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Abstract. Understanding urban vertical structures, particularly building heights, is essential for examining the
intricate interaction between humans and their environment. Such datasets are indispensable for a variety of ap-
plications, including climate modeling, energy consumption analysis, and socioeconomic activities. Despite the
importance of this information, previous studies have primarily focused on estimating building heights regionally
at the grid scale, often resulting in datasets with limited coverage or spatial resolution. This limitation hampers
comprehensive global analysis and the ability to generate actionable insights at finer scales. In this study, we
developed a global building height map at the building footprint scale by leveraging Earth Observation (EO)
datasets and advanced machine learning techniques. Our approach integrated multisource remote-sensing fea-
tures and building morphology features to develop height estimation models using the extreme gradient boosting
(XGBoost) regression method across diverse global regions. This methodology allowed us to estimate the heights
of individual buildings worldwide, culminating in the creation of the three-dimensional (3D) Global Building
Footprints (3D-GloBFP) dataset for the year 2020. Our evaluation results show that the height estimation models
perform exceptionally well at a global scale, with R2 values ranging from 0.66 to 0.96 and root-mean-square
errors (RMSEs) ranging from 1.9 to 14.6 m across 33 subregions. Comparisons with other datasets demonstrate
that 3D-GloBFP closely matches the distribution and spatial pattern of reference heights. Our derived 3D global
building footprint map shows a distinct spatial pattern of building heights across regions, countries, and cities,
with building heights gradually decreasing from the city center to the surrounding rural areas. Furthermore, our
findings indicate disparities in built-up infrastructure (i.e., building volume) across different countries and cities.
China is the country with the most intensive total built-up infrastructure (5.28× 1011 m3, accounting for 23.9 %
of the global total), followed by the USA (3.90× 1011 m3, accounting for 17.6 % of the global total). Shanghai
has the largest volume of built-up infrastructure (2.1×1010 m3) of all representative cities. The derived building-
footprint-scale height map (3D-GloBFP) reveals the significant heterogeneity in urban built-up environments,
providing valuable insights for studies on urban socioeconomic dynamics and climatology. The 3D-GloBFP
dataset is available at https://doi.org/10.5281/zenodo.11319912 (Building height of the Americas, Africa, and
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Oceania in 3D-GloBFP; Che et al., 2024c), https://doi.org/10.5281/zenodo.11397014 (Building height of Asia
in 3D-GloBFP; Che et al., 2024a), and https://doi.org/10.5281/zenodo.11391076 (Building height of Europe in
3D-GloBFP; Che et al., 2024b).

1 Introduction

Quantifying the three-dimensional (3D) building structure is
essential for understanding human–natural ecosystems and
achieving sustainability goals. The World Cities Report 2022
reveals that urban areas already accommodate 55 % of the
global population, and this figure is expected to grow to 68 %
by 2050 (United Nations Human Settlements Programme,
2022). Against the backdrop of advancing global urbaniza-
tion, burgeoning populations pose challenges and opportuni-
ties with respect to land-use efficiency, making vertical urban
growth a critical land-use pattern (Chen et al., 2024, 2020).
Various urban functions have also given rise to distinct 3D
spatial forms within cities (Demuzere et al., 2022). Specifi-
cally, commercial central areas show a dense concentration
of high-rise buildings, residential zones are characterized by
rows of relatively tall buildings, and urban villages are dis-
tinguished by dense clusters of low-rise structures (W. Chen
et al., 2023). In this context, the accurate 3D mapping of ur-
ban areas is a crucial objective for achieving sustainable and
resilient cities. Building height, as the vertical structure of
buildings, can depict the urban vertical morphology, which
reflects the biophysical and social–economical properties of
the cities and supports a variety of urban studies, including
climate mitigation, carbon emission, living conditions, and
socioeconomic modeling (Pappaccogli et al., 2020; Xu et al.,
2021; Shao et al., 2023; Shang et al., 2020). For instance,
accurate measurement of building heights is essential for de-
termining the urban underlying surface, serving as critical
urban parameters in urban climate models to simulate and
understand the climate conditions within urban areas (Sun
et al., 2021). Simultaneously, 3D building datasets help as-
sess built-up infrastructure spaces and further contribute to
the 2023 Sustainable Development Goals (SDGs) aim of pro-
viding adequate, safe, and affordable housing for all (Liu et
al., 2024). Moreover, building heights provide demographic
insights and help delineate functional zones within cities,
thereby enhancing the estimation of energy use and carbon
emissions (Ding et al., 2022).

While Earth Observation (EO) data have generally been
used in 3D building mapping, the estimation of building
height is still limited with respect to either spatial resolution
or coverage. High-resolution optical images, synthetic aper-
ture radar (SAR), and airborne light detection and ranging
(lidar) products are the commonly used datasets for extract-
ing building height information in the urban domain. High-
resolution optical satellite images can provide texture and
shadow details within urban areas, which can be applied to

building height estimation (Cao and Huang, 2021; Liasis and
Stavrou, 2016; P. Chen et al., 2023). However, their accuracy
is limited by the quality of images, and their effectiveness is
reduced in densely built areas (e.g., central business districts
– CBDs) where building shadows are overlaid with other ob-
jects (Cai et al., 2023). Alternatively, SAR images can reflect
the scattering mechanism of buildings through the backscat-
ter coefficients, which are related to building structure (Kop-
pel et al., 2017). A variety of studies have been carried out
using SAR data for built-up height estimation. X. Li et al.
(2020b) and Zhou et al. (2022) developed an approach to esti-
mate building height using the dual-polarization information
(i.e., vertical–vertical, VV, and vertical–horizontal, VH) from
the Sentinel-1 dataset, although the reliability of height esti-
mation at the fine scale (i.e., less than 500 m) is constrained
due to the “bounce scattering” effect (X. Li et al., 2020b). In-
stead, lidar is regarded as the most reliable data source for ob-
taining building height, as it can directly capture the rooftop
coordinates from the returned signal (M. Li et al., 2020; Park
and Guldmann, 2019). However, the lidar dataset is scarce
and scattered, making it difficult to apply over larger areas
(Ma et al., 2023).

