Articles | Volume 9, issue 2
https://doi.org/10.5194/essd-9-529-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/essd-9-529-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Jülich, Germany
Michael Herbst
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Jülich, Germany
Lutz Weihermüller
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Jülich, Germany
Anne Verhoef
University of Reading, Department of Geography and Environmental Science, Reading, UK
Harry Vereecken
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Jülich, Germany
International Soil Modeling Consortium, Jülich, Germany
Related authors
Anke Fluhrer, Martin Baur, María Piles, Bagher Bayat, Mehdi Rahmati, David Chaparro, Clémence Dubois, Florian Hellwig, Carsten Montzka, Angelika Kübert, Marlin Mueller, Isabel Augscheller, Francois Jonard, Konstantin Schellenberg, and Thomas Jagdhuber
EGUsphere, https://doi.org/10.5194/egusphere-2024-3386, https://doi.org/10.5194/egusphere-2024-3386, 2024
Short summary
Short summary
This study compares established evapotranspiration products in Central Europe and evaluates their multi-seasonal performance during wet & drought phases between 2017–2020 together with important soil-plant-atmosphere drivers. Results show that SEVIRI, ERA5-land & GLEAM perform best compared to ICOS measurements. During moisture limited drought years, ET is decreasing due to decreasing soil moisture and increasing vapor pressure deficit, while in other years ET is mainly controlled by VPD.
Bamidele Joseph Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3132, https://doi.org/10.5194/egusphere-2023-3132, 2024
Short summary
Short summary
This study uses simulations to understand how the soil information across Africa affects the water balance, using 4 soil databases and 3 different rainfall datasets. Results show that the soil information impacts water balance estimates, especially with a higher rate of rainfall.
Jordan Bates, Francois Jonard, Rajina Bajracharya, Harry Vereecken, and Carsten Montzka
AGILE GIScience Ser., 3, 23, https://doi.org/10.5194/agile-giss-3-23-2022, https://doi.org/10.5194/agile-giss-3-23-2022, 2022
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Jie Tian, Zhibo Han, Heye Reemt Bogena, Johan Alexander Huisman, Carsten Montzka, Baoqing Zhang, and Chansheng He
Hydrol. Earth Syst. Sci., 24, 4659–4674, https://doi.org/10.5194/hess-24-4659-2020, https://doi.org/10.5194/hess-24-4659-2020, 2020
Short summary
Short summary
Large-scale profile soil moisture (SM) is important for water resource management, but its estimation is a challenge. Thus, based on in situ SM observations in a cold mountain, a strong relationship between the surface SM and subsurface SM is found. Both the subsurface SM of 10–30 cm and the profile SM of 0–70 cm can be estimated from the surface SM of 0–10 cm accurately. By combing with the satellite product, we improve the large-scale profile SM estimation in the cold mountains finally.
Bibi S. Naz, Wolfgang Kurtz, Carsten Montzka, Wendy Sharples, Klaus Goergen, Jessica Keune, Huilin Gao, Anne Springer, Harrie-Jan Hendricks Franssen, and Stefan Kollet
Hydrol. Earth Syst. Sci., 23, 277–301, https://doi.org/10.5194/hess-23-277-2019, https://doi.org/10.5194/hess-23-277-2019, 2019
Short summary
Short summary
This study investigates the value of assimilating coarse-resolution remotely sensed soil moisture data into high-resolution land surface models for improving soil moisture and runoff modeling. The soil moisture estimates in this study, with complete spatio-temporal coverage and improved spatial resolution from the assimilation, offer a new reanalysis product for the monitoring of surface soil water content and other hydrological fluxes at 3 km resolution over Europe.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Hanna Post, Harrie-Jan Hendricks Franssen, Xujun Han, Roland Baatz, Carsten Montzka, Marius Schmidt, and Harry Vereecken
Biogeosciences, 15, 187–208, https://doi.org/10.5194/bg-15-187-2018, https://doi.org/10.5194/bg-15-187-2018, 2018
Short summary
Short summary
Estimated values of selected key CLM4.5-BGC parameters obtained with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) strongly altered catchment-scale NEE predictions in comparison to global default parameter values. The effect of perturbed meteorological input data on the uncertainty of the predicted carbon fluxes was notably higher for C3-grass and C3-crop than for coniferous and deciduous forest. A future distinction of different crop types including management is considered essential.
Dominik Rains, Xujun Han, Hans Lievens, Carsten Montzka, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5929–5951, https://doi.org/10.5194/hess-21-5929-2017, https://doi.org/10.5194/hess-21-5929-2017, 2017
Short summary
Short summary
We have assimilated 6 years of satellite-observed passive microwave data into a state-of-the-art land surface model to improve surface soil moisture as well as root-zone soil moisture simulations. Long-term assimilation effects/biases are identified, and they are especially dependent on model perturbations, applied to simulate model uncertainty. The implications are put into context of using such assimilation-improved data for classifying extremes within hydrological monitoring systems.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
Anke Fluhrer, Martin Baur, María Piles, Bagher Bayat, Mehdi Rahmati, David Chaparro, Clémence Dubois, Florian Hellwig, Carsten Montzka, Angelika Kübert, Marlin Mueller, Isabel Augscheller, Francois Jonard, Konstantin Schellenberg, and Thomas Jagdhuber
EGUsphere, https://doi.org/10.5194/egusphere-2024-3386, https://doi.org/10.5194/egusphere-2024-3386, 2024
Short summary
Short summary
This study compares established evapotranspiration products in Central Europe and evaluates their multi-seasonal performance during wet & drought phases between 2017–2020 together with important soil-plant-atmosphere drivers. Results show that SEVIRI, ERA5-land & GLEAM perform best compared to ICOS measurements. During moisture limited drought years, ET is decreasing due to decreasing soil moisture and increasing vapor pressure deficit, while in other years ET is mainly controlled by VPD.
