Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-5195-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5195-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rescue and quality control of historical geomagnetic measurement at Sheshan observatory, China
Suqin Zhang
Institute of Geophysics, China Earthquake Administration, Beijing,
100081, China
Changhua Fu
CORRESPONDING AUTHOR
Institute of Geophysics, China Earthquake Administration, Beijing,
100081, China
Jianjun Wang
Earthquake Administration of Gansu Province, Lanzhou, 730000, China
Guohao Zhu
Shanghai Earthquake Agency, Shanghai, 200062, China
Chuanhua Chen
Earthquake Administration of Shandong Province, Jinan, 250014, China
Shaopeng He
Hebei Earthquake Agency, Hebei Province, Shijiazhuang, 050022, China
Pengkun Guo
Hebei Earthquake Agency, Hebei Province, Shijiazhuang, 050022, China
Guoping Chang
Hebei Earthquake Agency, Hebei Province, Shijiazhuang, 050022, China
Related authors
No articles found.
Xiujuan Hu, Shaopeng He, Xudong Zhao, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst., 13, 301–308, https://doi.org/10.5194/gi-13-301-2024, https://doi.org/10.5194/gi-13-301-2024, 2024
Short summary
Short summary
Nearly 200 sets of three-axis fluxgate magnetometers are used in Chinese geomagnetic observatories, but due to their directional errors, it is necessary to study error correction methods to improve measurement accuracy. Experimental results show that correcting the Z-axis and D-axis directional errors is essential. The observation data after error correction demonstrate the clear correction effect. The measurement device used in the experiment is low in cost and easy to disseminate.
Related subject area
Domain: ESSD – Land | Subject: Geophysics and geodesy
Synthetic ground motions in heterogeneous geologies from various sources: the HEMEWS-3D database
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
GPS displacement dataset for the study of elastic surface mass variations
Global Navigation Satellite System (GNSS) time series and velocities about a slowly convergent margin processed on high-performance computing (HPC) clusters: products and robustness evaluation
TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)
Comprehensive data set of in situ hydraulic stimulation experiments for geothermal purposes at the Äspö Hard Rock Laboratory (Sweden)
An earthquake focal mechanism catalog for source and tectonic studies in Mexico from February 1928 to July 2022
Global physics-based database of injection-induced seismicity
The Weisweiler passive seismological network: optimised for state-of-the-art location and imaging methods
A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs
The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 catalogue for the European Seismic Hazard Model 2020
A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China
In situ observations of the Swiss periglacial environment using GNSS instruments
Permafrost changes in the northwestern Da Xing'anling Mountains, Northeast China, in the past decade
British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data, 16, 3949–3972, https://doi.org/10.5194/essd-16-3949-2024, https://doi.org/10.5194/essd-16-3949-2024, 2024
Short summary
Short summary
Numerical simulations are a promising approach to characterizing the intensity of ground motion in the presence of geological uncertainties. However, the computational cost of 3D simulations can limit their usability. We present the first database of seismic-induced ground motion generated by an earthquake simulator for a collection of 30 000 heterogeneous geologies. The HEMEWS-3D dataset can be helpful for geophysicists, seismologists, and machine learning scientists, among others.
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024, https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024, https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary
Short summary
This study recommends a framework for preparing and processing vertical land displacements derived from GPS positioning for future integration with Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) measurements. We derive GPS estimates that only reflect surface mass signals and evaluate them against GRACE (and GRACE-FO). We also quantify uncertainty of GPS vertical land displacement estimates using various uncertainty quantification methods.
Lavinia Tunini, Andrea Magrin, Giuliana Rossi, and David Zuliani
Earth Syst. Sci. Data, 16, 1083–1106, https://doi.org/10.5194/essd-16-1083-2024, https://doi.org/10.5194/essd-16-1083-2024, 2024
Short summary
Short summary
This study presents 20-year time series of more than 350 GNSS stations located in NE Italy and surroundings, together with the outgoing velocities. An overview of the input data, station information, data processing and solution quality is provided. The documented dataset constitutes a crucial and complete source of information about the deformation of an active but slowly converging margin over the last 2 decades, also contributing to the regional seismic hazard assessment of NE Italy.