Although multisource datasets offer broader coverage of
building height estimation, fine-scale (i.e., building-scale)
building height datasets are still absent globally resolution,
disregarding the spatially explicit heterogeneity of building
forms. Current researchers have proposed methods based on
digital surface models (DSM) and statistical modeling to es-
timate building heights, enhancing the coverage of height
estimation. Firstly, widely available digital elevation mod-
els (DEMs; i.e., ALOS DSM and TanDEM-X) provide in-
formation for height estimation. Esch et al. (2022) acquired
global building heights at a 90 m resolution by computing
the difference between the local maximum and minimum
within built-up areas using the SAR-derived TanDEM-X.
However, uncertainties may arise in rugged regions (Huang
et al., 2022). Additionally, Huang et al. (2022) used slope
correction to mitigate slope effects and derive building height
in China. However, the 30 m dataset is also affected by a
mixed-object problem (i.e., one pixel contains both building
and surrounding terrain), which smooths the height edge and
consequently increases the inaccuracy of building height es-
timations (Esch et al., 2022). Secondly, the statistical model-
ing method can obtain continuous building height estimation
at the regional (i.e., national or urban agglomeration) scale
by training machine learning models with multiple explana-
tory features. Frantz et al. (2021) and Wu et al. (2023) in-
tegrated Sentinel-1 and Sentinel-2 datasets and extracted the
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building height based on a machine learning method, con-
firming the effectiveness of fusing SAR and optical datasets.
Arehart et al. (2021) combined various physical morphologi-
cal features of buildings (e.g., area, compactness, and radius)
to derive building heights in the USA, providing evidence of
the correlation between morphological features and height.
Li et al. (2022) generated a global-scale building height map
at a 1 km resolution by utilizing optical, SAR, and auxiliary
geospatial data (e.g., gross domestic product and road net-
works) based on a random forest model. Moreover, Ma et
al. (2023) fused height metrics from the Global Ecosystem
Dynamics Investigation (GEDI) mission and other explana-
tory features to obtain the building height in the Yangtze
River Delta region at a 150 m resolution. Nevertheless, due
to the complexity of urban functions and diverse landscapes,
buildings in close spatially proximity may vary significantly
with respect to height. As a result, grid-resolution height data
(e.g., 1 km) may be insufficient to accurately describe the 3D
spatial structure of buildings, leading to a loss of spatial in-
formation (L. Li et al., 2024). Moreover, raster datasets tend
to blur building boundaries when representing the building
shapes, lacking the precision of vector footprints in repre-
senting the 3D morphologies of buildings. Notably, there is
currently no global dataset that reflects the height of building
footprints.

To fill these gaps, we developed the first global dataset
at the individual building scale (3D-GloBFP) using open-
access multisource datasets based on machine learning meth-
ods. The 3D-GloBFP dataset delineates the 3D morphology
of each building worldwide, capturing the 3D spatial pat-
terns of buildings in cities of various scales across the world.
The specific objectives of this study include the following:
(1) integrate and preprocess the multisource remote-sensing
datasets and morphology features of building vectors; (2) de-
velop the height estimation model in different subregions;
(3) produce a global building-scale height map for 2020,
and (4) analyze the built-up infrastructure in global countries
and cities. The remainder of this paper describes the adopted
datasets (Sect. 2) and the estimation methods (Sect. 3), out-
lines the results and discussion (Sect. 4), provides the data
availability information (Sect. 5), and presents conclusions
(Sect. 6).

2 Datasets

2.1 Building footprint datasets

We derived the global building footprints using data from Mi-
crosoft Building Footprints (Microsoft, 2018) and building
boundaries from Shi et al. (2024). The Microsoft Building
Footprints dataset provided 1.3 billion global building foot-
prints for the period around the year 2020. This dataset was
derived from high-resolution satellite imageries using deep
neural networks (DNNs) and polygonization approaches.
The derived building footprints in the Microsoft dataset are

highly consistent with the boundaries of individual buildings,
with an average precision and intersection over union (IoU)
of around 95 % and 65 %, respectively. Given that some re-
gions in East Asia (e.g., China, North Korea, and South Ko-
rea) were not included in Microsoft Building Footprints, we
used building footprints generated by Shi et al. (2024) as an
alternative. Shi et al. (2024) extracted these building foot-
prints based on high-resolution imageries using deep learn-
ing approaches with stable accuracy in different cities (i.e.,
the precision and recall in cities exceed 80 %). These two
open-source datasets provided a comprehensive global build-
ing boundary dataset of sufficient quality to support our re-
search.

2.2 Building height datasets

We collected building footprint data with height informa-
tion from ONEGEO Map (https://onegeo.co/data/, last ac-
cess: October 2023), Microsoft Building Footprints (Mi-
crosoft, 2018), Baidu Maps (https://map.baidu.com/, last
access: May 2019), and EMU Analytics (https://www.
emu-analytics.com/, last access: June 2021) to ensure max-
imum reference building height coverage across all re-
gions globally. ONEGEO Map integrates data from over 40
sources, including OpenStreetMap, the United States Geo-
logical Survey (USGS), and Google Open Buildings, offer-
ing comprehensive building height records for various re-
gions worldwide. To obtain a more thorough and densely
covered reference building height dataset, we supplemented
it with the Microsoft dataset in the USA and the Baidu Maps
dataset in China. The Microsoft Building Heights informa-
tion, released in 2018, provides the height of buildings in
44 states, where only a small fraction containing height at-
tributes is located in the city center (i.e., only 2 % of build-
ings have height records in the state of New York). In addi-
tion, the Baidu Maps height dataset provides the height infor-
mation in individual vector form in the core built-up areas in
cities. This height dataset widely covers cities in China (i.e.,
metropolitan areas, all of the capital provinces, big cities, and
some small cities), which helps to ensure the robustness of
the model with respect to predicting building heights across
the country. For example, the Baidu Maps dataset provides
building heights for 603 007 buildings in Beijing, 443 436
buildings in Foshan, and 23 980 buildings in Ganzhou. These
data are consistent with the actual building height, with an
accuracy of 86.78 % and a mean deviation of approximately
1.02 m, as reported by Liu et al. (2021). We also used the
Building Heights dataset from EMU Analytics in England.
The EMU Analytics height dataset includes nearly 12 mil-
lion building footprints, with the building height calculated
from 1 m resolution lidar images. Overall, our combined ref-
erence height dataset covers most regions worldwide, pro-
viding a comparatively reliable training and testing dataset
for estimating building heights in various cities and regions
globally (Fig. S1 in the Supplement).
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Table 1. Multiple sources of data used in our study.