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, and Lutz Weihermüller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2889, https://doi.org/10.5194/egusphere-2024-2889, 2024
Short summary
Short summary
To use fertilizers more effectively, non-invasive geophysical methods can be used to understand nutrient distribution in the soil. We utilize in a long-term field study geophysical techniques to study soil properties and conditions under different fertilizer treatments. We compared the geophysical responds with soil samples and soil sensor data. Especially, electromagnetic induction and electrical resistivity tomography were effective in monitoring changes in nitrate levels over time.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
EGUsphere, https://doi.org/10.5194/egusphere-2024-1598, https://doi.org/10.5194/egusphere-2024-1598, 2024
Short summary
Short summary
Climate change in combination with a steadily growing world population and a simultaneous decrease in agricultural land is one of the greatest global challenges facing mankind. In this context, Forschungszentrum Jülich established an "agricultural simulator" (AgraSim), which enables research into the effects of climate change on agricultural ecosystems and the optimization of agricultural cultivation and management strategies with the aid of combined experimental and numerical simulation.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie Fisher, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-978, https://doi.org/10.5194/egusphere-2024-978, 2024
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land Surface Models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes and variability of carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research on these processes.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Bamidele Joseph Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3132, https://doi.org/10.5194/egusphere-2023-3132, 2024
Short summary
Short summary
This study uses simulations to understand how the soil information across Africa affects the water balance, using 4 soil databases and 3 different rainfall datasets. Results show that the soil information impacts water balance estimates, especially with a higher rate of rainfall.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Jordan Bates, Francois Jonard, Rajina Bajracharya, Harry Vereecken, and Carsten Montzka
AGILE GIScience Ser., 3, 23, https://doi.org/10.5194/agile-giss-3-23-2022, https://doi.org/10.5194/agile-giss-3-23-2022, 2022
Wei Qu, Heye Bogena, Christoph Schüth, Harry Vereecken, Zongmei Li, and Stephan Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-131, https://doi.org/10.5194/gmd-2022-131, 2022
Publication in GMD not foreseen
Short summary
Short summary
We applied the global sensitivity analysis LH-OAT to the integrated hydrology model ParFlow-CLM to investigate the sensitivity of the 12 parameters for different scenarios. And we found that the general patterns of the parameter sensitivities were consistent, however, for some parameters a significantly larger span of the sensitivities was observed, especially for the higher slope and in subarctic climatic scenarios.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022, https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Short summary
We present the technical coupling between a land surface model (CLM5) and the Parallel Data Assimilation Framework (PDAF). This coupling enables measurement data to update simulated model states and parameters in a statistically optimal way. We demonstrate the viability of the model framework using an application in a forested catchment where the inclusion of soil water measurements significantly improved the simulation quality.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Yafei Huang, Jonas Weis, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-569, https://doi.org/10.5194/hess-2021-569, 2021
Manuscript not accepted for further review
Short summary
Short summary
Trends in agricultural droughts cannot be easily deduced from measurements. Here trends in agricultural droughts over 31 German and Dutch sites were calculated with model simulations and long-term observed meteorological data as input. We found that agricultural droughts are increasing although precipitation hardly decreases. The increase is driven by increase in evapotranspiration. The year 2018 was for half of the sites the year with the most extreme agricultural drought in the last 55 years.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Jan Vanderborght, Valentin Couvreur, Felicien Meunier, Andrea Schnepf, Harry Vereecken, Martin Bouda, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 25, 4835–4860, https://doi.org/10.5194/hess-25-4835-2021, https://doi.org/10.5194/hess-25-4835-2021, 2021
Short summary
Short summary
Root water uptake is an important process in the terrestrial water cycle. How this process depends on soil water content, root distributions, and root properties is a soil–root hydraulic problem. We compare different approaches to implementing root hydraulics in macroscopic soil water flow and land surface models.
Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet
Hydrol. Earth Syst. Sci., 25, 3555–3575, https://doi.org/10.5194/hess-25-3555-2021, https://doi.org/10.5194/hess-25-3555-2021, 2021
Short summary
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Cosimo Brogi, Johan A. Huisman, Lutz Weihermüller, Michael Herbst, and Harry Vereecken
SOIL, 7, 125–143, https://doi.org/10.5194/soil-7-125-2021, https://doi.org/10.5194/soil-7-125-2021, 2021
Short summary
Short summary
There is a need in agriculture for detailed soil maps that carry quantitative information. Geophysics-based soil maps have the potential to deliver such products, but their added value has not been fully investigated yet. In this study, we compare the use of a geophysics-based soil map with the use of two commonly available maps as input for crop growth simulations. The geophysics-based product results in better simulations, with improvements that depend on precipitation, soil, and crop type.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Jie Tian, Zhibo Han, Heye Reemt Bogena, Johan Alexander Huisman, Carsten Montzka, Baoqing Zhang, and Chansheng He
Hydrol. Earth Syst. Sci., 24, 4659–4674, https://doi.org/10.5194/hess-24-4659-2020, https://doi.org/10.5194/hess-24-4659-2020, 2020
Short summary
Short summary
Large-scale profile soil moisture (SM) is important for water resource management, but its estimation is a challenge. Thus, based on in situ SM observations in a cold mountain, a strong relationship between the surface SM and subsurface SM is found. Both the subsurface SM of 10–30 cm and the profile SM of 0–70 cm can be estimated from the surface SM of 0–10 cm accurately. By combing with the satellite product, we improve the large-scale profile SM estimation in the cold mountains finally.
Jannis Groh, Jan Vanderborght, Thomas Pütz, Hans-Jörg Vogel, Ralf Gründling, Holger Rupp, Mehdi Rahmati, Michael Sommer, Harry Vereecken, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, https://doi.org/10.5194/hess-24-1211-2020, 2020
Michael Paul Stockinger, Heye Reemt Bogena, Andreas Lücke, Christine Stumpp, and Harry Vereecken
Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019, https://doi.org/10.5194/hess-23-4333-2019, 2019
Short summary
Short summary
Precipitation moves through the soil to become stream water. The fraction of precipitation that becomes stream water after 3 months (Fyw) can be calculated with the stable isotopes of water. Previously, this was done for all the isotope data available, e.g., for several years. We used 1 year of data to calculate Fyw and moved this calculation time window over the time series. Results highlight that Fyw varies in time. Comparison studies of different regions should take this into account.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Bibi S. Naz, Wolfgang Kurtz, Carsten Montzka, Wendy Sharples, Klaus Goergen, Jessica Keune, Huilin Gao, Anne Springer, Harrie-Jan Hendricks Franssen, and Stefan Kollet
Hydrol. Earth Syst. Sci., 23, 277–301, https://doi.org/10.5194/hess-23-277-2019, https://doi.org/10.5194/hess-23-277-2019, 2019
Short summary
Short summary
This study investigates the value of assimilating coarse-resolution remotely sensed soil moisture data into high-resolution land surface models for improving soil moisture and runoff modeling. The soil moisture estimates in this study, with complete spatio-temporal coverage and improved spatial resolution from the assimilation, offer a new reanalysis product for the monitoring of surface soil water content and other hydrological fluxes at 3 km resolution over Europe.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
Gaochao Cai, Jan Vanderborght, Matthias Langensiepen, Andrea Schnepf, Hubert Hüging, and Harry Vereecken
Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, https://doi.org/10.5194/hess-22-2449-2018, 2018
Short summary
Short summary
Different crop growths had consequences for the parameterization of root water uptake models. The root hydraulic parameters of the Couvreur model but not the water stress parameters of the Feddes–Jarvis model could be constrained by the field data measured from rhizotron facilities. The simulated differences in transpiration from the two soils and the different water treatments could be confirmed by sap flow measurements. The Couvreur model predicted the ratios of transpiration fluxes better.
