Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Introducing GloRiSe – a global database on river sediment composition
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Jack J. Middelburg
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Appy Sluijs
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Related authors
No articles found.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 22, 4689–4704, https://doi.org/10.5194/bg-22-4689-2025, https://doi.org/10.5194/bg-22-4689-2025, 2025
Short summary
Short summary
In this study, we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in the depletion of 13C in the residual sporomorph, leaving rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying that diagenesis results in the depletion of 13C in pollen.
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Hinne Florian van der Zant, Olivier Sulpis, Jack J. Middelburg, Matthew P. Humphreys, Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Kay Sušelj, and Vincent Le Fouest
EGUsphere, https://doi.org/10.5194/egusphere-2025-2244, https://doi.org/10.5194/egusphere-2025-2244, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a model to simulate seafloor biogeochemical processes across a wide range of marine environments, from shallow coastal zones to deep-sea sediments. From this model, we derived a set of simple equations that predict how carbon, oxygen, and alkalinity are exchanged between sediments and overlying waters. These equations provide an efficient way to improve how ocean models represent seafloor interactions, which are often missing or overly simplified.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Appy Sluijs and Henk Brinkhuis
J. Micropalaeontol., 43, 441–474, https://doi.org/10.5194/jm-43-441-2024, https://doi.org/10.5194/jm-43-441-2024, 2024
Short summary
Short summary
We present intrinsic details of dinocyst taxa and assemblages from the sole available central Arctic late Paleocene–early Eocene sedimentary succession recovered at the central Lomonosov Ridge by the Integrated Ocean Drilling Program (IODP) Expedition 302. We develop a pragmatic taxonomic framework, document critical biostratigraphic events, and propose two new genera and seven new species.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Olivier Sulpis, Matthew P. Humphreys, Monica M. Wilhelmus, Dustin Carroll, William M. Berelson, Dimitris Menemenlis, Jack J. Middelburg, and Jess F. Adkins
Geosci. Model Dev., 15, 2105–2131, https://doi.org/10.5194/gmd-15-2105-2022, https://doi.org/10.5194/gmd-15-2105-2022, 2022
Short summary
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Cited articles
Allan, J. D. and Castillo, M. M.: Stream Ecology – Structure and Function of
Running Waters, Springer, Dordrecht, the Netherlands, 2007.
Bayon, G., Toucanne, S., Skonieczny, C., André, L., Bermell, S., Cheron,
S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y.,
Jorry, S. J., Ménot, G., Monin, L., Ponzevera, E., Rouget, M. L.,
Tachikawa, K., and Barrat, J. A.: Rare earth elements and neodymium isotopes
in world river sediments revisited, Geochim. Cosmochim. Ac.,
170, 17–38, https://doi.org/10.1016/j.gca.2015.08.001, 2015.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern
ocean, Am. J. Sci., 282, 451–473, 1982.
Berner, R. A.: A New Look at the Long-term Carbon Cycle, GSA Today, 9,
2–6, 1999.
Berner, R. A.: Fuels and Atmospheric Composition, Nature, 426,
323–326, available at: http://www.ncbi.nlm.nih.gov/pubmed/14628061 (last access: 22 April 2020), 2003.
Beusen, A. H. W., Dekkers, A. L. M., Bouwman, A. F., Ludwig, W., and
Harrison, J.: Estimation of global river transport of sediments and
associated particulate C, N, and P, Global Biogeochem. Cy., 19, GB4S05,
https://doi.org/10.1029/2005GB002453, 2005.
Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M., and Middelburg, J. J.: Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum, Biogeosciences, 13, 2441–2451, https://doi.org/10.5194/bg-13-2441-2016, 2016.
Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., and Dutra-Maia,
P.: Grain size control of river suspended sediment geochemistry: Clues from
Amazon River depth profiles, Geochem. Geophy. Geosy., 12,
Q03008, https://doi.org/10.1029/2010GC003380, 2011.