Category Dataset Resolution Acquisition
time

Provider Link Reference

SAR Sentinel-1
(VV, VH)

10 m 2019–2021 European Union/ESA/
Copernicus

https://earth.esa.int/
(last access: April 2024)

Koppel et al. (2017),
X. Li et al. (2020b)

PALSAR
(HH, HV)

25 m 2020 JAXA EORC https://www.eorc.jaxa.jp/ALOS/
(last access: April 2024)

Wu et al. (2023)

Optical Sentinel-2
(band2, band3,
band4, and
band8)

10 m 2020 European Union/ESA/
Copernicus

https://earth.esa.int/ Frantz et al. (2021),
Lyu et al. (2024)

Terrain DEM 30 m 2000 NASA/USGS/
JPL Caltech

https://cmr.earthdata.nasa.gov/
(last access: April 2024)

Huang et al. (2022),
Geiß et al. (2019)

DSM 30 m 2006–2011 JAXA EORC https://www.eorc.jaxa.jp/ALOS/

CDEM 0.75 arcsec 1945–2011 Natural Resources
Canada

https://open.canada.ca
(last access: April 2024)

–

Social–
economical

WorldPop 92.77 m 2020 WorldPop https://www.worldpop.org/
(last access: April 2024)

M. Li et al. (2020)

Nighttime
light

463.83 m 2020 Earth Observation Group,
Payne Institute for Public
Policy, Colorado School
of Mines

https://payneinstitute.mines.edu/
(last access: April 2024)

Yu et al. (2022),
Wu et al. (2023)

Building
boundary

Area and
perimeter

Vector 2014–2023 Microsoft https://github.com/microsoft/
GlobalMLBuildingFootprints
(last access: April 2023)

–

2019–2023 Shi et al. (2024) https://doi.org/
10.5281/zenodo.8174931

– Baidu Maps https://map.baidu.com/
(last access: April 2024)

2.3 Multisource remote-sensing datasets

We integrated SAR images, optical images, terrain images,
and images reflecting population and socioeconomic activi-
ties to estimate building height, benefiting from the wealth
of easily accessible imagery provided by Google Earth En-
gine (GEE; Table 1). To obtain the heights of buildings in
2020, we primarily used the multisource datasets from 2020,
supplemented by imagery from adjacent years, to achieve
seamless global coverage. The Sentinel-1 mission consists of
two polar-orbiting satellites performing C-band SAR imag-
ing, allowing them to acquire images in all weather condi-
tions. We collected the Ground Range Detected (GRD) type
high-resolution (10 m) images with dual polarization (i.e.,
VV and VH) in the Sentinel-1 datasets, as the backscatter co-
efficients in GRD images are sensitive to surface roughness
and can reflect the buildings’ structure. We also used vari-
ables from optical images (i.e., Sentinel-2) as input for our
height estimation model. The Copernicus Sentinel-2 mission
includes a constellation of two polar-orbiting satellites, sup-
porting the monitoring of the Earth’s surface conditions. We
used Band 2 (blue), Band 3 (green), Band 4 (red), and Band 8
(near-infrared) Sentinel-2 data in our model at a 10 m reso-
lution. The radiation of visible bands is correlated with the
extent of impervious surfaces and the internal environment
within urban domains (Yuan and Bauer, 2007). The near-

infrared band can effectively provide information on building
heights by reflecting the thermal radiation capability of the
surface material. Furthermore, we collected terrain datasets
(i.e., the DEM from the Shuttle Radar Topography Mission,
SRTM, at a 30 m resolution and the DSM from the Advanced
Land Observing Satellite, ALOS, at a 30 m resolution) to rep-
resent the physical properties of urban domains. DSM data
provide vertical information about surface objects, which is
helpful for extracting building heights. Primarily, the differ-
ence between DSM and DEM (nDSM) directly reflects the
vertical height of surface objects. In addition, we used other
datasets to provide auxiliary information on building heights,
including the Phased Array type L-band Synthetic Aperture
Radar (PALSAR), WorldPop, and the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) Day/Night dataset.

3 Methods

In this study, we estimated the height of individual build-
ings at a global scale based on multisource remote-sensing
datasets and vector-derived datasets (Fig. 1). First, we built
a feature collection by integrating the statistical values of
remote-sensing datasets and the morphological features of
buildings. Second, we developed height models in the 33
subregions based on the extreme gradient boosting (XG-
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Boost) method and assessed the model performance using
10-fold cross-validation. Third, we created a global build-
ing height map based on our estimated results. We analyzed
the spatial patterns of building heights within cities and com-
pared our building height dataset with other existing global
and regional building height products. Finally, we analyzed
the built-up infrastructure for countries and representative
cities worldwide.

3.1 Feature preparation

We extracted features from multisource datasets (i.e., radar,
optical, terrain, social–economic, and vector) as input fea-
tures for the models, with the help of the GEE platform. First,
we preprocessed the input remote-sensing images to ensure
high-quality images. We removed pixels with a cloud per-
centage greater than 20 % to obtain high-quality images and
avoided the stripe effect caused by clouds. All images were
reprojected to WGS84 and resampled to 10 m. Second, we
aggregated remote-sensing images in 2020 to vectors to get
statistical information for individual buildings. Datasets from
2019 and 2021 were utilized for supplementation in areas
where imagery was missing. We calculated the statistical val-
ues (i.e., mean value; standard deviation; and five quantiles,
5 %, 25 %, 50 %, 75 %, and 95 %) of all of the image pix-
els within each building vector. We created fishnets of differ-
ent extents with no more than 40 000 buildings in each grid
due to calculation memory limitations on GEE. We exported
the remote-sensing image attributes for all buildings. Third,
we calculated morphology features based on building vec-
tors, which proved effective in height estimation (Arehart et
al., 2021). We used five geometry features ranging from sim-
ple (i.e., perimeter and area) to complex (i.e., compactness,
fractality, and the Cooke JC index) as the input variables of
the height estimation model. Compactness, fractality, and the
Cooke JC index were identified by building perimeter and
area, measuring the complexity of the footprint of buildings
(Table 2). Finally, 114 features were calculated as the input
features for the height estimation model (Table S1 in the Sup-
plement).

