Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3213-2024
https://doi.org/10.5194/essd-16-3213-2024
Data description paper
 | 
10 Jul 2024
Data description paper |  | 10 Jul 2024

ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021

Qinghang Mei, Zhao Zhang, Jichong Han, Jie Song, Jinwei Dong, Huaqing Wu, Jialu Xu, and Fulu Tao

Related authors

AsiaRiceYield4km: seasonal rice yield in Asia from 1995 to 2015
Huaqing Wu, Jing Zhang, Zhao Zhang, Jichong Han, Juan Cao, Liangliang Zhang, Yuchuan Luo, Qinghang Mei, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 15, 791–808, https://doi.org/10.5194/essd-15-791-2023,https://doi.org/10.5194/essd-15-791-2023, 2023
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025,https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
A flux tower site attribute dataset intended for land surface modeling
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025,https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024,https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Global 30 m seamless data cube (2000–2022) of land surface reflectance generated from Landsat 5, 7, 8, and 9 and MODIS Terra constellations
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024,https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary
Mapping rangeland health indicators in eastern Africa from 2000 to 2022
Gerardo E. Soto, Steven W. Wilcox, Patrick E. Clark, Francesco P. Fava, Nathaniel D. Jensen, Njoki Kahiu, Chuan Liao, Benjamin Porter, Ying Sun, and Christopher B. Barrett
Earth Syst. Sci. Data, 16, 5375–5404, https://doi.org/10.5194/essd-16-5375-2024,https://doi.org/10.5194/essd-16-5375-2024, 2024
Short summary

Cited articles

Ahmed, M., Seraj, R., and Islam, S. M. S.: The k-means Algorithm: A Comprehensive Survey and Performance Evaluation, Electronics, 9, 1295, https://doi.org/10.3390/electronics9081295, 2020. 
Arthur, D. and Vassilvitskii, S.: k-means++: The advantages of careful seeding, Stanford InfoLab Technical Report, No. 2006-13, Stanford University, http://ilpubs.stanford.edu:8090/778/ (last access: 3 July 2024), 2006. 
Bach, F. and Jordan, M.: Learning Spectral Clustering, in: Advances in Neural Information Processing Systems, Proceedings of the 16th International Conference on Neural Information Processing Systems (NIPS 2003), Vancouver, Canada, 9–12 December 2003, MIT Press, https://proceedings.neurips.cc/paper_files/paper/2003/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf (last access: 3 July 2024), 2003. 
Chabalala, Y., Adam, E., and Ali, K. A.: Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes, Remote Sens., 14, 2621, https://doi.org/10.3390/rs14112621, 2022. 
Chen, D., Huang, J., and Jackson, T. J.: Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands, Remote Sens. Environ., 98, 225–236, https://doi.org/10.1016/j.rse.2005.07.008, 2005. 
Download
Short summary
In order to make up for the lack of long-term soybean planting area maps in China, we firstly generated a dataset of soybean planting area with a spatial resolution of 10 m for major producing areas in China from 2017 to 2021 (ChinaSoyArea10m). Compared with existing datasets, ChinaSoyArea10m has higher consistency with census data and further improvement in spatial details. The dataset can provide reliable support for subsequent studies on yield monitoring and food security.
Altmetrics
Final-revised paper
Preprint