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Abstract. Soybean, an essential food crop, has witnessed a steady rise in demand in recent years. There is a
lack of high-resolution annual maps depicting soybean-planting areas in China, despite China being the world’s
largest consumer and fourth-largest producer of soybean. To address this gap, we developed the novel Regional
Adaptation Spectra-Phenology Integration method (RASP) based on Sentinel-2 remote sensing images from the
Google Earth Engine (GEE) platform. We utilized various auxiliary data (e.g., cropland layer, detailed phenol-
ogy observations) to select the specific spectra and indices that differentiate soybeans most effectively from other
crops across various regions. These features were then input for an unsupervised classifier (K-means), and the
most likely type was determined by a cluster assignment method based on dynamic time warping (DTW). For
the first time, we generated a dataset of soybean-planting areas across China, with a high spatial resolution of
10 m, spanning from 2017 to 2021 (ChinaSoyArea10m). The R2 values between the mapping results and the
census data at both the county and prefecture levels were consistently around 0.85 in 2017–2020. Moreover, the
overall accuracy of the mapping results at the field level in 2017, 2018, and 2019 was 77.08 %, 85.16 %, and
86.77 %, respectively. Consistency with census data was improved at the county level (R2 increased from 0.53 to
0.84) compared to the existing 10 m crop-type maps in Northeast China (Crop Data Layer, CDL) based on field
samples and supervised classification methods. ChinaSoyArea10m is very spatially consistent with the two exist-
ing datasets (CDL and GLAD (Global Land Analysis and Discovery) maize–soybean map). ChinaSoyArea10m
provides important information for sustainable soybean production and management as well as agricultural sys-
tem modeling and optimization. ChinaSoyArea10m can be downloaded from an open-data repository (DOI:
https://doi.org/10.5281/zenodo.10071427, Mei et al., 2023).
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1 Introduction

Soybean, one of the most important crops around the world,
plays an important role in diet and livestock breeding (Hart-
man et al., 2011). As the global demand for protein and meat
increases, China’s demand for soybeans keeps rising nowa-
days. In the past decade, China has on average accounted for
over 30 % of the world’s total soybean consumption (Liu and
Fan, 2021). Despite being the fourth-largest producer of soy-
beans after Brazil, the United States, and Argentina, China’s
self-sufficiency rate is low (FAOSTAT, 2023; Wang et al.,
2023). Given the rapid growth in demand and the shortages
of domestic supply due to lower yield and self-sufficiency,
mapping soybean-planting areas across China is crucial for
sustainable soybean production and management (Cui and
Shoemaker, 2018; Liu et al., 2021).

Soybean-planting areas in some regions of China were
mapped in previous studies (You et al., 2021; Huang et al.,
2022; Chen et al., 2023), but long-term soybean maps over
all major producing areas in China have not been available.
A decision tree method based on phenological and NIR re-
flectance differences was applied in the state of Parana in
Brazil to produce corn–soybean maps with a resolution of
500 m (Zhong et al., 2016). However, this study was limited
to one state and a simple planting pattern (including soybeans
and corn only) at a medium resolution. The field size in China
is generally small, and 500 m resolution maps will inevitably
bring a pixel-mixing problem (Lowder et al., 2016). More
recently, 20-year soybean–corn maps with 30 m resolution
across the US Midwest were generated by collecting a large
number of samples and using green chlorophyll vegetation
index (GCVI) time series features, which is a large-scale,
high-precision soybean mapping attempt (Wang et al., 2020).
Similarly, high-precision soybean maps in China were also
made by collecting major crop samples and utilizing spec-
tral reflectance and vegetation index characteristics for 2017–
2019 in Northeast China (You et al., 2021). Some studies
have utilized unique canopy water content and chlorophyll
content to produce soybean maps in the three provinces of
Northeast China from 2017 to 2021 (Huang et al., 2022).
Other studies made laudable efforts to craft a comprehen-
sive national maize–soybean map for China in 2019 by com-
bining field data and regression estimators (Li et al., 2023).
However, these studies were confined to some degree be-
cause of the specific region or a single year, despite prior
attempts to accurately map soybean cultivation areas. Long-
term annual soybean maps over mainly planting areas in
China with a higher spatial resolution have not been avail-
able so far.

Mapping crops by remote sensing can be categorized by
four methods: (1) classifying supervision based on a large
number of field samples or high-quality training labels (Song
et al., 2017; You et al., 2021; Shangguan et al., 2022; Li et
al., 2023); (2) developing some composite indexes based on
feature bands and determining the binary classification using

appropriate thresholds (Huang et al., 2022; Chen et al., 2023;
Zhou et al., 2023); (3) segmenting thresholds based on prior
knowledge such as phenology or spectra (Zhong et al., 2016);
and (4) combining unsupervised classification with cluster
assignment (Wang et al., 2019; You et al., 2023). Supervi-
sion classification methods rely heavily on ground samples,
while the second and third methods are both based on re-
liable and accurate thresholds. However, mapping soybean
with these methods was mainly applied in small areas, with
very few covering a larger region. Because of sufficient field
samples, supervision classification can achieve maps with a
higher accuracy, which is a relatively mature method used
widely. However, collecting sufficient field samples is ex-
tremely time-, money-, and labor-consuming and unsuitable
for long-term years over larger areas (Luo et al., 2022). Fur-
thermore, the threshold-based methods (the second and third
ones) have been applied to large areas; however, determining
the thresholds will inevitably bring significant uncertainty,
especially for areas with high heterogeneity in climate, en-
vironment, and planting patterns. Thus, these methods show
low reproducibility, further hindering their application across
diverse geographic areas. As for mapping soybean, it is still
a big challenge due to their similar growth characteristics
to many other summer crops (Wang et al., 2020; Di Tom-
maso et al., 2021). The thresholds that work well in some
areas did not perform well in other areas (Graesser and Ra-
mankutty, 2017; Guo et al., 2018). These limitations restrict
accurate soybean map availability, especially over large re-
gions in China. Given the challenges of collecting sufficient
field samples over larger regions and the limited adaptability
to environmental variations of the threshold-based method,
previous studies did not achieve multiyear, high-resolution
soybean maps nationwide.