Hanna Post, Harrie-Jan Hendricks Franssen, Xujun Han, Roland Baatz, Carsten Montzka, Marius Schmidt, and Harry Vereecken
Biogeosciences, 15, 187–208, https://doi.org/10.5194/bg-15-187-2018, https://doi.org/10.5194/bg-15-187-2018, 2018
Short summary
Short summary
Estimated values of selected key CLM4.5-BGC parameters obtained with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) strongly altered catchment-scale NEE predictions in comparison to global default parameter values. The effect of perturbed meteorological input data on the uncertainty of the predicted carbon fluxes was notably higher for C3-grass and C3-crop than for coniferous and deciduous forest. A future distinction of different crop types including management is considered essential.
Dominik Rains, Xujun Han, Hans Lievens, Carsten Montzka, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5929–5951, https://doi.org/10.5194/hess-21-5929-2017, https://doi.org/10.5194/hess-21-5929-2017, 2017
Short summary
Short summary
We have assimilated 6 years of satellite-observed passive microwave data into a state-of-the-art land surface model to improve surface soil moisture as well as root-zone soil moisture simulations. Long-term assimilation effects/biases are identified, and they are especially dependent on model perturbations, applied to simulate model uncertainty. The implications are put into context of using such assimilation-improved data for classifying extremes within hydrological monitoring systems.
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017, https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
Short summary
In this study electromagnetic induction (EMI) measurements were used to estimate soil salinity in an agriculture field irrigated with a drip irrigation system. Electromagnetic model parameters and uncertainty were estimated using adaptive Bayesian Markov chain Monte Carlo (MCMC). Application of the MCMC-based inversion to the synthetic and field measurements demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil.
Hongjuan Zhang, Harrie-Jan Hendricks Franssen, Xujun Han, Jasper A. Vrugt, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 4927–4958, https://doi.org/10.5194/hess-21-4927-2017, https://doi.org/10.5194/hess-21-4927-2017, 2017
Short summary
Short summary
Applications of data assimilation (DA) arise in many fields of geosciences, perhaps most importantly in weather forecasting and hydrology. We want to investigate the roles of data assimilation methods and land surface models (LSMs) in joint estimation of states and parameters in the assimilation experiments. We find that all DA methods can improve prediction of states, and that differences between DA methods were limited but that the differences between LSMs were much larger.
Roland Baatz, Harrie-Jan Hendricks Franssen, Xujun Han, Tim Hoar, Heye Reemt Bogena, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017, https://doi.org/10.5194/hess-21-2509-2017, 2017
Short summary
Short summary
Soil moisture is a major variable that affects regional climate, weather and hydrologic processes on the Earth's surface. In this study, real-world data of a network of cosmic-ray sensors were assimilated into a regional land surface model to improve model states and soil hydraulic parameters. The results show the potential of these networks for improving model states and parameters. It is suggested to widen the number of observed variables and to increase the number of estimated parameters.
Xiaoqian Jiang, Roland Bol, Barbara J. Cade-Menun, Volker Nischwitz, Sabine Willbold, Sara L. Bauke, Harry Vereecken, Wulf Amelung, and Erwin Klumpp
Biogeosciences, 14, 1153–1164, https://doi.org/10.5194/bg-14-1153-2017, https://doi.org/10.5194/bg-14-1153-2017, 2017
Short summary
Short summary
It is the first study to distinguish the species of nano-sized (d=1−20 nm), small-sized (d=20−450 nm) colloidal P, and dissolved P (d<1 nm) of hydromorphic surface grassland soils from Cambisol, Stagnic Cambisol to Stagnosol using FFF and 31P-NMR. Evidence of nano-sized associations of OC–Fe(Al)–PO43/pyrophosphate in Stagnosol. Stagnic properties affect P speciation and availability by releasing dissolved inorganic and ester-bound P forms as well as nano-sized organic matter–Fe/Al–P colloids.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Wei Qu, Heye R. Bogena, Johan A. Huisman, Marius Schmidt, Ralf Kunkel, Ansgar Weuthen, Henning Schiedung, Bernd Schilling, Jürgen Sorg, and Harry Vereecken
Earth Syst. Sci. Data, 8, 517–529, https://doi.org/10.5194/essd-8-517-2016, https://doi.org/10.5194/essd-8-517-2016, 2016
Short summary
Short summary
The Rollesbroich catchment is a hydrological observatory of the TERENO (Terrestrial Environmental Observatories) initiative. Hydrometeorological data and spatiotemporal variations in soil water content are measured at high temporal resolution and can be used for many purposes, e.g. validation of remote sensing retrievals, improving hydrological understanding, optimizing data assimilation and inverse modelling techniques. The data set is freely available online (http://www.tereno.net).
Simone Bircher, Mie Andreasen, Johanna Vuollet, Juho Vehviläinen, Kimmo Rautiainen, François Jonard, Lutz Weihermüller, Elena Zakharova, Jean-Pierre Wigneron, and Yann H. Kerr
Geosci. Instrum. Method. Data Syst., 5, 109–125, https://doi.org/10.5194/gi-5-109-2016, https://doi.org/10.5194/gi-5-109-2016, 2016
Short summary
Short summary
At the Finnish Meteorological Institute in Sodankylä and the Danish Center for Hydrology, calibration functions for organic surface layers were derived for two in situ soil moisture sensors to be used in the validation of coarse-resolution soil moisture from satellites and land surface models. There was no clear difference in the data from a variety of humus types, strengthening confidence that these calibrations are applicable over a wide range of conditions as encountered in the large areas.
Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, https://doi.org/10.5194/gmd-9-1341-2016, 2016
Short summary
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library.
Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP.
Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
X. Jiang, R. Bol, S. Willbold, H. Vereecken, and E. Klumpp
Biogeosciences, 12, 6443–6452, https://doi.org/10.5194/bg-12-6443-2015, https://doi.org/10.5194/bg-12-6443-2015, 2015
Short summary
Short summary
Overall P content increased with decreasing size of soil aggregate-sized fractions. The relative distribution and speciation of varying P forms were independent of particle size. The majority of alkaline extractable P was in the amorphous Fe/Al oxide fraction, most of which was orthophosphate. Significant amounts of monoester P were also bound to these oxides. Residual P contained similar amounts of P occluded in amorphous and crystalline Fe oxides. This P may be released by FeO dissolution.
Y. Rothfuss, S. Merz, J. Vanderborght, N. Hermes, A. Weuthen, A. Pohlmeier, H. Vereecken, and N. Brüggemann
Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, https://doi.org/10.5194/hess-19-4067-2015, 2015
Short summary
Short summary
Profiles of soil water stable isotopes were followed non-destructively and with high precision for a period of 290 days in the laboratory
Rewatering at the end of the experiment led to instantaneous resetting of the isotope profiles, which could be closely followed with the new method
The evaporation depth dynamics was determined from isotope gradients calculation
Uncertainty associated with the determination of isotope kinetic fractionation where highlighted from inverse modeling.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
S. Gebler, H.-J. Hendricks Franssen, T. Pütz, H. Post, M. Schmidt, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 2145–2161, https://doi.org/10.5194/hess-19-2145-2015, https://doi.org/10.5194/hess-19-2145-2015, 2015
H. Post, H. J. Hendricks Franssen, A. Graf, M. Schmidt, and H. Vereecken
Biogeosciences, 12, 1205–1221, https://doi.org/10.5194/bg-12-1205-2015, https://doi.org/10.5194/bg-12-1205-2015, 2015
Short summary
Short summary
This study introduces an extension of the classical two-tower approach for uncertainty estimation of measured net CO2 fluxes (NEE). Because land surface properties cannot be assumed identical at two eddy covariance towers, a correction for systematic flux differences is proposed to be added to the classical weather filter. With this extension, the overestimation of NEE uncertainty due to systematic flux differences (which are assumed to increase with tower distance) can considerably be reduced.
B. Scharnagl, S. C. Iden, W. Durner, H. Vereecken, and M. Herbst
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-2155-2015, https://doi.org/10.5194/hessd-12-2155-2015, 2015
Preprint withdrawn
X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 615–629, https://doi.org/10.5194/hess-19-615-2015, https://doi.org/10.5194/hess-19-615-2015, 2015
Short summary
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
W. Kurtz, H.-J. Hendricks Franssen, P. Brunner, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3795–3813, https://doi.org/10.5194/hess-17-3795-2013, https://doi.org/10.5194/hess-17-3795-2013, 2013
V. R. N. Pauwels, G. J. M. De Lannoy, H.-J. Hendricks Franssen, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3499–3521, https://doi.org/10.5194/hess-17-3499-2013, https://doi.org/10.5194/hess-17-3499-2013, 2013
Related subject area
Pedology
An integrated dataset of ground hydrothermal regimes and soil nutrients monitored in some previously burned areas in hemiboreal forests in Northeast China during 2016–2022
Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions
Improving the Latin America and Caribbean Soil Information System (SISLAC) database enhances its usability and scalability
The patterns of soil nitrogen stocks and C : N stoichiometry under impervious surfaces in China
Mapping of peatlands in the forested landscape of Sweden using lidar-based terrain indices
Harmonized Soil Database of Ecuador (HESD): data from 2009 to 2015
ChinaCropSM1 km: a fine 1 km daily soil moisture dataset for dryland wheat and maize across China during 1993–2018
Colombian soil texture: building a spatial ensemble model
SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022
A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region based on circumpolar land cover upscaling
A repository of measured soil freezing characteristic curves: 1921 to 2021
A compiled soil respiration dataset at different time scales for forest ecosystems across China from 2000 to 2018
New gridded dataset of rainfall erosivity (1950–2020) on the Tibetan Plateau
An hourly ground temperature dataset for 16 high-elevation sites (3493–4377 m a.s.l.) in the Bale Mountains, Ethiopia (2017–2020)
Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records
The Boreal–Arctic Wetland and Lake Dataset (BAWLD)
A first investigation of hydrogeology and hydrogeophysics of the Maqu catchment in the Yellow River source region
Radionuclide contamination in flood sediment deposits in the coastal rivers draining the main radioactive pollution plume of Fukushima Prefecture, Japan (2011–2020)
Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019
EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia
An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018
A new dataset of soil carbon and nitrogen stocks and profiles from an instrumented Greenlandic fen designed to evaluate land-surface models
Spatial radionuclide deposition data from the 60 km radial area around the Chernobyl Nuclear Power Plant: results from a sampling survey in 1987
Generalized models to estimate carbon and nitrogen stocks of organic soil horizons in Interior Alaska
Soil moisture and matric potential – an open field comparison of sensor systems
CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0
Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone
WoSIS: providing standardised soil profile data for the world
Post-Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain
A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region
The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Niels H. Batjes, Luis Calisto, and Luis M. de Sousa
Earth Syst. Sci. Data, 16, 4735–4765, https://doi.org/10.5194/essd-16-4735-2024, https://doi.org/10.5194/essd-16-4735-2024, 2024
Short summary
Short summary
Soils are an important provider of ecosystem services. This dataset provides quality-assessed and standardised soil data to support digital soil mapping and environmental applications at a broad scale. The underpinning soil profiles were shared by a wide range of data providers. Special attention was paid to the standardisation of soil property definitions, analytical method descriptions and property values. We present three measures to assess "fitness for intended use" of the standardised data.