Brantley, S. L., White, A. F., and Kubicki, J. D. (Eds.): Kinetics of water-rock
interaction, Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, https://doi.org/10.1007/978-0-387-73563-4, 833 pp., 2008.
Caves Rugenstein, J. K., Ibarra, D. E., and von Blanckenburg, F.: Neogene
cooling driven by land surface reactivity rather than increased weathering
fluxes, Nature, 571, 99–102, https://doi.org/10.1038/s41586-019-1332-y, 2019.
Cerling, T. E., Pederson, B. L., and Von Damm, K. L.: Sodium-calcium ion
exchange in the weathering of shales: implications for global weathering
budgets, Geology, 17, 552–554, https://doi.org/10.1130/0091-7613(1989)017<0552:SCIEIT>2.3.CO;2, 1989.
Clark, K. E., Shanley, J. B., Scholl, M. A., Perdrial, N., Plante, A. F., and
Mcdowell, W. H.: Tropical river suspended sediment and solute dynamics in
storms during an extreme drought, Water Resour. Res., 53, 3695–3712,
https://doi.org/10.1002/2016WR019737, 2017.
Cohen, S., Kettner, A. J., and Syvitski, J. P. M.: Global suspended sediment
and water discharge dynamics between 1960 and 2010: Continental trends and
intra-basin sensitivity, Global Planet. Change, 115, 44–58,
https://doi.org/10.1016/j.gloplacha.2014.01.011, 2014.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Conley, D. J.: Terrestrial ecosystems and the global biogeochemical silica
cycle, Global Biogeochem. Cy., 16, 68-1–68-8,
https://doi.org/10.1029/2002gb001894, 2002.
Eberl, D. D.: Quantitative mineralogy of the Yukon River system: Changes
with reach and season, and determining sediment provenance, Am. Mineral.,
89, 1784–1794, https://doi.org/10.2138/am-2004-11-1225, 2004.
Eiriksdottir, E. S., Louvat, P., Gislason, S. R., Óskarsson, N., and
Hardardóttir, J.: Temporal variation of chemical and mechanical
weathering in NE Iceland: Evaluation of a steady-state model of erosion,
Earth Planet. Sci. Lett., 272, 78–88, https://doi.org/10.1016/j.epsl.2008.04.005,
2008.
Ensign, S. H. and Doyle, M. W.: Nutrient spiraling in streams and river
networks, J. Geophys. Res.-Biogeosciences, 111, G04009, https://doi.org/10.1029/2005JG000114,
2006.
Fedo, C. M., Nesbitt, H. W., and Young, G. M.: Unravelling the effects of
potassium metasomatism in sedimentary rocks and paleosols, with implications
for paleoweathering conditions and provenance, Geology, 23, 921–924,
https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2,
1995.
Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R., and DeVries,
T.: The marine phosphorous cycle, Am. J. Sci., 282, 474–511, 1982.
Gaillardet, J., Dupré, B., and Allègre, C. J.: Geochemistry of large
river suspended sediments: Silicate weathering or recycling tracer?,
Geochim. Cosmochim. Ac., 63, 4037–4051,
https://doi.org/10.1016/s0016-7037(99)00307-5, 1999.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., and Palhol,
F.: Efficient organic carbon burial in the Bengal fan sustained by the
Himalayan erosional system, Nature, 450, 407–410,
https://doi.org/10.1038/nature06273, 2007.
Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy,
V., and Najman, Y.: Mineralogical and chemical variability of fluvial
sediments. 1. Bedload sand (Ganga-Brahmaputra, Bangladesh), Earth Planet.
Sci. Lett., 299, 368–381, https://doi.org/10.1016/j.epsl.2010.09.017, 2010.
Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy,
V., and Lupker, M.: Mineralogical and chemical variability of fluvial
sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh), Earth
Planet. Sci. Lett., 302, 107–120, https://doi.org/10.1016/j.epsl.2010.11.043,
2011.