Along this line, the adaptive classification approach tai-
lored to distinct areas, i.e., method (4), is highly effective for
accurately mapping crops over a larger region. Such unsuper-
vised classification can effectively address the above issues
such as insufficient samples and limited spatial scalability by
training classifiers separately in different areas (Ma et al.,
2020; Wang et al., 2022). Remarkable successes have been
achieved when applying the approach to the United States
in mapping soybean and maize (Wang et al., 2019). Due to
the different climatic and environmental conditions, together
with huge differences in cultivating patterns over various ar-
eas, crop phenological information has become an impor-
tant reference for crop classification. For example, the phe-
nological observations at the agricultural meteorological sta-
tions were employed as a reference to detect the critical phe-
nological dates of pixels through inflexion- and threshold-
based methods, thereby generating planting areas for three
major crops in China with R2 greater than 0.8 compared to
county statistics (Luo et al., 2020). The time-weighted dy-
namic time warping method based on the similarity of phe-
nological curves of the Normalized Difference Vegetation In-
dex (NDVI) has successfully estimated the planting area of
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maize in China, with provincial averages for producer and
user accuracies at 0.76 and 0.82, respectively (Shen et al.,
2022). Phenologically based vertical transmit horizontal re-
ceive (VH) polarized time series accurately captured tempo-
ral characteristics of soybeans and thus were used as an un-
supervised classifier to map the seasonal soybeans, achieving
an overall accuracy of over 80 % in Ujjain district (Kumari et
al., 2019). By integrating an unsupervised classification’s re-
gional scalability with specific local soybean growth signs
from phenological data, we fully leverage soybean’s char-
acteristic spectra and vegetation indices during key growth
periods across different areas. By training the local unsuper-
vised classifier to accommodate the crop growth variability
across regions and by avoiding extensive jobs in collecting
samples, the approach provides an effective solution for re-
gional adaptive large-area crop mapping.

The main objectives of this study are (1) to develop a novel
framework to map a soybean-planting area over a larger re-
gion, (2) to test the generalization ability of the framework
and assess the accuracy of maps at different levels, and (3) to
provide a new data product of a soybean-planting area across
mainly planting areas in China for multiple years with a high
spatial resolution.

2 Materials and methods

2.1 Study area

We selected 14 major soybean-producing provinces (includ-
ing Chongqing Municipality) as the study area, which cov-
ers over 90 % of the total planting area in China (Na-
tional Bureau of Statistics of China, 2024) (Fig. 1). The
soybean-planting areas were classified into four agroeco-
logical zones (AEZs) based on their diverse geographical
environment and planting habits, including the Northeast
single-cropping ecoregion (NE, Zone I), Huang–Huai–Hai
double-cropping ecoregion (HH, Zone II), Middle–Lower
Yangtze River double-cropping ecoregion (MLY, Zone III),
and Southwest double-cropping ecoregion (SW, Zone IV)
(Wang and Gai, 2002). In particular, Zone I and Zone II are
the main soybean producers in China, accounting for more
than 70 % of the national soybean-planting area.

2.2 Data

2.2.1 Remote sensing data

We used Sentinel-2A/B Multi-Spectral Instrument (MSI)
Level-1C top-of-atmosphere (TOA) reflectance data dur-
ing 2017–2021 (https://developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S2, last access: 10 Septem-
ber 2023). Because of the longer-term coverage of Sentinel-
2 Level-1C TOA reflectance data and the nearly identical
spectral profile time series extracted from both products, we
opt to use Level-1C products instead of Level-2A products,

considering that TOA images fully meet the crop classifica-
tion requirements (You and Dong, 2020; Han et al., 2021;
Luo et al., 2022). Sentinel-2 sensors provide observations of
13 spectral bands at 10 m or 20 m resolution. The red-edge
bands and short-wave infrared bands equipped with Sentinel-
2 play a great role in enhancing the accuracy of crop classi-
fication (Luo et al., 2021; Marshall et al., 2022). In addition,
the S2 cloud probability dataset provided by the official can
identify cloud pollution areas and can be used for cloud re-
moval processing.

2.2.2 In situ phenological observations

The soybean phenology observations in the study area from
2017 to 2020 were obtained from 76 agricultural meteoro-
logical stations (AMSs) governed by the China Meteorologi-
cal Administration (CMA) (https://data.cma.cn/, last access:
15 May 2022). Phenology information on each AMS is ob-
served on alternate days or once a day, and key phenological
events such as sowing, emergence, three-true-leaves, branch-
ing, flowering, podding, full seeding, and maturity are noted
by technicians as ensuring accuracy. We defined the period
from sowing to flowering as the vegetative growth period
(VGP) and the period from flowering to maturity as the re-
productive growth period (RGP) of soybeans (Gong et al.,
2021). In the cases of missing observations for a specific
year, we inserted the average of the two closest observations
before and after the year. For instance, if there were missing
data of the flowering date in 2017, we filled them with the
average of flowering records in 2016 and 2018 at the same
station.