Wenbin Tang, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang
Earth Syst. Sci. Data, 16, 387–419, https://doi.org/10.5194/essd-16-387-2024, https://doi.org/10.5194/essd-16-387-2024, 2024
Short summary
Short summary
This paper reported a daily 1 km all-weather land surface temperature (LST) dataset for Chinese land mass and surrounding areas – TRIMS LST. The results of a comprehensive evaluation show that TRIMS LST has the following special features: the longest time coverage in its class, high image quality, and good accuracy. TRIMS LST has already been released to the scientific community, and a series of its applications have been reported by the literature.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Earth Syst. Sci. Data, 15, 4781–4801, https://doi.org/10.5194/essd-15-4781-2023, https://doi.org/10.5194/essd-15-4781-2023, 2023
Short summary
Short summary
We present a comprehensive catalog of focal mechanisms for earthquakes in Mexico and neighboring areas spanning February 1928 to July 2022. The catalog comprises a wide range of earthquake magnitudes and depths and includes data from diverse geological environments. We collected and revised focal mechanism data from various sources and methods. The catalog is a valuable resource for future studies on earthquake source mechanisms, tectonics, and seismic hazard in the region.
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Jia-Hao Li, Zhao-Liang Li, Xiangyang Liu, and Si-Bo Duan
Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023, https://doi.org/10.5194/essd-15-2189-2023, 2023
Short summary
Short summary
The Advanced Very High Resolution Radiometer (AVHRR) is the only sensor that has the advantages of frequent revisits (twice per day), relatively high spatial resolution (4 km at the nadir), global coverage, and easy access prior to 2000. This study developed a global historical twice-daily LST product for 1981–2021 based on AVHRR GAC data. The product is suitable for detecting and analyzing climate changes over the past 4 decades.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Andrea Rovida, Andrea Antonucci, and Mario Locati
Earth Syst. Sci. Data, 14, 5213–5231, https://doi.org/10.5194/essd-14-5213-2022, https://doi.org/10.5194/essd-14-5213-2022, 2022
Short summary
Short summary
EPICA is the 1000–1899 catalogue compiled for the European Seismic Hazard Model 2020 and contains 5703 earthquakes with Mw ≥ 4.0. It relies on the data of the European Archive of Historical Earthquake Data (AHEAD), both macroseismic intensities from historical seismological studies and parameters from regional catalogues. For each earthquake, the most representative datasets were selected and processed in order to derive harmonised parameters, both from intensity data and parametric catalogues.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Cited articles
Alexandrescu, M., Gibert, D., Hulot, G., Le Mouël, J. L., and Saracco,
G.: Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res.,
101, 21975–21994, 1996.
Bolduc, L., Langlois, P., Boteler, D., and Pierre.: A study of geomagnetic
disturbance in Quebec. I. General results, IEEE T. Power
Deliver., 13, 1251–1256, 1998.
Bolduc, L., Langlois, P., Boteler, D., and Pirjola, R.: A study of
geoelectromagnetic disturbances in quebec. II. Detailed analysis of a large
event, IEEE T. Power Deliver., 15, 272–278, 2002.
Boteler, D. H., Pirjola, R. J., and Nevanlinna, H.: The effects of
geomagnetic disturbances on electrical systems at the Earth's surface,
Adv. Space Res., 22, 17–27, 1998.
Brown, W., Beggan, C., and Macmillan, S.: Geomagnetic jerks in the Swarm Era, Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic,
9-13 May 2016, https://nora.nerc.ac.uk/id/eprint/514296/ (last access: 18 November 2022), 2016.
Capozzi, V., Cotroneo, Y., Castagno, P., De Vivo, C., and Budillon, G.: Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963, Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, 2020.
Chen, B., Gu, Z. W., Gao, J. T., Yuan, J. H., and Di, C. Z.: Geomagnetic
secular variation in China during 2005–2010 described by IGRF-11 and its
error analysis, Progress in Geophysics, 27, 512–521, 2012 (in Chinese).
Chen, J., Jiang, Y. L., Zhang, X. X., Chen, C. H., Yang D. M., and Liu H.
F.: The design of HVDC discrimination and processing system for geomagnetic
network, Seismological and Geomagnetic Observation and Research, 35,
271–274, 2014 (in Chinese).
Chulliat, A. and Maus, S.: Geomagnetic secular acceleration, jerks, and a
localized standing wave at the core surface from 2000 to 2010, J. Geophys. Res., 119, 1531–1543, 2014.
Chulliat, A., Peltier, A., Truong, F., and Fouassier, D.: Proposal for a new
observatory data product: quasi-defifinitive data, 11th IAGA Scientifific
Assembly, Sopron, Hungary, 23–30 August 2009, Abstract Book, 94 pp., 2009.
Chulliat, A., Thébault, E., and Hulot, G.: Core field acceleration pulse as
a common cause of the 2003 and 2007 geomagnetic jerks, Geophys. Res. Lett., 37,
L07301, https://doi.org/10.1029/2009GL042019, 2010.