Garzanti, E., Padoan, M., Setti, M., Najman, Y., Peruta, L., and Villa, I.
M.: Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile
and Congo muds, Geochem. Geophy. Geosy., 14, 292–316,
https://doi.org/10.1002/ggge.20060, 2013.
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., and Villa, I. M.:
Provenance versus weathering control on the composition of tropical river
mud (southern Africa), Chem. Geol., 366, 61–74,
https://doi.org/10.1016/j.chemgeo.2013.12.016, 2014a.
Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., and Villa, I. M.:
Provenance versus weathering control on the composition of tropical river
mud (southern Africa), Chem. Geol., 366, 61–74,
https://doi.org/10.1016/j.chemgeo.2013.12.016, 2014b.
Garzanti, E., Andò, S., Padoan, M., Vezzoli, G., and El Kammar, A.: The
modern Nile sediment system: Processes and products, Quaternary Sci. Rev., 130,
9–56, https://doi.org/10.1016/j.quascirev.2015.07.011, 2015.
Gislason, S. R., Oelkers, E. H., and Snorrason, Á.: Role of
river-suspended material in the global carbon cycle, Geology, 34, 49–52,
https://doi.org/10.1130/G22045.1, 2006.
Guo, Y., Yang, S., Su, N., Li, C., Yin, P., and Wang, Z.: Revisiting the
effects of hydrodynamic sorting and sedimentary recycling on chemical
weathering indices, Geochim. Cosmochim. Ac., 227, 48–63,
https://doi.org/10.1016/j.gca.2018.02.015, 2018.
Harnois, L.: The CIW index: A new chemical index of weathering, Sediment.
Geol., 55, 319–322, https://doi.org/10.1016/0037-0738(88)90137-6, 1988.
Hartmann, J., Lauerwald, R., and Moosdorf, N.: A Brief Overview of the GLObal
RIver Chemistry Database, GLORICH, Procedia Earth Planet. Sci., 10, 23–27,
https://doi.org/10.1016/j.proeps.2014.08.005, 2014a.
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A. J.:
Global chemical weathering and associated P-release – the role of lithology,
temperature and soil properties, Chem. Geol., 363, 145–163,
https://doi.org/10.1016/j.chemgeo.2013.10.025, 2014b.
He, J., Garzanti, E., Dinis, P., Yang, S., and Wang, H.: Provenance versus
weathering control on sediment composition in tropical monsoonal climate
(South China) – 1. Geochemistry and clay mineralogy, Chem. Geol., 558,
119860, https://doi.org/10.1016/j.chemgeo.2020.119860, 2020.
Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat.
Rev. Earth Environ., 1, 284–299, https://doi.org/10.1038/s43017-020-0058-6, 2020.
Horowitz, A. J. and Elrick, K. A.: The relation of stream sediment surface
area, grain size and composition to trace element chemistry, Appl.
Geochem., 2, 437–451, https://doi.org/10.1016/0883-2927(87)90027-8, 1987.
Isson, T. T., Planavsky, N. J., Coogan, L. A., Stewart, E. M., Ague, J. J.,
Bolton, E. W., Zhang, S., McKenzie, N. R., and Kump, L. R.: Evolution of the
Global Carbon Cycle and Climate Regulation on Earth, Global Biogeochem.
Cy., 34, e2018GB006061, https://doi.org/10.1029/2018GB006061, 2020.
Jones, M. T., Pearce, C. R., Jeandel, C., Gislason, S. R., Eiriksdottir, E.
S., Mavromatis, V., and Oelkers, E. H.: Riverine particulate material
dissolution as a significant flux of strontium to the oceans, Earth Planet.
Sci. Lett., 355–356, 51–59, https://doi.org/10.1016/j.epsl.2012.08.040, 2012.
Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Singh Sidhu, G. P., Bali,
A. S., Karaouzas, I., Bhardwaj, R., Thukral, A. K., Gyasi-Agyei, Y., and
Rodrigo-Comino, J.: Global evaluation of heavy metal content in surface
water bodies: A meta-analysis using heavy metal pollution indices and
multivariate statistical analyses, Chemosphere, 236, 124364,
https://doi.org/10.1016/j.chemosphere.2019.124364, 2019.
Lasaga, A. C.: Chemical Kinetics of Water-Rock Interactions, J. Geophys.
Res., 89, 4009–4025, 1984.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand,
M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and
Thieme, M.: Global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. data, 6, 283,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Liu, Z., Colin, C., Huang, W., Phon Le, K., Tong, S., Chen, Z., and
Trentesaux, A.: Climatic and tectonic controls on weathering in south China
and Indochina Peninsula: Clay mineralogical and geochemical investigations
from the Pearl, Red, and Mekong drainage basins, Geochem. Geophy.
Geosy., 8, Q05005, https://doi.org/10.1029/2006GC001490, 2007.
Liu, Z., Wang, H., Hantoro, W. S., Sathiamurthy, E., Colin, C., Zhao, Y., and
Li, J.: Climatic and tectonic controls on chemical weathering in tropical
Southeast Asia (Malay Peninsula, Borneo, and Sumatra), Chem. Geol., 291,
1–12, https://doi.org/10.1016/j.chemgeo.2011.11.015, 2012.
Ludwig, W., Amiotte-Suchet, P., and Probst, J. L.: River discharges of carbon
to the world's oceans: Determining local inputs of alkalinity and of
dissolved and particulate organic carbon, Comptes Rendus l'Academie Sci. –
Ser. IIa Sci. la Terre des Planetes, 323, 1007–1014, 1996.
Lupker, M., France-Lanord, C., Lavé, J., Bouchez, J., Galy, V.,
Métivier, F., Gaillardet, J., Lartiges, B., and Mugnier, J. L.: A
Rouse-based method to integrate the chemical composition of river sediments:
Application to the Ganga basin, J. Geophys. Res.-Earth, 116, F04012,
https://doi.org/10.1029/2010JF001947, 2011.
Lupker, M., France-Lanord, C., Galy, V., Lavé, J., Gaillardet, J.,
Gajurel, A. P., Guilmette, C., Rahman, M., Singh, S. K., and Sinha, R.:
Predominant floodplain over mountain weathering of Himalayan sediments
(Ganga basin), Geochim. Cosmochim. Ac., 84, 410–432,
https://doi.org/10.1016/j.gca.2012.02.001, 2012.
Martin, J. and Meybeck, M.: Elemental Mass-Balance of Material Carried By
Major World Rivers, Mar. Chem., 7, 173–206, 1979.
Matthews, J. B.: Physics of Climate Change: Harmonic and exponential
processes from in situ ocean time series observations show rapid asymmetric
warming, J. Adv. Phys., 6, 1135–1171, available at: https://rajpub.com/index.php/jap/article/view/6960 (last access: 20 July 2021), 2014.
McDowell, R. W., Noble, A., Pletnyakov, P., and Mosley, L. M.: Global
database of diffuse riverine nitrogen and phosphorus loads and yields,
Geosci. Data J., https://doi.org/10.1002/gdj3.111, 2020a.
McDowell, R. W., Noble, A., Pletnyakov, P., Haggard, B. E., and Mosley, L.
M.: Global mapping of freshwater nutrient enrichment and periphyton growth
potential, Sci. Rep., 10, 3568, https://doi.org/10.1038/s41598-020-60279-w, 2020b.
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers, Am.
J. Sci., 282, 401–450, https://doi.org/10.2475/ajs.282.4.401, 1982.
Meybeck, M. and Ragu, A.: Presenting the GEMS-GLORI, a compendium of world
river discharge to the oceans, Freshwater Contamination, in: Proceedings of Rabat Symposium S4, April–May 1997, IAHS Publications, 243, 3–14, https://doi.org/10013/epic.34684.d001, 1997.
