Geophys.
Res., 116, F02019, https://doi.org/10.1029/2010JF001751, 2011a.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response
of Himalayan glaciers to climate change affected by debris cover, Nat.
Geosci., 4, 156–159, https://doi.org/10.1038/NGEO1068, 2011b.
Seong, Y. B., Owen, L. A., Yi, C., and Finkel, R. C.: Quaternary glaciation
of Muztag Ata and Kongur Shan: Evidence for glacier response to rapid climate
changes throughout the Late Glacial and Holocene in westernmost Tibet, Geol.
Soc. Am. Bull., 121, 348–365, https://doi.org/10.1130/B26339.1, 2009.
Shangguan, D., Liu, S., Ding, Y., Ding, L., Xiong, L., Cai, D., Li, G., Lu,
A., Zhang, S., and Zhang, Y.: Monitoring the glacier changes in the Muztag
Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory
and recent satellite imagery, Ann. Glaciol., 43, 79–85,
https://doi.org/10.3189/172756406781812393, 2006.
Shangguan, D., Liu, S., Ding, Y., Guo, W., XU, B., Xu, J., and Jiang, Z.:
Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir
Plateau using remote sensing, J. Glaciol., 62, 944–953,
https://doi.org/10.1017/jog.2016.81, 2016.
Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C., and Bajracharya, S.:
Modelling glacier change in the Everest region, Nepal Himalaya, The
Cryosphere, 9, 1105–1128, https://doi.org/10.5194/tc-9-1105-2015, 2015.
Shean, D. E., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R.,
Porter, C., and Morin, P.: An automated, open-source pipeline for mass
production of digital elevation models (DEMs) from very-high-resolution
commercial stereo satellite imagery, ISPRS J. Photogramm., 116, 101–117,
https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Singh, P., Ramasastri, K. S., and Kumar, N.: Topographical Influence on
Precipitation Distribution in Different Ranges of Western Himalayas, Nord.
Hydrol., 26, 259–284, 1995.
Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., and Shahgedanova,
M.: Recent glacier retreat in the Caucasus Mountains, Russia, and associated
increase in supraglacial debris cover and supra-/proglacial lake development,
Ann. Glaciol., 46, 195–203, https://doi.org/10.3189/172756407782871468, 2007.
Tran, T. A., Raghavan, V., Masumoto, S., Vinayaraj, P., and Yonezawa, G.: A
geomorphology-based approach for digital elevation model fusion – case study
in Danang city, Vietnam, Earth Surf. Dynam., 2, 403–417,
https://doi.org/10.5194/esurf-2-403-2014, 2014.
United States Geological Survey: ASTER GDEM Version 2, available at:
https://gdex.cr.usgs.gov/gdex/, last access: 1 January 2018a.
United States Geological Survey: SRTMGL30, available at:
https://gdex.cr.usgs.gov/gdex/, last access: 1 January 2018b.
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok,
R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O.,
Steffen, K., and Zhang, T.: Observations: Cryosphere, in: Climate Change
2013: Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Wake, C. P.: Glaciochemical investigations as a tool for determining the
spatial and seasonal variation of snow accumulation in the central Karakoram,
northern Pakistan, Ann. Glaciol., 13, 279–284, 1989.
Wendt, A., Mayer, C., Lambrecht, A., and Floricioiu, D.: A Glacier Surge of
Bivachny Glacier, Pamir Mountains, Observed by a Time Series of
High-Resolution Digital Elevation Models and Glacier Velocities, Remote
Sensing, 9, 388, https://doi.org/10.3390/rs9040388, 2017.
Winiger, M., Gumpert, M., and Yamout, H.: Karakorum-Hindukush-western
Himalaya: Assessing high-altitude water resources, Hydrol. Process., 19,
2329–2338, https://doi.org/10.1002/hyp.5887, 2005.
Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P. W., and Zech, W.:
Late Quaternary glacial and climate history of the Pamir Mountains derived
from cosmogenic 10Be exposure ages, Quaternary Res., 64, 212–220,
https://doi.org/10.1016/j.yqres.2005.06.002, 2005.
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.
Knowledge about the size and location of glaciers is essential to understand impacts of climatic...