3.2 Height model development

3.2.1 Division of subregions

We divided the globe into 33 regions and developed the
building height estimation model for each region, consider-
ing the nonuniform spatial distribution of samples and the
heterogeneous building heights (Fig. 2). Firstly, we divided
the globe into 13 regions based on geographic spatial dis-
tance and regional development levels to ensure that each
region has enough samples to train effective models. For in-
stance, the Central and West Asian countries were considered
to be a single region for model training and estimation with
40 040 training samples. However, given China’s complex
urban 3D structure and significant building heterogeneity

(Wu et al., 2023), we further divided China into 21 regions.
We built a separate height regression model for each region
to ensure the effectiveness of the height estimation. For in-
stance, considering the inadequacy of samples in Northwest-
ern China, we considered the provinces in the northwest as
a single region with 8050 training samples for model train-
ing. Additionally, we considered the Beijing–Tianjin–Hebei,
Yangtze River Delta, and Pearl River Delta urban agglomer-
ations as three separate regions due to the comparable eco-
nomic levels and population size.

3.2.2 Model development

We used a stratified sampling strategy to select training sam-
ples and built the height estimation model with the extreme
gradient boosting (XGBoost) regression method. First, we
used a stratified sampling strategy to integrate the samples
in each subregion. We merged all collected building height
samples from each region. In each subregion, we adjusted
the number of training samples in each interval according to
the height distribution found in Esch et al. (2022), to ensure
that the height distribution of the sample set resembles that
of each region. Then, we used the XGBoost regression model
to train models in the subregions. XGBoost is suitable for the
height estimation task due to its capability to handle complex
nonlinear relationships and large-scale datasets. The number
of training and testing samples was divided using a 9 : 1 ratio.
We used the GridSearchCV method to find the parameters
(i.e., learning rate, number of estimators, max depth of trees,
and lambda and alpha in the objective function). This method
iterates through different parameter combinations and eval-
uates their performance using cross-validation to determine
the optimal model parameters. We finally built 33 XGBoost
models in all subregions with different parameters.

3.3 Accuracy assessment

To evaluate the height estimation models, we carried out
the assessments outlined in the following. First, we cal-
culated the R2 and RMSE values in each subregion. We
used 10-fold cross-validation to assess the accuracy of the
model in each region, with evaluation metrics including the
R2 and RMSE of ordinary least squares (OLS) regression.
The R2 value evaluates the explanatory ability of variables
for the dependent variable (i.e., building height), while the
RMSE is used to assess the difference between estimated
and reference values. Second, we compared our estimated
heights with 700 manually measured building heights in 14
cities from Google Earth Street View. We calculated the R2

and RMSE values between estimated and measured results.
Third, we evaluated the accuracy of 3D-GloBFP and four
other global datasets, using reference data collected from
GIS portals of 17 cities worldwide (Table S2 in the Sup-
plement). The four global height datasets include the World
Settlement Footprint (WSF; Esch et al., 2022), the Global
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Figure 1. Overall workflow of developing the 3D-GloBFP dataset.

Table 2. Shape index of building footprints.

Feature Notation or equation Description

Compactness 4π×AREA_GEO
PERIMETER_GEO2 Circularity or compactness of building footprint (Li et al., 2013)

Fractality 1− log(AREA_GEO)
2×log(PERIMETER_GEO) Similarity and complexity, reflected in the relationship between area and

perimeter (Basaraner and Cetinkaya, 2017)
Cooke JC index PERIMETER_GEO

4
√

AREA_GEO
− 1 Shape efficiency with respect to a square (Kouskoulas and Koehn, 1974)

Human Settlement Layer building height (GHSL-H; Pesaresi
et al., 2021), the height data from Li et al. (2022), and the
height data from Zhou et al. (2022) (Table S3 in the Sup-
plement). We compared the spatial distribution of building
height within cities. We also aggregated the high-resolution
data at a 1 km resolution to align with the low-resolution
data by calculating the average height of all buildings lo-
cated within each grid cell. This approach allows us to com-
pare the differences with the reference data at a consistent
resolution across all datasets. Finally, we compared the seg-
ments of 3D-GloBFP for the USA, China, and Europe with
existing regional datasets (Table S3), given the compara-
tively more affluent data availability within these three re-
gions. In the USA, we compared our estimated results with
two other vector-level datasets from Arehart et al. (2021)
and Microsoft (2020), which cover the entire country and
have the same scale (i.e., building scale) as our datasets.
The reference building heights in the USA were collected
from six city government GIS portals as the reference height,
including Boston, Louisville, New York, Boulder, Newport

News, and Portland. These reference heights are indepen-
dent datasets that were not used for training. In China, we
validated the numerical distribution, coefficients, and spatial
patterns of 3D-GloBFP against datasets from Chinese build-
ing height (CNBH) data (Wu et al., 2023) and height data
from Huang et al. (2022), both of which provide coverage
for the entire country. We randomly extracted 20 000 build-
ings from Baidu Maps (https://ditu.baidu.com, last access:
May 2019) within global urban boundaries (GUBs) (X. Li
et al., 2020a) as the reference heights (Fig. S2 in the Sup-
plement) that were not used to train the height estimation
model. Additionally, in Europe, we contrasted the numerical
distribution of building heights from our estimated data with
those from WSF, height data from Li et al. (2022), GHSL-
H data, and reference data. We aggregated the Urban Atlas
Building Height for Europe (https://land.copernicus.eu/en/
products/urban-atlas/building-height-2012, last access: June
2021) to a 1 km resolution as the reference height, provid-
ing building heights in core urban areas in 870 cities across
Europe.
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Figure 2. Distribution of subregions.

3.4 Built-up infrastructure analysis

We analyzed the built-up infrastructure by calculating the to-
tal building volume in countries and cities. First, we summed
the building volume for each country and created a global
distribution map of built-up infrastructure across the world.
To quantify each country’s contribution to the global built-
up infrastructure, we calculated the proportion of each coun-
try’s total building volume relative to the global total. Next,
we focused on the built-up infrastructure in representative
cities across various continents worldwide. We analyzed both
3D (i.e., building volume) and 2D (i.e., building area) built-
up infrastructure to provide a detailed comparison. Specif-
ically, we compared the total numbers and rankings of 3D
and 2D built-up infrastructure across these cities. The bound-
aries of countries and cities were derived from GADM maps
(https://gadm.org/, last access: May 2024). This analysis al-
lowed us to gain a deeper understanding of the spatial dis-
tribution characteristics and total volume features of built-up
infrastructure in the world.