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024, https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
Short summary
Earth system models and decision support systems greatly benefit from high-resolution soil information with quantified accuracy. Here we introduce BIS-4D, a statistical modeling platform that predicts nine essential soil properties and their uncertainties at 25 m resolution in surface 2 m across the Netherlands. Using machine learning informed by up to 856 000 soil observations coupled with 366 spatially explicit environmental variables, prediction accuracy was the highest for clay, sand and pH.
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024, https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary
Short summary
A new dataset for topsoil bulk density (BD) and soil organic carbon (SOC) stock (0–20 cm) across Europe using machine learning was generated. The proposed approach performed better in BD prediction and slightly better in SOC stock prediction than earlier-published PTFs. The outcomes present a meaningful advancement in enhancing the accuracy of BD, and the resultant topsoil BD and SOC stock datasets across Europe enable more precise soil hydrological and biological modeling.
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary
Short summary
In this work, the Latin America and Caribbean Soil Information System (SISLAC) database (https://54.229.242.119/sislac/es) was revised to generate an improved version of the data. Rules for data enhancement were defined. In addition, other datasets available in the region were included. Subsequently, through a principal component analysis (PCA), the main soil characteristics for the region were analyzed. We hope this dataset can help mitigate problems such as food security and global warming.
Qian Ding, Hua Shao, Chi Zhang, and Xia Fang
Earth Syst. Sci. Data, 15, 4599–4612, https://doi.org/10.5194/essd-15-4599-2023, https://doi.org/10.5194/essd-15-4599-2023, 2023
Short summary
Short summary
A soil survey in 41 Chinese cities showed the soil nitrogen (N) in impervious surface areas (ISA; NISA) was 0.59±0.35 kg m−2, lower than in pervious soils. Eastern China had the highest NISA but the lowest natural soil N in China. Soil N decreased linearly with depth in ISA but nonlinearly in natural ecosystems. Temperature was negatively correlated with C : NISA but positively correlated with natural soil C : N. The unique NISA patterns imply intensive disturbance in N cycle by soil sealing.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Fei Cheng, Zhao Zhang, Huimin Zhuang, Jichong Han, Yuchuan Luo, Juan Cao, Liangliang Zhang, Jing Zhang, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 15, 395–409, https://doi.org/10.5194/essd-15-395-2023, https://doi.org/10.5194/essd-15-395-2023, 2023
Short summary
Short summary
We generated a 1 km daily soil moisture dataset for dryland wheat and maize across China (ChinaCropSM1 km) over 1993–2018 through random forest regression, based on in situ observations. Our improved products have a remarkably better quality compared with the public global products in terms of both spatial and time dimensions by integrating an irrigation module (crop type, phenology, soil depth). The dataset may be useful for agriculture drought monitoring and crop yield forecasting studies.
Viviana Marcela Varón-Ramírez, Gustavo Alfonso Araujo-Carrillo, and Mario Antonio Guevara Santamaría
Earth Syst. Sci. Data, 14, 4719–4741, https://doi.org/10.5194/essd-14-4719-2022, https://doi.org/10.5194/essd-14-4719-2022, 2022
Short summary
Short summary
These are the first national soil texture maps obtained via digital soil mapping. We built clay, sand, and silt maps using spatial assembling with the best possible predictions at different depths. Also, we identified the better model for each pixel. This work was done to address the lack of soil texture maps in Colombia, and it can provide soil information for water-related applications, ecosystem services, and agricultural and crop modeling.
Qiang Zhang, Qiangqiang Yuan, Taoyong Jin, Meiping Song, and Fujun Sun
Earth Syst. Sci. Data, 14, 4473–4488, https://doi.org/10.5194/essd-14-4473-2022, https://doi.org/10.5194/essd-14-4473-2022, 2022
Short summary
Short summary
Compared to previous seamless global daily soil moisture (SGD-SM 1.0) products, SGD-SM 2.0 enlarges the temporal scope from 2002 to 2022. By fusing auxiliary precipitation information with the long short-term memory convolutional neural network (LSTM-CNN) model, SGD-SM 2.0 can consider sudden extreme weather conditions for 1 d in global daily soil moisture products and is significant for full-coverage global daily hydrologic monitoring, rather than averaging monthly–quarterly–yearly results.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Hongru Sun, Zhenzhu Xu, and Bingrui Jia
Earth Syst. Sci. Data, 14, 2951–2961, https://doi.org/10.5194/essd-14-2951-2022, https://doi.org/10.5194/essd-14-2951-2022, 2022
Short summary
Short summary
We compiled a new soil respiration (Rs) database of China's forests from 568 studies published up to 2018. The hourly, monthly, and annual samples were 8317, 5003, and 634, respectively. Most of the Rs data are shown in figures but were seldom exploited. For the first time, these data were digitized, accounting for 82 % of samples. Rs measured with common methods was selected (Li-6400, Li-8100, Li-8150, gas chromatography) and showed small differences of ~10 %. Bamboo had the highest Rs.
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022, https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary
Short summary
We reconstructed the first annual rainfall erosivity dataset for the Tibetan Plateau in China. The dataset covers 71 years in a 0.25° grid. The reanalysis precipitation data are employed in combination with the densely spaced in situ precipitation observations to generate the dataset. The dataset can supply fundamental data for quantifying the water erosion, and extend our knowledge of the rainfall-related hazard prediction on the Tibetan Plateau.
Alexander R. Groos, Janik Niederhauser, Bruk Lemma, Mekbib Fekadu, Wolfgang Zech, Falk Hänsel, Luise Wraase, Naki Akçar, and Heinz Veit
Earth Syst. Sci. Data, 14, 1043–1062, https://doi.org/10.5194/essd-14-1043-2022, https://doi.org/10.5194/essd-14-1043-2022, 2022
Short summary
Short summary
Continuous observations and measurements from high elevations are necessary to monitor recent climate and environmental changes in the tropical mountains of eastern Africa, but meteorological and ground temperature data from above 3000 m are very rare. Here we present a comprehensive ground temperature monitoring network that has been established between 3493 and 4377 m in the Bale Mountains (Ethiopian Highlands) to monitor and study the afro-alpine climate and ecosystem in this region.
