Articles | Volume 10, issue 3
https://doi.org/10.5194/essd-10-1613-2018
https://doi.org/10.5194/essd-10-1613-2018
10 Sep 2018
 | 10 Sep 2018

A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012

Linden Ashcroft, Joan Ramon Coll, Alba Gilabert, Peter Domonkos, Manola Brunet, Enric Aguilar, Mercè Castella, Javier Sigro, Ian Harris, Per Unden, and Phil Jones

Related authors

Comparison of HOMER and ACMANT homogenization methods using a central Pyrenees temperature dataset
N. Pérez-Zanón, J. Sigró, P. Domonkos, and L. Ashcroft
Adv. Sci. Res., 12, 111–119, https://doi.org/10.5194/asr-12-111-2015,https://doi.org/10.5194/asr-12-111-2015, 2015
Short summary

Related subject area

Meteorology
Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River watershed during SPLASH, 2021–2023
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025,https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
MDG625: a daily high-resolution meteorological dataset derived by a geopotential-guided attention network in Asia (1940–2023)
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025,https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean
Susana Barbosa, Nuno Dias, Carlos Almeida, Guilherme Amaral, António Ferreira, António Camilo, and Eduardo Silva
Earth Syst. Sci. Data, 17, 1393–1405, https://doi.org/10.5194/essd-17-1393-2025,https://doi.org/10.5194/essd-17-1393-2025, 2025
Short summary
Global projections of heat stress at high temporal resolution using machine learning
Pantelis Georgiades, Theo Economou, Yiannis Proestos, Jose Araya, Jos Lelieveld, and Marco Neira
Earth Syst. Sci. Data, 17, 1153–1171, https://doi.org/10.5194/essd-17-1153-2025,https://doi.org/10.5194/essd-17-1153-2025, 2025
Short summary
A new high-resolution multi-drought-index dataset for mainland China
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025,https://doi.org/10.5194/essd-17-837-2025, 2025
Short summary

Cited articles

Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.: Guidelines on Climate Metadata and Homogenization, World Meteorological Organization, WMO/TD No. 1186, 55 pp., 2003.
Allan, R., Brohan, P., Compo, G. P., Stone, R., Luterbacher, J., Brönnimann, S., Allan, R., Brohan, P., Compo, G. P., Stone, R., Luterbacher, J., and Brönnimann, S.: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative, B. Am. Meteorol. Soc., 92, 1421–1425, https://doi.org/10.1175/2011BAMS3218.1, 2011.
Angot, A.: Instructions météorologiques, Meteofrance, Paris, France, available at: http://bibliotheque.meteo.fr/exl-php/vue-consult/mf_ -_ recherche_avancee/ISO00008704 (last access: 4 June 2018), 1931.
Ashcroft, L., Gergis, J., and Karoly, D. J.: A historical climate dataset for southeastern Australia, 1788–1859, Geosci. Data J., 1, 158–178, https://doi.org/10.1002/gdj3.19, 2014.
Ashcroft, L., Coll, J.R., Gilabert, A., Domonkos, P., Aguilar, E., Sigro, J., Castella, M., Unden, P., Harris, I., Jones, P., and Brunet, M.: Meteorological observations for Europe and the southern Mediterranean region, 1877–2012, PANGAEA, https://doi.org/10.1594/PANGAEA.886511, 2018.
Download
Short summary
We present a dataset of 8.8 million sub-daily weather observations for Europe and the southern Mediterranean, compiled and digitised from historical and modern sources. We describe the methods used to digitise and quality control the data, and show that 3.5 % of the observations required correction or removal, similar to other data rescue projects. These newly recovered records will help to improve weather simulations over Europe.
Share
Altmetrics
Final-revised paper
Preprint