4 Results and discussion

4.1 Performance of the building height estimation model

The estimated building height showed consistency with the
reference building height across all regions of the world
(Fig. 3). Across different areas, the R2 value between the
estimated and reference building height ranges from 0.66
(i.e., Europe) to 0.96 (South America). The R2 value of
around 40 % of regions exceeded 0.80, indicating a simi-
larity between the estimated and reference height. The RM-
SEs vary significantly across different areas, ranging from
1.92 m (i.e., South America) to 14.60 m (Japan and North
and South Korea). A total of 62 % of the RMSEs are less
than 10 m, indicating that, in most of the regions, our es-
timated heights are in agreement with reference heights at
the building scale. The estimated heights in five areas are
very close to the reference height, with RMSEs of less than
5 m, including the USA (3.35 m), Russia (4.99 m), Central
America (2.40 m), Australia (2.23 m), and South America
(1.92 m). Additionally, low-rise buildings show less uncer-
tainty compared with high-rise buildings. The RMSEs of
low-rise buildings (height< 20 m) are generally below 6 m,
especially in Western countries such as the USA (2.44 m in
the 0–10 m interval and 2.64 m in the 10–20 m interval) and
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Figure 3. Model performance in subregions: (a) R2 and RMSE values of models in the subregions; (b) RMSE values of representative
subregions within different height intervals.

South America (1.43 m in the 0–10 m interval and 4.75 m in
the 10–20 m interval). On the contrary, high-rise buildings
(height≥ 20 m) have more significant uncertainties in the
estimation results. The coarse resolution of certain remote-
sensing datasets (e.g., DSM and Nighttime light) makes it
challenging to capture the heterogeneity of the features of
super tall buildings, especially in densely built urban cores.
Moreover, the height and material of high-rise buildings, as
well as the side-looking scene illumination of the Sentinel
sensor, can cause complex multipath effects that further im-
pact the accuracy of height estimations (Frantz et al., 2021;
Stilla et al., 2003). It is worth noting that the uncertainty in
high-rise buildings contributes significantly to the regional
RMSE. For instance, in Africa, the overall RMSE is 9.87 m,
with high-rise buildings (i.e., ≥ 50 m) showing an RMSE of
25.52 m, while buildings below 10 m and in the 10–20 m in-
terval have RMSEs of 3.86 and 5.28 m, respectively.

4.2 Comparison with Google Earth building heights

The validation results with interpreted heights from Google
Earth Street View images indicated that the estimated results
are consistent with the reference heights in the metropoli-
tan cities of countries around the world, particularly for
landmark buildings. We manually measured 700 buildings
in 14 metropolitan cities across the Northern and South-
ern Hemisphere regions (e.g., New York, London, Brasilia,
and Cape Town) (Fig. 4a and b) and compared these mea-
surements with our estimated heights. The correlation re-
sults suggest that our estimated heights show relatively high
agreement with measured heights, with an R2 of 0.85 and
RMSE of 11.01 m (Fig. 4c). The example landmark build-
ings (see Fig. 4) further confirm the effectiveness of esti-
mating individual building heights, especially for high-rise
buildings with more considerable uncertainty, as mentioned
in Sect. 4.1 (Fig. 4d). For instance, for the Federal Reserve
Bank of Chicago, with a height of 113.3 m, the difference
between estimated and measured height is only 2.2 m.
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Figure 4. Comparison of estimated and interpreted heights using 3D Google Earth Street View images: (a) diagram of the measurement
method in Google Earth Pro; (b) distribution of the cities with measured building heights; (c) overall performance of the estimated heights
worldwide; (d) the measured and estimated height of individual buildings within cities. Images in panels (a) and (d) are from © Google.

4.3 Comparison with existing building height products

4.3.1 Comparison with global height products

Our estimated building heights provide more detail on ur-
ban morphology and show more accurate results compared
with the other four existing global datasets (Fig. 5), includ-
ing WSF (at a 90 m spatial resolution), the Global Human
Settlement Layer height (GHSL-H; Pesaresi et al., 2021) (at a
100 m spatial resolution), height data from Zhou et al. (2022)
(at a 500 m spatial resolution), and height data from Li et
al. (2022) (at a 1 km spatial resolution). First, we mapped
the estimated height and the other four datasets and com-
pared them to the ONEGEO Map reference height to eval-
uate the spatial pattern of building heights. Our estimated
building height results show similar spatial patterns to the
reference building heights in representative cities around the
world. Specifically, the estimated heights are close to the ref-
erence height data for high-rise buildings, capturing the high-
density building core of the town in the CBDs of various ma-

jor cities (e.g., downtown Houston, Region 1 in Fig. 5a; the
CBD of Yuexiu District in Guangzhou, Region 2 in Fig. 5b;
and Kowloon in Hong Kong, Region 3 in Fig. 5c). However,
GHSL-H (Pesaresi et al., 2021), height data from Zhou et al.
(2022), and height data from Li et al. (2022) can only reflect
the vague spatial location of the city center, presenting var-
ious degrees of significant underestimations in the specific
numerical values of building heights. The underestimation
of high-rise buildings and skyscrapers is relatively substan-
tial in GHSL-H (Pesaresi et al., 2021) and height data from
Li et al. (2022). Zhou et al. (2022) notably underestimate ur-
ban centers, as they include nonbuilding-related impervious
surfaces (e.g., streets and parking lots). Furthermore, com-
pared to the WSF dataset, our estimated height can reflect
a complex urban landscape with mixed high- and low-rise
buildings. For instance, the spatial distribution of our derived
dataset is closer to the reference dataset in Kowloon, Hong
Kong, while the WSF (Esch et al., 2022) height dataset re-
sults in clusters of high-rise buildings. Additionally, our es-
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Figure 5. Comparison of 3D-GloBFP maps with multiscale building height products in 10 cities across the world: (a) Houston,
(b) Guangzhou, (c) Hong Kong, (d) Tokyo, (e) Los Angeles, (f) Geelong, (g) London, (h) Vancouver, (i) Singapore, and (j) Lima. The
areas shown using red boxes represent (1) downtown Houston; (2) the CBD of Yuexiu District; (3) Kowloon in Hong Kong; (4) an urban
village in Guangzhou; (5) the city center of Tokyo; (6) south of Santa Monica Boulevard, West Hollywood; and (7) northwestern Geelong,
respectively. The satellite images are from © Esri, © Maxar, © Earthstar Geographics, and the GIS user community.