Clarke, E., Flower, S., Humphries, T., McIntosh, R., McTaggart, F.,
McIntyre, B., Owenson, N., Henderson, K., Mann, E., MacKenzie, K., Piper,
S., Wilson, L., and Gillanders, R.: The digitization of observatory
magnetograms, poster presented at: 11th IAGA Scientific Assembly, Sopron, Hungary, 23–30 August
2009, https://www.osti.gov/etdeweb/biblio/21389614 (last access: 18 November 2022), 2009.
Courtillot, V. and Le Mouël, J. L.: Geomagnetic secular variation
impulses, Nature, 311, 709–716, 1984.
Curto, J. J. and Marsal, S.: Quality control of Ebro magnetic observatory
using momentary values, Earth Planets Space, 59, 1187–1196, 2007.
Dawson, E., Reay, S., Macmillan, S., Flower, S., and Shanahan, T.: Quality
control procedures at the World Data Centre for Geomagnetism (Edinburgh), IAGA 11th Scientific Assembly, Sopron, Hungary, 23–30 August 2009, https://www.researchgate.net/publication/264590163_Quality_control_procedures_at_the_World_Data_Centre_for_Geomagnetism_Edinburgh (last access: 18 November 2022), 2009.
De Michelis, P., Cafarella, L., and Meloni, A.: Worldwide character of the
1991 geomagnetic jerk, Geophys. Res. Lett., 25, 377–380, 1998.
Department of science, technology and monitoring, CEA: The Chronicles of
China Geomagnetic Observatory, 1984 (in Chinese).
Dong, X. H., Li, X. J., Zhang, G. Q., Shi, J., and Liu, C.: The study of
digital identification of magnetogram, Seismological and Geomagnetic
Observation and Research, 30, 49–55, 2009 (in Chinese).
Feng, Y., Holme, R., Cox, G. A., and Jiang, Y.: The geomagnetic jerk of
2003.5: Characterisation with regional observatory secular variation data,
Phys. Earth Planet. In., 278, 47–58, 2018.
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., and Tøffner-Clausen,
L.: Recent geomagnetic secular variation from Swarm and ground observatories
as estimated in the CHAOS-6 geomagnetic field model, Earth Planets
Space, 68, 112, https://doi.org/10.1186/s40623-016-0486-1, 2016.
Gao, M. Q. and Hu, Z. Y.: Establishment of historical data and database of
rescue Sheshan observatory, in: Proceedings of the 9th Annual Academic Meeting
of China Geophysical Society, Beijing, China, September 1993, 262, https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW199309001262.htm (last access: 18 November 2022), 1993 (in Chinese).
GeoForschung Zentrum Potsdam Website: Kp and ap values, https://www.gfz-potsdam.de/en/section/geomagnetism/data-products-services/, last access: 18 November 2022.
Gillet, N., Jault, D., Finlay, C. C., and Olsen, N: Stochastic modeling of
the Earth's magnetic field: Inversion for covariances over the observatory
era, Geochem. Geophy. Geosy., 14, 766–786, 2013.
Guo, S. X., Liu, L. G., Pirjola, R. J., and Wang, K. R., and Dong, B.:
Impact of EHV power system on geomagnetically induced currents in UHV power
system, IEEE T. Power Deliver., 30, 2163–2170, 2015.
He, Y. F., Zhao, X. D., Zhang, S. Q., Yang, D. M., and Li, Q.: Geomagnetic
jerks based on the midnight mean of the geomagnetic field from geomagnetic
networks of China, Acta Seismologica Sinica, 41, 512–523, https://doi.org/10.11939/jass.20190009, 2019 (in Chinese).
Huder, L., Gillet, N., Finlay, C., Hammer, M., and Hervé Tchoungui.:
COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and
satellite observations, Earth Planets Space, 72, 160, https://doi.org/10.1186/s40623-020-01194-2, 2020.
Institute of Geophysics, Chinese Academy of Sciences: Geomagnetic
Observation Report, 1965 (in Chinese).
Kakioka Magnetic Observatory Website: Geomagnetic Storm Catalog, https://www.kakioka-jma.go.jp/en/index.html, last access: 18 August 2022.
Kang, G. F., Gao, G. M., Wen, L. M., and Bai, C. H.: The 2014 geomagnetic
jerk observed by geomagnetic observatories in China, Chinese Journal of
Geophysics, 63, 4144–4153, https://doi.org/10.6038/cjg2020N0337, 2020 (in Chinese).