2.2.3 Cropland data

The Global Land Analysis and Discovery (GLAD) cropland
product with a 30 m resolution in China was used as a crop-
land mask (https://glad.umd.edu/dataset/croplands, last ac-
cess: 10 September 2023) (Potapov et al., 2022). The crop
layer was conducted every 4 years from 2000 to 2019. We
used the file for the 2016–2019 interval, which is closest to
the study years. GLAD’s overall accuracy of pixel-wise val-
idation is 0.88 in China, consistent with the census data. The
accuracy of the product is higher than that of similar prod-
ucts, making it reliable for crop mapping (Zhang et al., 2022).

2.2.4 Census data and ground samples

To determine the number of clusters at the prefecture level
and validate the accuracy of the soybean maps at the county
(2017–2018) or prefecture (2019–2020) levels, we utilized
agricultural census data obtained from the statistical year-
book of each county or province by accessing the National
Bureau of Statistics of China (http://www.stats.gov.cn/, last
accessed: 8 June 2023).
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Figure 1. The study area including 14 provinces (including Chongqing Municipality) and the spatial distribution of ground samples and
reference points across China in (a) 2019, (b) 2017, and (c) 2018. The 14 provinces include Heilongjiang, eastern Inner Mongolia, Anhui,
Henan, eastern Sichuan, Jilin, Hubei, Guizhou, Jiangsu, Yunnan, Shandong, Shaanxi, Shanxi, and Chongqing. Stars, triangles, and dots
represent the locations of soybean agricultural meteorological stations (AMSs), ground samples, and reference points, respectively.

We used both ground samples and reference points based
on available datasets to determine soybean standard curves
and to assess the reliability of the soybean maps (Fig. 1).
All the points were randomly divided into a 3 : 7 ratio
for standard curve calculation and accuracy validation, re-
spectively (Dong et al., 2020). We collected ground sam-
ples from field surveys from 2017 to 2019 in Heilongjiang
(HLJ), Inner Mongolia (NMG), Anhui (AH), Henan (HN),
and Jilin (JL), which account for more than 70 % of the
country’s total soybean-planting area (Table 1). Crop types
(soybean, maize, rice, wheat, others) and other land cover
types were recorded. To ensure the impartiality of verifica-
tion results, we only selected crop samples for validation. In
provinces without ground samples, we manually selected ref-
erence points on large soybean plots based on the GLAD
(https://glad.earthengine.app/view/china-crop-map, last ac-
cess: 8 March 2024) soybean layer. The criteria selected are
(1) a location in large plots, (2) a false color composite image
(R: NIR, G: SWIR2, B: SWIR1) at the peak of the grow-
ing season (Song et al., 2017; You and Dong, 2020), and
(3) phenological characteristics similar to local observations.
Additionally, the reference points of maize, single-cropping
rice, and double-cropping rice in 2019 were selected based

on the GLAD maize layer, a high-resolution single-season
rice map (https://doi.org/10.57760/sciencedb.06963, Shen et
al., 2023b), and a double-season rice map (https://doi.org/10.
12199/nesdc.ecodb.rs.2022.012, Pan and Yuan, 2022) with
the same principle to explore the spectral characteristics of
crops in each subzone of the studied areas. The overall accu-
racy of all the available maps in 2019 is above 85 % (Pan et
al., 2021; Li et al., 2023; Shen et al., 2023a).

2.2.5 Existing products

We utilized the crop map Crop Data Layer (CDL)
of Northeast China from 2017 to 2019 (https:
//figshare.com/articles/figure/The_10-m_crop_type_maps_
in_Northeast_China_during_2017-2019/13090442, last
access: 10 September 2023) for consistency comparison
with census data and the 2019 GLAD maize–soybean map
as a reference for spatial detail comparison with ChinaSo-
yArea10m. The CDL is a 10 m resolution crop map dataset
of Northeast China from 2017 to 2019 that was created
using Sentinel-2 key spectral bands and vegetation indices,
multiyear field samples, and random forest classifiers (You
et al., 2021). The maps include three crop types: rice,
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Table 1. Summary of ground samples for validation.

HLJ NMG AH HN JL

2017 Soybean 1013 451 – – 0
Maize 1061 146 – – 11
Rice 513 38 – – 13
Other crops 124 459 – – 0

2018 Soybean 525 746 72 15 117
Maize 764 479 73 20 217
Rice 587 42 0 0 71
Wheat 10 141 0 0 0
Other crops 70 1069 0 0 0

2019 Soybean 901 562 51 – 26
Maize 468 463 53 – 197
Rice 392 36 0 – 148
Other crops 62 445 0 – 36

maize, and soybeans. The GLAD maize–soybean map is a
national classification map for 2019 that was produced using
random forests, based on field surveys and area estimates
(Li et al., 2023). The agreement (R2) between GLAD and
the statistics is higher than 0.9, and the overall mapping
accuracy is greater than 90 %, making it a reliable reference
for comparing spatial details. We extracted the soybean
layers from all the existing products.

2.3 Methods

Mapping soybean consists of three main steps (Fig. 2): data
processing, soybean mapping, and accuracy assessment. It
is important to note that the Regional Adaption Spectra-
Phenology Integration (RASP) soybean mapping strategy in-
volves several key steps, including potential area identifica-
tion, feature selection, unsupervised learning, and cluster as-
signment. Finally, we conducted multiple comparisons be-
tween our soybean products with others, including census
data, ground samples, and existing datasets, to evaluate the
accuracy of our data product.