Figure 6. Comparison of reference height, 3D-GloBFP, and other existing global products: (a) histogram of reference height, estimated
height, and four other existing height products; (b) scatter plot of estimated heights and reference heights; (c) scatter plot of WSF (Esch et
al., 2022) and reference heights; (d) scatter plot of GHSL-H (Pesaresi et al., 2021) and reference heights; (e) scatter plot of height data from
Zhou et al. (2022) and reference heights; (f) scatter plot of height data from Li et al. (2022) and reference heights. Note that the dashed red
lines represent the regression lines fitting the reference heights against the estimated heights for each dataset, whereas the solid white line
represents the 1 : 1 line.
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Figure 7. Histogram of reference height, 3D-GloBFP, and other existing products in (a) the USA, (b) China, and (c) Europe.

Figure 8. Building-scale comparison to Microsoft height data (Microsoft, 2020) and height data from Arehart et al. (2021) for the USA:
(a) distribution of cities with a reference building height; (b) scatter plot of estimated heights and reference heights; (c) scatter plot of
Microsoft heights (Microsoft, 2020) and reference heights; (d) scatter plot of height from Arehart et al. (2021) and reference heights.

timated heights are also more consistent with the reference
datasets for low-rise-building areas. For low-rise buildings
within urban cores, such as the urban villages in Guangzhou
(Region 4 in Fig. 5b) and the low-rise structures in Tokyo’s
city center (Region 5 in Fig. 5d), our data can provide rel-
atively accurate numeric estimations and spatial patterns of
their heights. For low-rise buildings in the areas surrounding
cities, such as south of Santa Monica Boulevard in West Hol-
lywood, Los Angeles (Region 6 in Fig. 5e), and northwest
Geelong (Region 7 in Fig. 5f), our building-scale results can
reflect the morphology of these low-rise structures. However,
other datasets generally show slight overestimations, espe-
cially the estimations by Li et al. (2022). For instance, build-
ing heights in northwest Geelong are below 5 m, whereas
building heights are between 5 and 10 m in that area accord-

ing to Li et al. (2022). Furthermore, our estimated heights
accurately capture the spatial heterogeneity in the heights
of high-rise and low-rise buildings in densely built-up areas.
Conversely, the resolution of the other three datasets is insuf-
ficient to reflect the spatial heterogeneity of building heights
due to the significant differences in building height within
each pixel.

Additionally, the height distribution and correlation re-
sults also confirm the superiority of our derived datasets in
cities across the Northern and Southern Hemisphere regions
(Fig. 6). Our results showed a good agreement with the ref-
erence dataset, with a peak difference of 1.25 m. Notably,
3D-GloBFP can depict the bimodal distribution of building
height. In contrast, other estimation results are mostly uni-
modal and have some degree of underestimation (i.e., Esch
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Figure 9. Comparison of height data in China from Huang et al. (2022) and Wu et al. (2023): (a) distribution of test points in GUBs;
(b) scatter plot of estimated heights and reference heights; (c) scatter plot of height data from Huang et al. (2022) and reference heights;
(d) scatter plot of height data from Wu et al. (2023) and reference heights; (e) spatial patterns of building height in Shanghai, Beijing, and
Guangzhou. Note that the areas shown in the circles represent (1) the Lujiazui Finance and Trade Zone, (2) the CBD in Chaoyang District,
and (3) a community near Tongfu Middle Road. The satellite images are from © Esri, © Maxar, © Earthstar Geographics, and the GIS user
community.

Figure 10. Distribution of building height in Europe: (a) 3D-
GloBFP; (b) WSF (Esch et al., 2022); (c) height data from Li et
al. (2022); (d) GHSL-H (Pesaresi et al., 2021).

et al., 2022, and Zhou et al., 2022) or overestimation (i.e., Li
et al., 2022, and Pesaresi et al., 2021) (Fig. 6a). Moreover, the
correlation results indicate that our building height dataset is
consistent with the reference height, with anR of 0.82 and an
RMSE of 6.14 m (Fig. 6b). Our estimations are closer to the
reference dataset across different height intervals. However,
all of these datasets show a tendency to overestimate low-
rise buildings and underestimate high-rise buildings. Specifi-
cally, the WSF (Esch et al., 2022) dataset shows a significant
overestimation of low-rise buildings, particularly those un-
der 20 m, with an R of 0.43 and RMSE of 12.40 m (Fig. 6c).

GHSL-H (Pesaresi et al., 2021) and height data from Zhou
et al. (2022) significantly underestimated the height of high-
rise buildings (> 50 m), resulting in a deviation of the fitted
line from the 1 : 1 line (Fig. 6d and e). The height dataset in
Li et al. (2022) slightly underestimates high-rise buildings,
but the underestimation is more severe compared with our
estimations (Fig. 6f).

4.3.2 Validation in the USA, China, and Europe

Our 3D-GloBFP results showed the most similar numeri-
cal distribution patterns to the reference heights across the
USA, China, and Europe (Fig. 7). The comparison in the
USA indicates that 3D-GloBFP can capture the bimodal dis-
tribution of building heights, with peaks at approximately
5 and 12 m. Furthermore, the distribution of 3D-GloBFP
in China consists of reference heights, with peaks at 13.39
and 16.13 m, respectively. Moreover, the distribution pat-
tern of 3D-GloBFP in Europe closely resembles the refer-
ence height, despite slight overestimations. Conversely, the
heights in Li et al. (2022) and GHSL-H (Pesaresi et al.,
2021) are generally overestimated with respect to the build-
ing heights across these three regions, while the height in
WSF (Esch et al., 2022) and the results in Zhou et al. (2022)
show a certain underestimation compared with the reference
heights.