Kappenman, J. G.: Geomagnetic storms and their impact on power systems, IEEE
Power Engineering Review, 16, 5–8, 1996.
Kloss, C. and Finlay, C. C.: Time-dependent low-latitude core flow and
geomagnetic field acceleration pulses, Geophys. J. Int., 217.1, 140–168, https://doi.org/10.1093/gji/ggy545, 2019.
Korte, M., Mandea, M., Linthe, H. J., Hemshorn, A., Kotzé, P., and
Ricaldi, E.: New geomagnetic field observations in the South Atlantic
Anomaly region, Ann. Geophys., 52, 65–81, 2009.
Kotzé, P. B.: The 2007 geomagnetic jerk as observed at the Hermanus
magnetic observatory, Phys. Comment., 2, 5–6, 2010.
Kotzé, P. B. and Korte, M.: Morphology of the southern African geomagnetic
field derived from observatory and repeat station survey observations:
2005–2014, Earth Planets Space, 68, 23, https://doi.org/10.1186/s40623-016-0403-7, 2016.
Kuang, W. J. and Tangborn, A.: Interpretation of Core Field Models, in:
Geomagnetic Observations and Models, vol. 5, edited by: Mandea, M. and
Korte, M., Springer Science + Business Media, 295–309, eBook ISBN 978-90-481-9858-0, 2011.
Linthe, H. J., Reda, J., Isac, A., Matzka, J., and Turbitt, C.: Observatory
data quality control-the instrument to ensure valuable research, in: Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory
Instruments, Data Acquisition and Processing: extended abstract volume, edited by: Hejda, P., San Fernando, Spain, March 2013, 173–177, https://core.ac.uk/download/pdf/20319986.pdf (last access: 18 November 2022),
2013.
Liu, C. M., Liu, L. G., and Pirjola, R.: Geomagnetically induced currents in
the high voltage power grid in China, IEEE T. Power Deliver., 24, 2368–2374,
2009.
Liu, L. G., Liu, C. M., Zhang, B., Wang, Z. Z., Xiao, X. N., and Han, L. Z.:
Strong magnetic storm's influence on China's Guangdong power grid, Chinese
Journal of Geophysics, 51, 976–981, https://doi.org/10.3321/j.issn:0001-5733.2008.04.004, 2008 (in Chinese).
Liu, L. G., Ge, X. N., Wang, K. R., Zong, W., and Liu C. M.: Observation
studies of encroachment by geomagnetic storms on high-speed railways and
oil-and-gas pipelines in China, Sci. Sin. Tech., 46, 268–275, https://doi.org/10.1360/N092015-00279, 2016 (in Chinese).
Malin, S. R. C. and Hodder, B. M.: Was the 1970 geomagnetic jerk of internal
or external origin?, Nature, 296, 726–728, 1982.
Mandea, M. and Olsen, N.: Investigation of a secular variation impulse using
satellite data: The 2003 geomagnetic jerk, Earth Planet. Sc. Lett.,
255, 94–105, 2007.
Mandea, M., Bellanger, E., and Le Mouël, J. L.: A geomagnetic jerk for
the end of the 20th century?, Earth Planet. Sc. Lett., 183, 369–373,
2000.
Menvielle, M., Iyemori, T., Marchaudon, A., and Nosé, M.: Geomagnetic
indices, in: Geomagnetic Observations and Models, vol. 5, edited by:
Mandea, M. and Korte, M., Springer Science + Business Media, 127–148, eBook ISBN 978-90-481-9858-0, 2011.
Mestre, O., Domonkos,P., Picard, F., Auer, I., Robin, S., Lebarbier, E.,
Böhm, R., Aguilar, E., Guijarro, J., Vertachnik, G., Klancar, M.,
Dubuisson, B., and Stepanek, P.: HOMER: a homogenization software –
methods and applications, 117, 47–67, https://www.researchgate.net/publication/281471961_HOMER_A_homogenization_software_-_methods_and_applications (last access: 18 November 2022), 2013.
Morozova, A. L., Ribeiro, P., and Pais, M. A.: Correction of artificial jumps
in the historical geomagnetic measurements of Coimbra Observatory, Portugal,
Ann. Geophys., 32, 19–40, 2014.
Morozova, A. L., Ribeiro, P., and Pais, M. A.: Homogenization of the historical series from the Coimbra Magnetic Observatory, Portugal, Earth Syst. Sci. Data, 13, 809–825, https://doi.org/10.5194/essd-13-809-2021, 2021.