Tianyu Yue, Shuiqing Yin, Yun Xie, Bofu Yu, and Baoyuan Liu
Earth Syst. Sci. Data, 14, 665–682, https://doi.org/10.5194/essd-14-665-2022, https://doi.org/10.5194/essd-14-665-2022, 2022
Short summary
Short summary
This paper provides new rainfall erosivity maps over mainland China based on hourly data from 2381 stations (available at https://doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001). The improvement from the previous work was also assessed. The improvement in the R-factor map occurred mainly in the western region, because of an increase in the number of stations and an increased temporal resolution from daily to hourly data.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Qiang Zhang, Qiangqiang Yuan, Jie Li, Yuan Wang, Fujun Sun, and Liangpei Zhang
Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021, https://doi.org/10.5194/essd-13-1385-2021, 2021
Short summary
Short summary
Acquired daily soil moisture products are always incomplete globally (just about 30 %–80 % coverage ratio) due to the satellite orbit coverage and the limitations of soil moisture retrieval algorithms. To solve this inevitable problem, we generate long-term seamless global daily (SGD) AMSR2 soil moisture productions from 2013 to 2019. These productions are significant for full-coverage global daily hydrologic monitoring, rather than averaging as the monthly–quarter–yearly results.
Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 83–97, https://doi.org/10.5194/essd-13-83-2021, https://doi.org/10.5194/essd-13-83-2021, 2021
Short summary
Short summary
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).
Yongzhe Chen, Xiaoming Feng, and Bojie Fu
Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, https://doi.org/10.5194/essd-13-1-2021, 2021
Short summary
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Xavier Morel, Birger Hansen, Christine Delire, Per Ambus, Mikhail Mastepanov, and Bertrand Decharme
Earth Syst. Sci. Data, 12, 2365–2380, https://doi.org/10.5194/essd-12-2365-2020, https://doi.org/10.5194/essd-12-2365-2020, 2020
Short summary
Short summary
Nuuk fen site is a well-instrumented Greenlandic site where soil physical variables and greenhouse gas fluxes are monitored. But knowledge of soil carbon stocks and profiles is missing. This is a crucial shortcoming for a complete evaluation of models. For the first time we measured soil carbon and nitrogen density, profiles, and stocks in the Nuuk peatland. This new dataset can contribute to further develop joint modeling of greenhouse gas emissions and soil carbon in land-surface models.
Valery Kashparov, Sviatoslav Levchuk, Marina Zhurba, Valentyn Protsak, Nicholas A. Beresford, and Jacqueline S. Chaplow
Earth Syst. Sci. Data, 12, 1861–1875, https://doi.org/10.5194/essd-12-1861-2020, https://doi.org/10.5194/essd-12-1861-2020, 2020
Short summary
Short summary
Sampling and analysis methodology and spatial radionuclide deposition data from the 60 km area around the Chernobyl Nuclear Power Plant, sampled in 1987 by the Ukrainian Institute of Agricultural Radiology, are useful for reconstructing doses to human and wildlife populations, answering the current lack of scientific consensus on the effects of radiation on wildlife in the Chernobyl Exclusion Zone and evaluating future management options for the Chernobyl-impacted areas of Ukraine and Belarus.
Kristen Manies, Mark Waldrop, and Jennifer Harden
Earth Syst. Sci. Data, 12, 1745–1757, https://doi.org/10.5194/essd-12-1745-2020, https://doi.org/10.5194/essd-12-1745-2020, 2020
Short summary
Short summary
Boreal ecosystems are unique in that their mineral soil is covered by what can be quite thick layers of organic soil. Layers within this organic soil have different bulk densities, carbon composition, and nitrogen composition. We summarize these properties by soil layer and examine if and how they are affected by soil drainage and stand age. These values can be used to initialize and validate models as well as gap fill when these important soil properties are not measured.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Hong Zhao, Yijian Zeng, Shaoning Lv, and Zhongbo Su
Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, https://doi.org/10.5194/essd-10-1031-2018, 2018
Short summary
Short summary
The Tibet-Obs soil properties dataset was compiled based on in situ and laboratory measurements of soil profiles across three climate zones on the Tibetan Plateau. The appropriate parameterization schemes of soil hydraulic and thermal properties were discussed for their applicability in land surface modeling. The uncertainties of existing soil datasets were evaluated. This paper contributes to land surface modeling and hydro-climatology communities for their studies of the third pole region.
Valery Kashparov, Sviatoslav Levchuk, Marina Zhurba, Valentyn Protsak, Yuri Khomutinin, Nicholas A. Beresford, and Jacqueline S. Chaplow
Earth Syst. Sci. Data, 10, 339–353, https://doi.org/10.5194/essd-10-339-2018, https://doi.org/10.5194/essd-10-339-2018, 2018
Short summary
Short summary
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone describe data from analysis of samples collected by the Ukrainian Institute of Agricultural Radiology after the Chernobyl nuclear accident between May 1986 and 2014 at sites inside the Chernobyl Exclusion Zone and other areas of interest. The data and supporting documentation are freely available from the Environmental Information Data Centre: https://doi.org/10.5285/782ec845-2135-4698-8881-b38823e533bf.
Niels H. Batjes, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars, Tom Hengl, and Jorge Mendes de Jesus
Earth Syst. Sci. Data, 9, 1–14, https://doi.org/10.5194/essd-9-1-2017, https://doi.org/10.5194/essd-9-1-2017, 2017
Short summary
Short summary
Soil is an important provider of ecosystem services. Yet this natural resource is being threatened. Professionals, scientists, and decision makers require quality-assessed soil data to address issues such as food security, land degradation, and climate change. Procedures for safeguarding, standardising, and subsequently serving of consistent soil data to underpin broad-scale mapping and modelling are described. The data are freely accessible at doi:10.17027/isric-wdcsoils.20160003.
J. S. Chaplow, N. A. Beresford, and C. L. Barnett
Earth Syst. Sci. Data, 7, 215–221, https://doi.org/10.5194/essd-7-215-2015, https://doi.org/10.5194/essd-7-215-2015, 2015
Short summary
Short summary
The data set ‘Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain’ was developed to enable data collected by the Natural Environment Research Council after the Chernobyl accident to be made publicly available. Data for samples collected between May 1986 (immediately after Chernobyl) to spring 1997 are freely available for non-commercial use under Open Government Licence terms and conditions. doi: 10.5285/d0a6a8bf-68f0-4935-8b43-4e597c3bf251.
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
G. Hugelius, C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson
Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, https://doi.org/10.5194/essd-5-3-2013, 2013
Cited articles
Ahuja, L. R., Naney, J. W., and Nielsen, D. R.: Scaling Soil-Water Properties and Infiltration Modeling, Soil Sci. Soc. A. J., 48, 970–973, 1984.