In the respective regional comparisons, we first found that
3D-GloBFP outperforms other building-scale height datasets
in the USA. Our derived results can better characterize the
building heights than the dataset provided by Microsoft (Mi-
crosoft, 2020) and height data from Arehart et al. (2021),
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Figure 11. Spatial variations in building heights for different world regions: (a) map of 3D-GloBFP; (b–j) large view of representative cities
at the building scale; (k–o) large view of representative regions at a 1 km scale. Note that the color scale used in panels (k)–(o) is the same
as that shown in panel (a).

with an R of 0.68 and an RMSE of 16.42 m (Fig. 8b). Over-
all, our estimated heights tend to underestimate building
heights, especially for high-rise buildings. However, the un-
derestimation is more evident in Microsoft building heights
(Microsoft, 2020) and height data from Arehart et al. (2021),
with an R of 0.48 and 0.38, respectively (Fig. 8c and d). The
RMSE of height data from Arehart et al. (2021) and the ref-
erence height (i.e., 15.13 m) is slightly smaller than in our
derived height dataset and reference dataset. Nevertheless,
the height data from Arehart et al. (2021) more significantly
overestimated the height of low-rise buildings (< 8 m) and
underestimated the height of high-rise buildings (> 40 m). It
is worth noting that a higher data resolution (i.e., building
scale) often reveals more detail regarding local height vari-
ations and urban landscape differences, leading to increased
uncertainty.

Second, we observed that 3D-GloBFP is similar to the ref-
erence height in terms of distribution and spatial patterns in
China. The distribution results demonstrate that 3D-GloBFP
more accurately depicts the distribution of building height
in China, showing superior consistency with the reference
datasets across all height intervals (Fig. 9a). Conversely,
CNBH (Wu et al., 2023) and Huang et al. (2022) demon-
strate an overall underestimation of building heights, lack-

ing precision with respect to estimating the high-rise build-
ings in urban centers. Likewise, our derived height dataset
shows the closest height values to the reference data among
the three datasets, with anR of 0.67 and an RMSE of 13.17 m
(Fig. 9b). Notably, our correlation results surpass the datasets
of Huang et al. (2022) and Wu et al. (2023), with an R value
of 0.32 and 0.59, respectively (Fig. 9c–d). Although all of
the uncertainties in the estimated high-rise buildings are rel-
atively more considerable, the heights of Huang et al. (2022)
and Wu et al. (2023) showed a more significant difference
between estimated and reference heights. The spatial distri-
bution maps further confirm the similarity between our es-
timated height and the reference height. Our height dataset
can capture the spatial distribution and values of high-rise
buildings, including landmarks such as the Lujiazui Finance
and Trade Zone in Shanghai (Region 1) and the CBD in
the Chaoyang District in Beijing (Region 2) (Fig. 9e). In
contrast, CNBH (Wu et al., 2023) notably underestimates
heights in the CBD areas. While height data from Huang et
al. (2022) approximate the spatial patterns in Beijing, they
significantly underestimate clustered high-rise buildings in
the Lujiazui Finance and Trade Zone in Shanghai. Further-
more, our height dataset can identify the low-rise residen-
tial buildings of old urban areas (e.g., buildings near Tongfu
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Figure 12. Built-up global infrastructure: (a) total built-up infras-
tructure in each country; (b) proportion of built-up infrastructure in
each country.

Middle Road in Guangzhou; Region 3). Conversely, CNBH
(Wu et al., 2023) overestimates the heights of low-rise build-
ings in old urban areas. The results in Huang et al. (2022) are
similar to the reference height in old urban areas. However,
the results of Huang et al. (2022) misidentified contiguous
taller buildings (20–36 m) around old urban areas as high-
rise buildings (> 36 m), which may contribute to resolution
limitations, resulting in an insufficient recognition of height
heterogeneity within complex urban landscapes.

Additionally, the numerical distribution of 3D-GloBFP is
more consistent with the reference height than the other three
products in Europe (Fig. 10). The distribution of 3D-GloBFP
closely resembled that of the reference data, with similar
peak values. The reference data show the highest frequency
of building heights in the range of 2.5–5 m, while the esti-
mated data indicate the highest frequency of building heights
in the range of 5–7.5 m. However, we observed an overes-
timation of low-rise buildings with 3D-GloBFP in Europe.
Moreover, height in Li et al. (2022) and GHSL-H (Pesaresi
et al., 2021) show more obvious overestimations. In con-
trast, WSF (Esch et al., 2022) underestimates buildings with
heights larger than approximately 5 m.

4.4 Mapping of global building height

The global building height exhibited a distinct spatial pat-
tern across regions, countries, and within cities (Fig. 11). Our
global-coverage height maps indicate that low-rise build-

ings dominate globally, whereas high-rise buildings are dis-
persed. Low-rise buildings are commonly found in urban
centers and on the outskirts of urban areas across countries
and regions, whereas high-rise buildings are predominantly
concentrated in relatively developed areas within cities. The
building height map suggests a noticeable surface roughness
of the built-up environment globally. For instance, in devel-
oped regions like eastern China and the eastern USA, there
are more high-rise buildings. Meanwhile, in developing re-
gions such as sub-Saharan Africa, building heights are com-
paratively lower. Our building-scale height maps reveal sig-
nificant height heterogeneity within the cities. Specifically,
high-rise buildings are generally located in the commercial
areas of urban centers, with building heights gradually de-
creasing from the city center toward the surrounding rural
areas in a radial pattern.

4.5 Global disparities in built-up infrastructure

4.5.1 Global distribution of built-up infrastructure

Our findings revealed a notably uneven distribution of built-
up infrastructure across different countries globally. We cal-
culated the total built-up infrastructure (i.e., a sum of build-
ing volume) (Fig. 12a). We determined its global propor-
tion for each country based on 3D-GloBFP (Fig. 12b). We
found that developed nations and certain rapidly emerging
economies show a more significant proportion of the total
volume of built-up infrastructure. In contrast, countries and
regions with lower levels of economic development hold rel-
atively lower volumes of built-up infrastructure. The built-
up infrastructure in China, the USA, and several European
countries significantly surpasses that of other regions, con-
tributing the majority of the global built-up infrastructure.
Specifically, China is the country with the largest total built-
up infrastructure volume globally (5.28× 1011 m3, account-
ing for 23.9 % of the global total), followed by the USA
(3.90× 1011 m3, accounting for 17.6 % of the global total).
Other countries with significant infrastructure volumes in-
clude Germany (9.39× 1010 m3, accounting for 4.2 % of
the global total), Indonesia (6.62× 1010 m3, accounting for
3.0 % of the global total), and France (5.66× 1010 m3, ac-
counting for 2.5 % of the global total). The total volume of
built-up infrastructure in Africa is relatively low, account-
ing for a small percentage of the global total (e.g., Angola,
2.53×109 m3, accounting for 0.11 % of the global total; Zim-
babwe, 2.10× 109 m3, accounting for 0.09 % of the global
total; Tanzania, 3.99× 109 m3, accounting for 0.18 % of the
global total).