2.3.1 Data processing

We employed the simple cloud score algorithm (Oreopou-
los et al., 2011), the QA60 band, the cirrus band, and the
cloud probability dataset to identify cloud masks. The fol-
lowing isolated cloud masks are created: (1) cloud and cirrus
identified by the QA60 band, (2) cirrus identified by the cir-
rus band in Level-1C products, (3) pixels with a cloud score
of less than 0.9, and (4) pixels with a cloud probability of
more than 70. Each algorithm has its own strengths and limi-
tations. For example, the QA60 band removes a large number
of thin cirrus clouds while ignoring small clouds with thicker
resolution, and the fixed threshold values of cloud score and
cloud probability may introduce uncertainties. Therefore, we

masked the pixels identified as clouds by at least two meth-
ods to achieve better cloud removal effects. Then, we used
the temporal dark outlier mask (TDOM) method to elimi-
nate cloud shadows (Housman et al., 2018). We calculated
the SIWSI and TCARI based on the Sentinel-2 image set
processed above (see Sect. 2.3.2, “Feature selection”). To fill
the data gaps caused by cloud removal and smooth anoma-
lies, the Sentinel-2 time series was reconstructed by the mov-
ing median composite method, resulting in a 10 d interval
composite time series. We set the half-window size for the
moving median methods to 10 d considering the 5 d revisit
cycle of Sentinel-2 and computational efficiency. In areas
with notably limited clear observations, a gap-filling method
was conducted on the composite time series. This method in-
volves substituting any given observation with the median
value from three neighboring observations (i.e., previous,
current, and subsequent observations) to maximize the con-
tinuity and completeness of the time series.

2.3.2 RASP soybean mapping strategy

1. Potential area identification. To minimize the impact
from non-croplands, we firstly determined the potential
cropping areas by masking the GLAD cropland layer
over the study area. Sentinel-2 images within the grow-
ing season were extracted by taking the sowing date and
harvesting date recorded at the nearest agricultural me-
teorological station (AMS) as the start and end dates
of the growing season, respectively. Based on the crop-
land extracted, we filtered out the pixels exhibiting an
Enhanced Vegetation Index (EVI) maximum value dur-
ing the growing season of less than 0.4 to remove fal-
low land according to the analysis of ground samples
(Fig. S1) and previous studies, which found that almost
all the crops had maximum EVI values above 0.4 (Li et
al., 2014; Zhang et al., 2017; Han et al., 2022). The EVI
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Figure 2. The Regional Adaption Spectra-Phenology Integration methodology for retrieving the soybean-planting area. AMS: agricultural
meteorological station; DOYpodding: podding date recorded by the nearest AMS; EVI: Enhanced Vegetation Index; DOYpeak: date when the
EVI reached its peak; DOYseed: full-seed date recorded by the nearest AMS; SOS: start of the growing season; EOS: end of the growing
season; SWIR1: Short-wave infrared band1; SWIR2: Short-wave infrared band2; SIWSI: Short-wave Infrared Water Stress Index; RE1: Red
Edge band 1; RE2: Red Edge band 2; RE3: Red Edge band 3; NIR: near-infrared band; TCARI: Transformed Chlorophyll Absorption in
Reflectance Index; VGP: vegetative growing period; RGP: reproductive growing season.

is a vegetation index with high sensitivity in biomass:

EVI=G×
ρNIR− ρRed

ρNIR+C1× ρRed−C2× ρBlue+L
, (1)

where ρNIR, ρRed, and ρBlue represent the reflectance
of the NIR (835.1 nm (S2A)/833 nm (S2B)), red
(664.5 nm (S2A)/665 nm (S2B)), and blue (496.6 nm
(S2A)/492.1 nm (S2B)), respectively.

The greenest period of soybean typically occurs be-
tween the podding date and the full-seed date, with a
difference of more than 1 month from the peak date of
nonseasonal crops, such as wheat (Fig. 4a). We obtained
the phenological observations recorded by the nearest
AMS as a reference and set the restricted time window
from 15 d before the podding date (DOYpodding) to 15 d
after the full-seed date (DOYseed) (Fig. 3). We generated
the potential area by eliminating pixels whose EVI max-
imum occurs outside the given time window because the
phenological difference of soybeans in adjacent areas
generally does not exceed 1 month. Moreover, the im-
pacts of cloud-covered pixels appearing in the proposed
period are minimized since we have reconstructed the
original EVI time series.

2. Feature selection. By exploring the spectral character-
istics of crop field samples, we identified reflectance
bands and vegetation indices that are significantly as-
sociated with soybeans but that are different from other
crops. We selected six bands and two spectral indices
for crop mapping, including the NIR band, Red Edge
band 1 (RE1), Red Edge band 2 (RE2), Red Edge band
3 (RE3), Short Wave Infrared band 1 (SWIR1), Short
Wave Infrared band 2 (SWIR2), Shortwave Infrared
Water Stress Index (SIWSI), and Transformed Chloro-
phyll Absorption in Reflectance Index (TCARI). The
SIWSI is an indicator of canopy water content that re-
flects soil moisture variations and canopy water stress
better than the Normalized Difference Vegetation In-
dex (NDVI) (Fensholt and Sandholt, 2003; Olsen et
al., 2015). TCARI is an indicator which is sensitive to
chlorophyll concentration (Sobejano-Paz et al., 2020).
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The two spectral indices were calculated as follows:

SIWSI=
ρSWIR1− ρNIR

ρSWIR1+ ρNIR
, (2)

TCARI= 3× ((ρVRE1− ρRed)− 0.2

× (ρVRE1− ρGreen)× ρVRE1/ρRed), (3)

where ρSWIR1, ρNIR, ρVRE1, ρRed, and ρGreen
represent the reflectance of the Short Wave In-
frared band1 (SWIR1, 1613.7 nm (S2A)/1610.4 nm
(S2B)), NIR (835.1 nm (S2A)/833 nm (S2B)), Red
Edge 1 (VRE1, 703.9 nm (S2A)/703.8 nm (S2B)), red
(664.5 nm (S2A)/665 nm (S2B)), and green (560 nm
(S2A)/559 nm (S2B)), respectively.