Pang, J. Y., Chen, J., Wang, C., Teng, Y. T., Zhao, Y. G., and Li, Z. G.: The
principle of power interference and its automatic processing during
geoelectrical resistivity observation, Seismological and Geomagnetic
Observation and Research, 34, 117–122, 2013 (in Chinese).
Pavón-Carrasco, F. J., Marsal, S., Campuzano, S. A., and Torta, M.: Signs
of a new geomagnetic jerk between 2019 and 2020 from Swarm and observatory
data, Earth, Planets and Space, 73, 175, https://doi.org/10.1186/s40623-021-01504-2, 2021.
Peng, F,.Shen, X., Tang, K., Zhang, J., Huang, Q., Xu, Y., Yue, B., and
Yang, D.: Data-Sharing Work of the World Data Center for Geophysics, Beijing
Data Sci. J., 6, 404–407, 2007 (in Chinese).
Rasson, J. L., Toh, H., and Yang D. M.: The Global Geomagnetic Observatory
Network, in: Geomagnetic Observations and Models, vol. 5, edited by:
Mandea, M. and Korte, M., Springer Science + Business Media, 1–25, eBook ISBN 978-90-481-9858-0, 2011.
Reay, S. J., Clarke, E., Dawson, E., and Macmillan, S.: Operations of
the World Data Centre for Geomagnetism, Edinburgh, Data Science Journal, 12,
WDS47–WDS51, 2013.
Reda, J., Fouassier, D., Isac, A., Linthe, H. J., Matzka, J., and Turbitt,
C. W.: Improvements in Geomagnetic Observatory Data Quality, in: Geomagnetic
Observations and Models, vol. 5, edited by: Mandea, M. and Korte, M.,
Springer Science + Business Media, 127–148, eBook ISBN 978-90-481-9858-0, 2011.
Sergeyeva, N., Gvishiani, A., Soloviev, A., Zabarinskaya, L., Krylova, T., Nisilevich, M., and Krasnoperov, R.: Historical K index data collection of Soviet magnetic observatories, 1957–1992, Earth Syst. Sci. Data, 13, 1987–1999, https://doi.org/10.5194/essd-13-1987-2021, 2021.
SSH observatory: Geomagnetic Observation Report of SSH observatory, 2004.
Thomson, A. W. P.: Geomagnetism Review 2019, British Geological Survey Open
Report, OR/20/00852, http://www.geomag.bgs.ac.uk/documents/reviews/Geomagnetism_Review_2019.pdf (last access: 18 November 2022), 2020.
World Data Center for Geomagnetism, Kyoto: Dst values, http://wdc.kugi.kyoto-u.ac.jp/, last access: 18 November 2022.
Xu, W. Y.: Physics of Electromagnetic Phenomena of the Earth, Hefei:
University of Science and Technology of China press, 558 pages, ISBN 978-7312022562, 2009 (in Chinese).
Zhang, S., Zhu, G., Wang, J., Chen, C., He, S., and Guo, P.: Quality-controlled
geomagnetic hourly mean values datasets of Sheshan observatory from 1933 to
2019, Zenodo [data set], https://doi.org/10.5281/zenodo.7005471, 2022.
Zhang, S. Q., Yang, D. M., Li, Q., and Zhao, Y. F.: The 1991 and 1999 jerks
in China, Earthquake Research in China, 24, 253–260, 2008a (in
Chinese).
Zhang, S. Q., Yang, D. M., Li, Q., and Zhao, Y. F.: The consistence analysis
of IGRF model value and annual mean value of some geomagnetic observatories
in China, Seismological and Geomagnetic Observation and Research, 29,
42–29, 2008b (in Chinese).
Zhang, S. Q., Fu, C. H., He, Y. F., Yang, D. M., Li, Q., Zhao, X. D., and
Wang, J. J.: Quality Control of Observation Data by the Geomagnetic Network
of China, Data Science Journal, 15, p. 15, https://doi.org/10.5334/dsj-2016-015, 2016.
Zhao, X. D., He, Y. F., Chen, J., Zhang, S. Q., Li, Q., and Yuan, Y. R.: The
distribution of ring current and field-aligned current during storms based
on ground observatory data, Chinese Journal of Geophysics, 62, 3209–3222,
https://doi.org/10.6038/cjg2019M0268, 2019 (in Chinese).
Zhao, X. K., Wu, B. Y., and N., B. Q.: The geomagnetic dataset of Beijing Ming Tombs
station (1991–2001), China Scientific Data, 2, 1–9, https://www.docin.com/p-1982391171.html (last access: 20 November 2022), 2017.
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
The Sheshan observatory has nearly 150 years of observation history, and its observation data...
Altmetrics
Final-revised paper
Preprint