4.5.2 Comparison of building volume and area of
representative cities

The building volume and area of representative cities varied
significantly across different regions worldwide. The dispar-
ity in building volume across cities is pronounced (as seen in
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Figure 13. Building volume and area in representative cities: (a) the sum of the building footprint volume; (b) the sum of the building
footprint area.

Fig. 13). For instance, Shanghai in China (2.06×1010 m3) ex-
hibits a building volume approximately 21 times larger than
that in Pyongyang in North Korea (9.85×108 m3). We found
that the building volume of Chinese representative cities ex-
ceeds that of representative cities elsewhere in the world
due to the higher population density and larger administra-
tive divisions in these regions. It is worth noting that, while
the building area of Beijing (9.76× 108 m2) surpasses that
in Shanghai (8.49× 108 m2), the building volume in Shang-
hai (2.1× 1010 m3) is more significant than that in Beijing
(1.3× 1010 m3) due to the former’s more efficient utilization
of vertical urban space, resulting in higher average building
heights of 16.7 m in Shanghai compared with 10.0 m in Bei-
jing. In North America, the sum of building areas is simi-
lar in representative cities, but New York City has signifi-
cantly larger building volumes (6.99×109 m3). This disparity
can be attributed to the limited and expensive land resources
in New York, which promotes the city’s adoption of verti-
cal development strategies, particularly in Manhattan, where
numerous high-rise buildings are concentrated. Despite hav-
ing the most extensive building area (7.06× 109 m2) among
European representative cities, London’s overall volume is
lower (7.06× 109 m3) due to its lower average height, influ-
enced by the abundance of low-rise and historical buildings
that occupy significant space within the urban landscape.
In contrast, the building volume of representative cities in
South America, Africa, and Australia are generally small
(e.g., Brazília, Brazil, with a 2.70×108 m3 building volume;
Cape Town, South Africa, with a 1.48×109 m3 building vol-
ume; Sydney, Australia, with a 3.3× 108 m3 building vol-
ume).

4.6 Limitations and future work

While this study provides valuable insights, several limi-
tations must be acknowledged. First, the coverage is lim-
ited in certain regions, leading to tiled spatial gaps within
some countries. These gaps are due to the limited cover-
age of Microsoft Building Footprints at the time of data cre-

ation. As more building footprint datasets become available,
we will continue to update and enhance 3D-GloBFP using
comprehensive, open-source data. Second, the current ver-
sion of 3D-GloBFP has the potential to improve height esti-
mation accuracy in regions with sparse height samples (i.e.,
suburbs in South America). Integrating additional data (i.e.,
ground survey data and lidar datasets) to create more rep-
resentative samples can enhance the accuracy of building
height estimation. Additionally, the current version of 3D-
GloBFP represents building heights of a single year (i.e.,
2020), as the model inputs (i.e., multisource datasets) were
collected around that time. This temporal limitation restricts
the dataset’s ability to reflect changes over time. We are also
committed to producing 3D building datasets with tempo-
ral information to capture the dynamic changes in the urban
landscape.

5 Data availability

The 3D-GloBFP dataset is available at
https://doi.org/10.5281/zenodo.11319912 (Building height
of the Americas, Africa, and Oceania in 3D-GloBFP) (Che
et al., 2024c), https://doi.org/10.5281/zenodo.11397014
(Building height of Asia in 3D-GloBFP) (Che et al., 2024a),
and https://doi.org/10.5281/zenodo.11391076 (Building
height of Europe in 3D-GloBFP) (Che et al., 2024b). The
dataset is stored in shapefile format with the building height
in the attribute table.

6 Conclusions

In this study, we released a global building height dataset
at the individual building scale, providing detailed building
footprint information along with heights. Initially, we devel-
oped 33 height estimation models based on integrated mul-
tisource remote-sensing and building morphology features.
Next, we assessed the model performance and the dataset
quality via cross-validation with other existing national and
regional building height datasets. Our results showed that the
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derived height dataset has a high agreement with reference
data in regions worldwide, with the models’ R2 values rang-
ing from 0.66 to 0.96 and RMSE values ranging from 1.9 to
14.6 m. Moreover, estimated results are consistent with the
measured height in Google Earth Street View images, with
an R2 of 0.85. Our estimated heights also show a numeri-
cal distribution and spatial patterns that are more similar to
the reference heights than other existing datasets. Next, we
provided a seamless building height map globally. The de-
tailed building height map reveals the distinct landscape het-
erogeneity within global cities: high-rise buildings are typi-
cally located in city centers, with heights gradually decreas-
ing toward rural areas. Finally, we analyzed the built-up in-
frastructure in countries and cities by summarizing the total
building volume. The results reveal a significant variation in
the built-up infrastructure distribution across countries, with
developed nations and certain emerging economies holding a
larger proportion. Furthermore, substantial disparities in both
3D and 2D built-up infrastructure are evident across repre-
sentative cities worldwide, influenced by factors such as dif-
ferent development stages and patterns.

The 3D-GloBFP map is the first individual building height
dataset to depict the most detailed building 3D morphology
worldwide, offering great potential to support studies ranging
from macroscale global analyses to microscale investigations
within urban areas. Our developed dataset provides precise
height information and serves as the base input for urban
analysis and simulations, such as climate modeling (He et
al., 2019), population simulation (Zhao et al., 2021), building
function classification (Zheng et al., 2024), and disaster as-
sessments (Hossain and Meng, 2020). Moreover, our dataset
also contributes to studies on the interaction between hu-
man society and ecosystems (Zhong et al., 2021; Rodriguez
Mendez et al., 2024; Güneralp et al., 2017; Arehart et al.,
2022), such as urban heat island (UHI) assessment (Y. Li et
al., 2020), carbon footprint accounting (C. Z. Li et al., 2024),
building shade studies (Watanabe et al., 2014), and building
stock analysis (Frantz et al., 2023). These studies can further
contribute to addressing critical environmental challenges re-
lated to urbanization, thereby promoting the achievement of
sustainable development.
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