During the early growing season of soybean (∼DOY
120–190 in Zone I), the flooding signal of rice was ob-
vious due to the transplanting period. This resulted in
a significantly lower SWIR reflectance and SIWSI for
rice compared to those of soybean (Fig. 4f–h). SWIR
bands and SIWSI during the vegetative growing period
(VGP) of soybean can effectively distinguish dryland
crops (such as soybean and maize) from paddy crops
(such as rice).

Soybean has a lower water content during the mid-
dle and later growing seasons (∼DOY 190–220 in
Zone I) than maize, resulting in higher reflectivity in
SWIR bands (Fig. 4b, f, g) (Chen et al., 2005). It
has been demonstrated that SWIR and red-edge bands
can effectively differentiate between soybean and maize
(Fig. 4c–g) (Zhong et al., 2016; You and Dong, 2020;
J. Liu et al., 2018). Additionally, the chlorophyll con-
tent of soybean in the middle- and late-growth peri-
ods was lower than that of maize, leading to signif-
icantly higher TCARI values. Meanwhile, the timing
of TCARI reaching saturation significantly differs be-
tween soybean, rice, and wheat (Fig. 4i). All these
spectral–phenological characteristics are also applica-
ble to soybeans planted in other subzones (Figs. S2–
S4). Based on these findings, we selected NIR, red-edge
bands, short-wave infrared bands, and the TCARI dur-
ing the soybean RGP as key features.

3. Unsupervised learning. We utilized the K-means al-
gorithm to classify potential area data by using the
wekaKMeans Clusterer provided by Google Earth En-
gine (GEE). The m samples are divided into k clus-
ters by alternately assigning samples to the nearest clus-
ter centroid measured by the Euclidean distance or the
Manhattan distance and updating the cluster centroid to
the mean of the samples assigned to the cluster. This
approach had been widely used in land cover classifi-
cation and crop mapping (Xiong et al., 2017; Wang et
al., 2019). We used the detailed phenological records
at AMSs to identify soybean growth periods and se-
lected the spectra and vegetation indices within specific

growth periods (VGP, RGP) as input features. The clas-
sifier was trained individually on each prefecture based
on the number of clusters of k input. The cluster num-
ber k is defined as the number of “major crops” that
constitute 95 % of the total area for seasonal crops (in-
cluding rice, maize, soybean, cotton, peanuts, sesame,
sweet potato, and sorghum) according to prefecture-
level statistics, plus one for “other crops”.

4. Cluster assignment. To identify the most likely clus-
ter that represents soybean, we randomly selected 100
points per cluster and extracted feature series. We then
used the dynamic time warping (DTW) method to mea-
sure the similarity between each cluster’s eight fea-
tures involved in classification and the soybean standard
curves. We averaged the data of 30 % of the samples in
each subzone to establish the standard curves, reducing
the impact of regional phenological variations. The time
coverage of Zones I–IV was set to April–September,
May–October, June–October, and August–November,
respectively, which corresponds to the soybean-growing
season. The cluster with the minimal average of eight
DTW values was identified as the soybean cluster. DTW
is a flexible algorithm that allows for deviations in
time between two sequences, and it calculates the min-
imum distance between them by finding misalignment
matches between elements. This approach is widely
used in land cover and crop identification due to its abil-
ity to handle time distortions associated with seasonal
changes (Guan et al., 2016; Dong et al., 2020).

2.3.3 Accuracy assessment

To assess the accuracy of the soybean maps we generated,
we validated and compared the results using (1) county- and
prefecture-level census data, (2) ground samples, and (3) ex-
isting products. Since the county-level statistics after 2019
were not fully collected, we used the county-level statistics
for 2017–2018 and the prefecture-level statistics for 2019–
2020 to calculate the R2 and RMSE of the mapped area with
the following equations:

R2
= 1−

∑n
i=1(si − yi)2∑n
i=1(si − s)2 , (4)

RMSE=

√∑n
i=1(si − yi)2

n
, (5)

where si and yi are the statistical and mapped soybean areas
for the county (prefecture) i, s is the average statistical area,
and n represents the total number of counties (prefectures).
We calculated the local crop-mapping area based on the Uni-
versal Transverse Mercator (UTM) projection corresponding
to the location of the province.
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Figure 3. Schematic diagram of seasonal crop identification for (a) single- and (b) double-cropping systems.

We also used ground samples during 2017–2019 to ver-
ify the authenticity of the soybean maps. Confusion matrices
were calculated as follows:

PA=
Ni

Ri
, (6)

UA=
Ni

Ci
, (7)

OA=
Nc

A
, (8)

F1 = 2×
UA×PA
UA+PA

, (9)

where Ni is the number of correctly identified validation
samples of class i, Ri is the number of ground validation
samples of class i, Ci is the number of validation samples
classified as class i, Ci is the number of validation samples
classified as class i, Nc is the total number of correctly iden-
tified validation samples, and A is the total number of vali-
dation samples. PA, UA, and OA represent the producer ac-
curacy, user accuracy, and overall accuracy, respectively.

To ensure that the products are accurate not only in
quantity but also in space, we further compared ChinaSo-
yArea10m with existing products in detail space.

3 Results

3.1 Accuracy assessment

We utilized the available census data from 2017 to 2020
(at the county level in 2017–2018 and the prefecture level
in 2019–2020) to verify the accuracy of the soybean maps
across the entire studied area. The annual ChinaSoyArea10m
is consistent with the census data (R2>0.8), with R2 val-
ues of 0.84, 0.85, 0.82, and 0.86 for 2017, 2018, 2019,
and 2020, respectively (Fig. 5). These results demonstrate
that our RASP method is interannually robust and can ac-
curately capture the annual dynamics of soybean-planting

areas. The scattered points are generally distributed around
the 1 : 1 line, without large overestimations or underesti-
mations. However, the areas are overestimated for counties
with planting areas<20 kha or prefectures with planting ar-
eas<100 kha (Fig. 5). This uncertainty, particularly overes-
timation, could be caused by the low proportion of soybean
cultivation. If maize or other same-season crops are planted
in a much higher proportion than soybeans there, distinctly
recognizing soybeans (as a less prevalent crop) as a separate
category will be a big challenge for classifiers, consequently
resulting in misclassified clusters, including maize or other
crops.