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical properties at European scale using the LUCAS database, Geoderma, 261, 110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Bauer, J., Weihermuller, L., Huisman, J. A., Herbst, M., Graf, A., Sequaris, J. M., and Vereecken, H.: Inverse determination of heterotrophic soil respiration response to temperature and water content under field conditions, Biogeochemistry, 108, 119–134, https://doi.org/10.1007/s10533-011-9583-1, 2012.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bouma, J.: Using Soil Survey Data for Quantitative Land Evaluation, in: Advances in Soil Science, edited by: Stewart, B. A., Springer US, New York, NY, 177–213, 1989.
Brooks, R. J. and Corey, A. T.: Hydraulic properties of porous media, Colorado State University Fort Collins, CO, USA, Hydrology Papers, 3, 37 pp., 1964.
Cale, W. G., Oneill, R. V., and Gardner, R. H.: Aggregation Error in Non-Linear Ecological Models, J. Theor. Biol., 100, 539–550, 1983.
Campbell, G. S.: A Simple Method for Determining Unsaturated Conductivity From Moisture Retention Data, Soil Sci., 117, 311–314, 1974.
Clapp, R. B. and Hornberger, G. M.: Empirical Equations for Some Soil Hydraulic-Properties, Water Resour. Res., 14, 601–604, 1978.
Clausnitzer, V., Hopmans, J. W., and Nielsen, D. R.: Simultaneous Scaling of Soil-Water Retention and Hydraulic Conductivity Curves, Water Resour. Res., 28, 19–31, 1992.
Da Costa, P. Y. D., Nguetnkam, J. P., Mvoubou, C. M., Togbe, K. A., Ettien, J. B., and Yao-Kouame, A.: Old landscapes, pre-weathered materials, and pedogenesis in tropical Africa: How can the time factor of soil formation be assessed in these regions?, Quatern. Int, 376, 47–74, 2015.
Dimitrov, M., Vanderborght, J., Kostov, K. G., Jadoon, K. Z., Weihermuller, L., Jackson, T. J., Bindlish, R., Pachepsky, Y., Schwank, M., and Vereecken, H.: Soil Hydraulic Parameters and Surface Soil Moisture of a Tilled Bare Soil Plot Inversely Derived from L-Band Brightness Temperatures, Vadose Zone J., 13, 1, https://doi.org/10.2136/vzj2013.04.0075, 2014.
Ek, M., and Cuenca, R. H.: Variation in soil parameters: Implications for modeling surface fluxes and atmospheric boundary-layer development, Bound.-Lay. Meteorol., 70, 369–383, https://doi.org/10.1007/bf00713776, 1994.
Fallico, C., Tarquis, A. M., De Bartolo, S., and Veltri, M.: Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry, Eur. J. Soil Sci., 61, 425–436, 2010.
Fang, Z. F., Bogena, H., Kollet, S., and Vereecken, H.: Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment, J. Hydrol., 536, 365–375, 2016.
Hendrayanto, Kosugi, K., and Mizuyama, T.: Scaling hydraulic properties of forest soils, Hydrol. Process., 14, 521–538, 2000.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., and Heuvelink, G. B. M.: SoilGrids1km – Global Soil Information Based on Automated Mapping, PLoS ONE, 9, e114788, https://doi.org/10.1371/journal.pone.0114788, 2014.
Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E., Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B. T., Kersebaum, K. C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., Priesack, E., Raynal, H., Roggero, P. P., Rotter, R. P., Siebert, S., Specka, X., Tao, F. L., Teixeira, E., Trombi, G., Wallach, D., Weihermuller, L., Yeluripati, J., and Ewert, F.: Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations, PLoS ONE, 11, e0151782, https://doi.org/10.1371/journal.pone.0151782, 2016.
Jadoon, K. Z., Weihermuller, L., Scharnagl, B., Kowalsky, M. B., Bechtold, M., Hubbard, S. S., Vereecken, H., and Lambot, S.: Estimation of Soil Hydraulic Parameters in the Field by Integrated Hydrogeophysical Inversion of Time-Lapse Ground-Penetrating Radar Data, Vadose Zone J., 11, 4, https://doi.org/10.2136/vzj2011.0177, 2012.
Jana, R. B. and Mohanty, B. P.: Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation, J. Hydrol., 399, 201–211, 2011.
Kuhnert, M., Yeluripati, J., Smith, P., Hoffmann, H., van Oijen, M., Constantin, J., Coucheney, E., Dechow, R., Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.-C., Kiese, R., Klatt, S., Lewan, E., Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E., Weihermüller, L., Zhao, G., Zhao, Z., Ogle, S., and Ewert, F.: Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands, Eur. J. Agron., 88, 41–52, https://doi.org/10.1016/j.eja.2016.06.005, 2016.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A Simple Hydrologically Based Model of Land-Surface Water and Energy Fluxes for General-Circulation Models, J. Geophys. Res., 99, 14415–14428, 1994.
Liao, K., Xu, S., Wu, J., and Zhu, Q.: Uncertainty analysis for large-scale prediction of the van Genuchten soil-water retention parameters with pedotransfer functions, Soil Res., 52, 431–442, 2014.
Marquardt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Ind. Appl. Math., 11, 431–441, 1963.
Marthews, T. R., Quesada, C. A., Galbraith, D. R., Malhi, Y., Mullins, C. E., Hodnett, M. G., and Dharssi, I.: High-resolution hydraulic parameter maps for surface soils in tropical South America, Geosci. Model Dev., 7, 711–723, https://doi.org/10.5194/gmd-7-711-2014, 2014.
Millan, H. and Gonzalez-Posada, M.: Modelling soil water retention scaling. Comparison of a classical fractal model with a piecewise approach, Geoderma, 125, 25–38, 2005.
Miller, E. E. and Miller, R. D.: Physical Theory for Capillary Flow Phenomena, J. Appl. Phys., 27, 324–332, 1956.
Montzka, C., Moradkhani, H., Weihermüller, L., Hendricks Franssen, H.-J., Canty, M., and Vereecken, H.: Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, J. Hydrol., 399, 410–421, https://doi.org/10.1016/j.jhydrol.2011.01.020, 2011.
