Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5579-2024
https://doi.org/10.5194/essd-16-5579-2024
Data description paper
 | 
06 Dec 2024
Data description paper |  | 06 Dec 2024

Water vapor Raman lidar observations from multiple sites in the framework of WaLiNeAs

Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant

Related authors

Long-term evolution of the calibration constant on a mobile water vapour Raman lidar
Patrick Chazette, Julien Totems, and Frédéric Laly
Atmos. Meas. Tech., 18, 2681–2699, https://doi.org/10.5194/amt-18-2681-2025,https://doi.org/10.5194/amt-18-2681-2025, 2025
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Meteorology
An updated reconstruction of Antarctic near-surface air temperatures at monthly intervals since 1958
David Bromwich, Sheng-Hung Wang, Xun Zou, and Alexandra Ensign
Earth Syst. Sci. Data, 17, 2953–2962, https://doi.org/10.5194/essd-17-2953-2025,https://doi.org/10.5194/essd-17-2953-2025, 2025
Short summary
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in southern Spain (Sierra Nevada)
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia R. Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data, 17, 2809–2829, https://doi.org/10.5194/essd-17-2809-2025,https://doi.org/10.5194/essd-17-2809-2025, 2025
Short summary
Estimation of long-term gridded cloud radiative kernel and radiative effects based on cloud fraction
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025,https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Two sets of bias-corrected regional UK Climate Projections 2018 (UKCP18) of temperature, precipitation and potential evapotranspiration for Great Britain
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025,https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Over three decades, and counting, of near-surface turbulent flux measurements from the Atmospheric Radiation Measurement (ARM) user facility
Ryan C. Sullivan, David P. Billesbach, Sebastien Biraud, Stephen Chan, Richard Hart, Evan Keeler, Jenni Kyrouac, Sujan Pal, Mikhail Pekour, Sara L. Sullivan, Adam Theisen, Matt Tuftedal, and David R. Cook
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-168,https://doi.org/10.5194/essd-2025-168, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Appl. Phys. B, 55, 18–28, https://doi.org/10.1007/BF00348608, 1992. 
Chazette, P.: The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar, J. Geophys. Res.-Atmos., 108, 4187, https://doi.org/10.1029/2002jd002074, 2003. 
Chazette, P., Bocquet, M., Royer, P., Winiarek, V., Raut, J. C., Labazuy, P., Gouhier, M., Lardier, M., and Cariou, J. P.: Eyjafjallajökull ash concentrations derived from both lidar and modeling, J. Geophys. Res.-Atmos., 117, D00U14, https://doi.org/10.1029/2011JD015755, 2012a. 
Chazette, P., Dabas, A., Sanak, J., Lardier, M., and Royer, P.: French airborne lidar measurements for Eyjafjallajökull ash plume survey, Atmos. Chem. Phys., 12, 7059–7072, https://doi.org/10.5194/acp-12-7059-2012, 2012b. 
Chazette, P., Marnas, F., and Totems, J.: The mobile Water vapor Aerosol Raman LIdar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process, Atmos. Meas. Tech., 7, 1629–1647, https://doi.org/10.5194/amt-7-1629-2014, 2014a. 
Download
Short summary
We present a dataset of water vapor mixing ratio profiles acquired during the Water Vapor Lidar Network Assimilation campaign in fall and winter 2022 and summer 2023, using three lidar systems deployed on the western Mediterranean coastline. This innovative campaign provides access to lower-tropospheric water vapor variability to constrain meteorological forecasting models. The scientific objective is to improve forecasting of heavy-precipation events that lead to flash floods and landslides.
Share
Altmetrics
Final-revised paper
Preprint