The mapping accuracy in Zone I closely matched county-
level statistics, showing high consistency (R2

= 0.86). Zones
II–IV also demonstrated reasonable agreement (R2

= 0.50–
0.69) despite relatively lower accuracy due to the scarcer
planted areas (Fig. S5). No significant trend deviation from
statistics was indicated for the mapping area in Zone I, with
slight overestimations for Zones II and III and underesti-
mations for Zone IV (Fig. S5). These accuracy variations
are acceptable given the challenges in accurately identifying
soybeans in regions where they are planted less prevalently.
Specifically, maize is more dominant than soybean in Zone
II, while Zone III is characterized by diverse crops and com-
plex planting patterns. Underestimation in Zone IV is possi-
bly due to fewer clear observations in the southwest. Never-
theless, the overall accuracy across the zones is acceptable.

ChinaSoyArea10m is consistent with census data com-
pared to the existing product (CDL) (You et al., 2021), using
both the county level in 2018 and the prefecture level in 2019
(Fig. 6). The CDL’s results are consistent with census data at
the prefecture scale, with more overestimations at the county
level (Fig. 6), implying that the comparison at a finer scale
would reveal more details. ChinaSoyArea10m is consistent
with statistics at both levels (R2

∼ 0.85), with R2 increases
of 0.31 compared with the CDL at the county level (Fig. 6a).
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Figure 4. Temporal profiles of (a)–(i) major crops in Northeast China and (j) key soybean phenological periods by region based on ground
samples. Lines depict the mean values of different crops, and shaded areas depict error bars with 1 positive or negative standard deviation.
The number at the bottom represents the key phenological periods of soybean: 1 – sowing, 2 – flowering, 3 – seed-filling, and 4 – maturity.

Furthermore, we used ground samples in 2017–2019 to
validate the reliability of the soybean maps. Since the
soybean-planting area maps are 0–1 binary images, we cate-
gorized the ground samples into soybean and non-soybean
(maize, rice, wheat, and other crops). The verification re-
sults based on ground samples indicated that the overall ac-
curacy of soybean maps during 2017–2019 was in the range
of 77.08 % to 86.77 %. The F1 scores of soybeans increased
from 2017 to 2019 (0.69, 0.75, and 0.84, respectively) (Ta-
ble 2). The variance in accuracy among years could be at-
tributed to the quality of Sentinel-2 images, which had been
indicated in previous studies (Liu et al., 2020; Han et al.,
2021). The overall accuracy for each subzone in 2019 var-

ied from 83.58 % to 90.67 % (Table S1). Specifically, Zone
I demonstrated the highest producer accuracy for soybean
at 88.31 %, in line with its high consistency with statistics.
Zone III achieved the highest overall accuracy at 90.67 %,
attributed to its superior user accuracy for soybean, indi-
cating fewer misclassifications and effective differentiation
from non-soybean crops (Table S1). The producer’s accuracy
in Zone IV was relatively lower at 63.89 %, possibly due to
the limited samples, high heterogeneity, and fewer clear ob-
servations (Table S1).
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Figure 5. Comparison of soybean areas with statistics in (a) 2017 at the county level, (b) 2018 at the county level, (c) 2019 at the prefecture
level, and (d) 2020 at the prefecture level.

Figure 6. Comparison of soybean areas of ChinaSoyArea10m and the CDL with statistics in (a) 2018 at the county level and (b) 2019 at the
prefecture level.

3.2 Spatial distributions of soybean-planting areas

Based on the soybean maps, we further analyzed the spatial
patterns of soybean distribution in China during 2017–2021.
There have been small changes in the spatial distribution of

soybean in China in recent years (Figs. 7–8). Several hotspots
were obviously observed in Heilongjiang Province, eastern
Inner Mongolia, and northern Anhui, especially for eastern
Inner Mongolia and western Heilongjiang, extensively and
densely distributed by soybean fields (Fig. 8b–c). In Region
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Table 2. Confusion matrix of the soybean maps during 2017–2019.

Reference Map Producer accuracy User accuracy F1 score Overall accuracy

Soybean Non-soybean

2017 Soybean 679 352 65.86 % 72.47 % 0.69 77.08 %
Non-soybean 258 1372 84.17 % 79.58 % 0.82

2018 Soybean 799 246 76.46 % 74.19 % 0.75 85.16 %
Non-soybean 278 2208 88.82 % 89.98 % 0.89

2019∗ Soybean 1279 235 84.48 % 83.32 % 0.84 86.77 %
Non-soybean 256 1940 88.34 % 89.20 % 0.89

∗ Including ground samples and nationwide reference points based on existing datasets.

II, soybean was planted at a larger scale, mainly concentrated
in northern Anhui (Fig. 8d) and extensively distributed in
Henan and Shandong (Fig. 8e). Soybeans in other provinces
of Regions II, III, and IV had a scattered distribution, espe-
cially in the southwestern mountainous region (Fig. 8f–h).