Ngo-Duc, T., Laval, K., Ramillien, G., Polcher, J., and Cazenave, A.: Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data, Water Resources Resour. Res., 43, W04427, https://doi.org/10.1029/2006WR004941, 2007.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y. L.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008.
Pachepsky, Y. A., Shcherbakov, R. A., and Korsunskaya, L. P.: Scaling of Soil-Water Retention Using a Fractal Model, Soil Sci., 159, 99–104, 1995.
Pierce, L. L. and Running, S. W.: The Effects of Aggregating Subgrid Land-Surface Variation on Large-Scale Estimates of Net Primary Production, Landscape Ecol., 10, 239–253, 1995.
Rastetter, E. B., King, A. W., Cosby, B. J., Hornberger, G. M., Oneill, R. V., and Hobbie, J. E.: Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems, Ecol. Appl., 2, 55–70, 1992.
Rawls, W. J. and Brakensiek, D. L.: Prediction of soil water properties for hydrologic modelling, American Society of Civil Engineers, 293–299, 1985.
Reynolds, C. A., Jackson, T. J., and Rawls, W. J.: Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions, Water Resour. Res., 36, 3653–3662, 2000.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394, 2004.
Russo, D. and Bresler, E.: Scaling Soil Hydraulic-Properties of a Heterogeneous Field, Soil Sci. Soc. Am. J., 44, 681–684, 1980.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251, 163–176, 2001.
Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M.: Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters, Hydrol. Earth Syst. Sci., 15, 3043–3059, https://doi.org/10.5194/hess-15-3043-2011, 2011.
Scheinost, A. C., Sinowski, W., and Auerswald, K.: Regionalization of soil water retention curves in a highly variable soilscape. 1. Developing a new pedotransfer function, Geoderma, 78, 129–143, 1997.
Shu, Q. S., Liu, Z. X., and Si, B. C.: Characterizing Scale- and Location-Dependent Correlation of Water Retention Parameters with Soil Physical Properties Using Wavelet Techniques, J. Environ. Qual., 37, 2284–2292, 2008.
Simmons, C. S., Nielsen, D. R., and Biggar, J. W.: Scaling of Field-Measured Soil-Water Properties, Hilgardia, 47, 77–173, 1979.
Tillotson, P. M. and Nielsen, D. R.: Scale Factors in Soil Science, Soil Sci. Soc. Am. J., 48, 953–959, 1984.
Toth, B., Weynants, M., Nemes, A., Mako, A., Bilas, G., and Toth, G.: New generation of hydraulic pedotransfer functions for Europe, Eur. J. Soil Sci., 66, 226–238, 2015.
Toth, G., Jones, A., and Montanarella, L.: LUCAS Topsoil Survey. Methodology, data and results, Publications Office of the European Union, Luxembourg, 2013.
Tuli, A., Kosugi, K., and Hopmans, J. W.: Simultaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming lognormal pore-size distribution, Adv. Water Resour., 24, 677–688, 2001.
van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., and Kroes, J. G.: Advances of modeling water flow in variably saturated soils with SWAP, Vadose Zone J., 7, 640–653, 2008.
Van Engelen, V. and Dijkshoorn, J.: Global and National Soils and Terrain Digital Databases (SOTER), Procedures Manual, version 2.0, Wageningen, The Netherlands, 192 pp., 2012.
van Genuchten, M. T.: A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980.
Vereecken, H., Maes, J., Feyen, J., and Darius, P.: Estimating the Soil-Moisture Retention Characteristic from Texture, Bulk-Density, and Carbon Content, Soil Sci., 148, 389–403, 1989.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., and van Genuchten, M. T.: Using Pedotransfer Functions to Estimate the van Genuchten-Mualem Soil Hydraulic Properties: A Review, Vadose Zone J., 9, 795–820, 2010.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and Young, I. M.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone J., 15, 5, https://doi.org/10.2136/vzj2015.09.0131, 2016.
Verhoef, A. and Egea, G.: Modeling plant transpiration under limited soil water: Comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models, Agr. Forest Meteorol., 191, 22–32, 2014.
Walko, R. L. and Avissar, R.: The Ocean-Land-Atmosphere Model (OLAM). Part I: Shallow-Water Tests, Mon. Weather Rev., 136, 4033–4044, 2008.
Walters, D. N., Williams, K. D., Boutle, I. A., Bushell, A. C., Edwards, J. M., Field, P. R., Lock, A. P., Morcrette, C. J., Stratton, R. A., Wilkinson, J. M., Willett, M. R., Bellouin, N., Bodas-Salcedo, A., Brooks, M. E., Copsey, D., Earnshaw, P. D., Hardiman, S. C., Harris, C. M., Levine, R. C., MacLachlan, C., Manners, J. C., Martin, G. M., Milton, S. F., Palmer, M. D., Roberts, M. J., Rodríguez, J. M., Tennant, W. J., and Vidale, P. L.: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations, Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, 2014.
Wang, Z. Y., Shu, Q. S., Liu, Z. X., and Si, B. C.: Scaling analysis of soil water retention parameters and physical properties of a Chinese agricultural soil, Aust. J. Soil Res., 47, 821–827, 2009.
Warrick, A. W., Mullen, G. J., and Nielsen, D. R.: Scaling Field-Measured Soil Hydraulic-Properties Using a Similar Media Concept, Water Resour. Res., 13, 355–362, 1977.
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model, Vadose Zone J., 8, 86–95, 2009.
Wösten, J. H. M., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169–185, 1999.
Xue, Y. K., Zeng, F. J., and Schlosser, C. A.: SSiB and its sensitivity to soil properties – A case study using HAPEX-Mobilhy data, Global Planet Change, 13, 183–194, 1996.
Zeleke, T. B. and Si, B. C.: Wavelet-based multifractal analysis of field scale variability in soil water retention, Water Resour. Res., 43, W07446, https://doi.org/10.1029/2006WR004957, 2007.
Zhu, J. T. and Mohanty, B. P.: Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study, Vadose Zone J., 1, 261–272, 2002.
Short summary
Global climate models require adequate parameterization of soil hydraulic properties, but typical resampling to the model grid introduces uncertainties. Here we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the problems. It preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters that enables modellers to perturb hydraulic parameters for model ensemble generation.
Global climate models require adequate parameterization of soil hydraulic properties, but...
Altmetrics
Final-revised paper
Preprint