Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5357-2024
https://doi.org/10.5194/essd-16-5357-2024
Data description paper
 | 
25 Nov 2024
Data description paper |  | 25 Nov 2024

3D-GloBFP: the first global three-dimensional building footprint dataset

Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai

Related authors

GloUCP: A global 1 km spatially continuous urban canopy parameters for the WRF model
Weilin Liao, Yanman Li, Xiaoping Liu, Yuhao Wang, Yangzi Che, Ledi Shao, Guangzhao Chen, Hua Yuan, Ning Zhang, and Fei Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-408,https://doi.org/10.5194/essd-2024-408, 2024
Revised manuscript under review for ESSD
Short summary
U-Surf: A Global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
Yifan Cheng, Lei Zhao, Tirthankar Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-416,https://doi.org/10.5194/essd-2024-416, 2024
Revised manuscript under review for ESSD
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025,https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
A flux tower site attribute dataset intended for land surface modeling
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025,https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024,https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Global 30 m seamless data cube (2000–2022) of land surface reflectance generated from Landsat 5, 7, 8, and 9 and MODIS Terra constellations
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024,https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary
Mapping rangeland health indicators in eastern Africa from 2000 to 2022
Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett
Earth Syst. Sci. Data, 16, 5375–5404, https://doi.org/10.5194/essd-16-5375-2024,https://doi.org/10.5194/essd-16-5375-2024, 2024
Short summary

Cited articles

Arehart, J., Pomponi, F., D'Amico, B., and Srubar III, W.: A new estimate of building floor space in North America, Environ. Sci. Technol., 55, 5161–5170, https://doi.org/10.1021/acs.est.0c05081, 2021. 
Arehart, J. H., Pomponi, F., D'Amico, B., and Srubar, W. V.: Structural material demand and associated embodied carbon emissions of the United States building stock: 2020–2100, Resour. Conserv. Recy., 186, 106583, https://doi.org/10.1016/j.resconrec.2022.106583, 2022. 
Basaraner, M. and Cetinkaya, S.: Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS, Int. J. Geogr. Inf. Sci., 31, 1952–1977, https://doi.org/10.1080/13658816.2017.1346257, 2017. 
Cai, B., Shao, Z., Huang, X., Zhou, X., and Fang, S.: Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data, Int. J. Appl. Earth Obs., 122, 103399, https://doi.org/10.1016/j.jag.2023.103399, 2023. 
Cao, Y. and Huang, X.: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities, Remote Sens. Environ., 264, 112590, https://doi.org/10.1016/j.rse.2021.112590, 2021. 
Download
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Altmetrics
Final-revised paper
Preprint