To further compare soybean maps in detail, we compared
ChinaSoyArea10m with the GLAD maize–soybean map and
CDL data products in space. The GLAD product is a 10 m
resolution maize–soybean map of China in 2019, and its
R2 values with provincial and prefecture statistics were re-
ported to be 0.93 and 0.94 (Li et al., 2023). Arable land
near waterbodies is often misclassified as soybean plots by
the CDL, which did not occur with GLAD and ChinaSo-
yArea10m, implying that other crop types are possibly mis-
classified as soybeans by the CDL (Fig. 9a1–d1). As for the
second case (Fig. 9a2), our extraction results are similar to
those of GLAD, while small plots failed to be identified by
the CDL (Fig. 9a2–d2). In areas where planted banded soy-
beans are less concentrated, the CDL tended to overestimate
the soybean area (Fig. 9a3–d3), further substantiating the
above limitations (Fig. 6). Conversely, our mapping results
behaved similarly to GLAD (Fig. 9a3–d3). The overall accu-
racy of the GLAD map based on pure samples reaches 95.4 %
(Li et al., 2023), so GLAD can be regarded as a reliable ref-
erence. From the three cases, therefore, ChinaSoyArea10m
behaved more similarly to GLAD than the CDL, indicated
by less underestimation, less overestimation, and higher ac-
curacy of details.

4 Discussion

4.1 Our advantages and potential applicability

We proposed a new framework (RASP) to identify the annual
dynamic of soybean-planting areas over larger regions and
produced the longer-term series of soybean maps (ChinaSo-
yArea10m) across mainly planting areas in China from 2017
to 2021 for the first time. The accuracy of ChinaSoyArea10m
is acceptable (R2

∼ 0.85) at both the county and prefecture
levels, with a relatively lower R2 than GLAD (R2

= 0.93

at the prefecture level) but higher than CDL (R2
= 0.53 at

the county level). Compared with existing products, China-
SoyArea10m accurately depicts soybean with more spatial
and temporal details as well.

The methodology developed for identifying soybean-
planting areas indicates several notable strengths that make it
an attractive option for wide application. Firstly, it operates
independently, without extensive ground samples required.
The conventional supervised approaches like random forest
(RF) and long short-term memory (LSTM) depend on quan-
tities of observations, with much money, time, and labor con-
sumed. In this context, both the transferable learning model
and our RASP methods (combining unsupervised learning
with statistics) indeed provide huge potential for crop map-
ping. However, transferable models are suitable for areas or
years with similar cropping patterns. In areas with diverse
and complex cropping patterns, it is a challenge to apply the
supervised model trained in limited areas or limited years to
others (Wang et al., 2019; Ma et al., 2020). In contrast, our
strategy leverages a specific, pre-existing set of samples to
stably differentiate soybean characteristics from other crops,
which can accurately map annual dynamics without updated
requirements in annual samples. Consequently, this method
significantly weakens limitations in crop classification dur-
ing years without specific samples, enabling consistent and
continual crop mapping.

Another key advantage of our spectra-phenology integra-
tion approach is its quick applicability over larger areas, cou-
pled with excellent spatial scalability. It can self-adapt to dif-
ferent environments by considering phenology information.
Compared to methods that rely on composite indicators and
specific thresholds, our approach simplifies the requirements
for inputs and experienced judgments. The only inputs re-
quired are the phenological information on soybeans and the
number of other primary crops during the same growing sea-
son in the targeted area. This allows us to classify crops
swiftly and efficiently without additional inputs for back-
ground knowledge or setting complex thresholds. The input
of phenological information in each prefecture enhanced the
zonal adaptive assessment of soybean growth status across
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Figure 7. Spatial distribution of soybean areas at 10 m resolution across China in (a) 2017, (b) 2018, (c) 2020, and (d) 2021.

various areas, thereby facilitating crop classification. This in-
novative approach ensures its applicability to other soybean-
producing areas, showcasing its potential for broader imple-
mentation.

4.2 The uncertainty from image quality

The method we proposed (RASP) is strongly dependent on
remote sensing images and subregional unsupervised clas-
sification by considering the bands and vegetation indices,

which are all sensitive to the unique characteristics of soy-
beans. Therefore, the accuracy of soybean maps is inevitably
associated with the quality of remote sensing images. By us-
ing ground samples to validate the mapping results, we found
that the accuracy of 2017 is lower than that of 2018 and 2019,
with an overall accuracy of less than 80 % (Table 2).

We extracted cloud-free images in different regions during
the soybean-growing season and calculated the monthly av-
erage number of clear observations. In general, the monthly
averages of clear observations in the Northeast region and
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Figure 8. Spatial distribution of soybean areas at 10 m resolution across China (a) and zoom-in maps of each region (b–h) in 2019.

the Huang–Huai–Hai region (Zone I and Zone II) are rel-
atively higher than the southern zones (Zone III and Zone
IV) (Fig. 10a2–e2). In areas with quite lower clear obser-
vations, despite a gap-filling method being used to generate
complete 10 d composite time series, higher uncertainty is in-
evitable. The gap-filling time series might contain duplicate
values, which cannot accurately reflect the crop growth pro-
cess in reality. Obviously, the total number of images avail-
able in 2017 over the study areas was significantly lower than
those of other years, because the second satellite (Sentinel-
2B) only commenced operations and started providing data
after March 2017 (Fig. 10a1–e1). Removing the cloudy pix-
els left even fewer clear images available (upper layer vs.
lower layer in Fig. 10). During the growing season, the av-
erage number of clear observations per month was zero to
two in partial regions, lower than the requirements of the
10 d time series composite we mentioned in Sect. 2.3.1. This
might explain the lower user accuracy of soybean in Zone IV
compared to the other subzones (Table S1) and the low over-
all accuracy based on sample verification in 2017 (Table 2).

4.3 Limitations in small-scale planting areas

Validation based on statistics shows that ChinaSoyArea10m
reached a high consistency (R2

∼ 0.85) across China. How-
ever, in areas with soybean sparsely planted, the consistency
is lower than that in densely planted areas, with more over-

estimations observed in the sparse areas. Such overestima-
tions are caused by the limitations of the unsupervised clas-
sification algorithm. K-means has difficulty in accurately
capturing small plots of crops in a complex cropping sys-
tem, although it can make up for the shortage of crop map-
ping in some areas with limited training samples (Kwak and
Park, 2022). Studies have proved that the classifier is inferior
where the dominant crop phenotypes are similar and crop
diversity is higher (Wang et al., 2019; Konduri et al., 2020).
Therefore, the classifier is challenged in areas where soybean
is not the dominant type due to the small plot size and spec-
tral overlap between different crops (Chabalala et al., 2022).
In South China, cropland plots are typically small (<0.04 ha
in most regions) and crop diversity is high. The growth peri-
ods of soybean, peanut, potato, and maize are similar, domi-
nantly indicated by a mixed planting pattern, which has con-
tributed to the low accuracy of non-main soybean-producing
areas in South China (Liu et al., 2020). Additionally, soy-
beans are intercropped with maize or other crops in some
areas where the strip width is less than 1 m (Yang et al.,
2014; Du et al., 2018). This planting pattern will introduce
the mixed-pixel problem as well against the background of
10 m resolution crop mapping.

The lower accuracy in a sparsely planted soybean area
could be explained by the characteristics of a K-means al-
gorithm. A K-means algorithm is developed to minimize the
distance between each point within a cluster and the cluster’s
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Figure 9. Visual comparison of our soybean maps and existing products in typical regions in 2019: (a1–a3) RGB composite images comprise
NIR (Band 8), SWIR 2 (Band 12), and SWIR 1 (Band 11) from Sentinel-2 median composite images during the peak growth period of
soybean. (b1–b3) Soybean layer extracted from the GLAD maize–soybean map. (c1–c3) ChinaSoyArea10m map. (d1–d3) Soybean layer
extracted from the CDL.

centroid. When the sample size in a particular category sub-
stantially exceeds those of others, the algorithm might pref-
erentially optimize the cohesion of the larger category and
would neglect accurate clustering for smaller categories (Tan
et al., 2016). The effectiveness of K-means classification is
highly dependent on the selection of initial clustering centers.
In scenarios of unbalanced categories, randomly selected ini-
tial centers might inadequately represent minor categories,
resulting in inaccurate results (Tan et al., 2016). Additionally,
K-means assumes that each cluster is spherical; therefore, it
does not perform well when clusters are nonspherical and
uneven in size and density. Hence, in areas with unbalanced
crop categories, the algorithm faces challenges in precisely
assigning each crop to a corresponding cluster (Tan et al.,
2016; Wang et al., 2019).

Our regional adaptive large-area crop-mapping method in
the future will further be improved by the following. (1)
Classification at a finer scale by specifying a more precise
number of target clusters can reduce spatial heterogeneity,
emphasize the relative importance of non-dominant cate-
gories, and consequently increase classification accuracy (Li
and Yang, 2017). (2) Optimizing data preprocessing meth-
ods: outliers can interrupt classification because the unsuper-

vised methods are highly sensitive to anomalies (Raykov et
al., 2016; Wang et al., 2019). Therefore, eliminating outliers
can further improve the classification validity. In addition,
since K-means weights all dimensions equally, minimizing
the features’ correlation and reducing irrelevant variables are
also important means of enhancing the classification effect
(Hastie et al., 2009). (3) Improving algorithm performance:
a variety of algorithms have been proposed to address the in-
herent defects of K-means (Ahmed et al., 2020), such as by
optimizing the initial clustering center (e.g., K-means++),
weighting classes (e.g., weighted K-means), and nonspheri-
cal clustering assumptions (e.g., DBSCAN, spectral cluster-
ing) (Ester et al., 1996; Bach and Jordan, 2003; Kerdprasop
et al., 2005; Arthur and Vassilvitskii, 2006). The improved
algorithms will address the issues of complex and highly
diverse crop classification to some degree (Li et al., 2022;
Rivera et al., 2022). (4) Better postprocessing of data: mis-
classification of field ridges and image speckles is inevitable
when mapping crops over large areas. With the progress of
computing power, auxiliary data and image processing algo-
rithms can further eliminate these issues (H. Liu et al., 2018;
Li and Qu, 2019; Hamano et al., 2023). We are sure that inte-
grating cloud computing platforms with advanced algorithms
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Figure 10. Total (a1–e1) and clear (a2–e2) observations per month during the soybean-growing season.

will provide substantial potential for accurate crop identifica-
tion, covering larger areas in the future.

5 Data availability

The soybean-planting area product for China during 2017–
2021 (ChinaSoyArea10m) is available at https://doi.org/10.
5281/zenodo.10071427 (Mei et al., 2023). We encourage
users to independently verify data products for special study
areas before using them.

6 Conclusions

In this study, the Regional Adaption Spectra-Phenology In-
tegration (RASP) method on a large scale was developed and
utilized to generate soybean-planting area maps for major
producing regions in China from 2017 to 2021. By utiliz-
ing Sentinel-2 images, spectral features and vegetation in-
dices that best distinguish soybeans were extracted and input
into an unsupervised classifier in each prefecture. The DTW
method was then employed to identify the soybean distri-
bution. RASP does not rely on many ground samples and

considers the soybean phenology in various planting areas,
suggesting a potential way for long-term crop mapping over
larger regions. Verification results demonstrated a high con-
sistency between the mapping results and the census data at
the county or prefecture level (all >0.82), with overall ac-
curacies of field samples reaching 77.08 %–86.77 %. These
findings confirm the reliability of ChinaSoyArea10m. Our
data products fill the gap in regional long-term soybean maps
in China and provide important information for sustainable
soybean production and management, agricultural system
modeling, and optimization.
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