Middelburg, J. J., van der Weijden, C. H., and Woittiez, J. R. W.: Chemical
processes affecting the mobility of major, minor and trace elements during
weathering of granitic rocks, Chem. Geol., 68, 253–273,
https://doi.org/10.1016/0009-2541(88)90025-3, 1988.
Middelburg, J. J., Soetaert, K., and Hagens, M.: Ocean Alkalinity, Buffering
and Biogeochemical Processes, Rev. Geophys., 58, e2019RG000681,
https://doi.org/10.1029/2019RG000681, 2020.
Milliman, J. D. and Farnsworth, K. L.: River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge University Press, Cambridge, 143–144, https://doi.org/10.1017/cbo9780511781247, 2011.
Milliman, J. D. and Syvitski, J. P. M.: Geomorphic/tectonic control of
sediment discharge to the ocean: the importance of small mountainous rivers,
J. Geol., 100, 525–544, https://doi.org/10.1086/629606, 1992.
Müller, G., Middelburg, J. J., and Sluijs, A.: Global River Sediments (GloRiSe) v1.1 (Version 1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.4485795, 2021.
Mulligan, M., van Soesbergen, A., and Sáenz, L.: GOODD, a global dataset
of more than 38,000 georeferenced dams, Sci. Data, 7, 31,
https://doi.org/10.1038/s41597-020-0362-5, 2020.
Nakato, T.: Tests of Selected Sediment-Transport Formulas, J. Hydraul. Eng.,
116, 362–379, https://doi.org/10.1061/(asce)0733-9429(1990)116:3(362), 1990.
Négrel, P. and Grosbois, C.: Changes in chemical and signature
distribution patterns of suspended matter and bed sediments in the upper
Loire river basin (France), Chem. Geol., 156, 231–249,
https://doi.org/10.1016/S0009-2541(98)00182-X, 1999.
Nesbitt, H. W. and Young, G. M.: Early proterozoic climates and plate
motions inferred from major element chemistry of lutites, Nature, 299,
715–717, https://doi.org/10.1038/299715a0, 1982.
Nienhuis, J. H., Ashton, A. D., Edmonds, D. A., Hoitink, A. J. F., Kettner,
A. J., Rowland, J. C., and Törnqvist, T. E.: Global-scale human impact on
delta morphology has led to net land area gain, Nature, 577, 514–518,
https://doi.org/10.1038/s41586-019-1905-9, 2020.
Papanicolaou A. T., Elhakeem, M., Krallis, G., Prakash, S., and Edinger, J.: Sediment Transport Modeling Review – Current and Future Developments, J. Hydraul. Eng., 134, 1–14, https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(1), 2008.
Parker, A.: An Index of Weathering for Silicate Rocks, Geol. Mag., 107,
501–504, https://doi.org/10.1017/S0016756800058581, 1970.
Patton, N. R., Lohse, K. A., Godsey, S. E., Crosby, B. T., and Seyfried, M.
S.: Predicting soil thickness on soil mantled hillslopes, Nat. Commun.,
9, 3329, https://doi.org/10.1038/s41467-018-05743-y, 2018.
Peucker-Ehrenbrink, B.: Land2Sea database of river drainage basin sizes,
annual water discharges, and suspended sediment fluxes, Geochem.
Geophy. Geosy., 10, Q06014, https://doi.org/10.1029/2008GC002356, 2009.
Putnis, C. V., Ruiz-Agudo, E., and Hövelmann, J.: Coupled fluctuations in
element release during dolomite dissolution, Mineral. Mag., 78,
1355–1362, https://doi.org/10.1180/minmag.2014.078.6.01, 2014.
Romero-Mujalli, G., Hartmann, J., and Börker, J.: Temperature and CO2
dependency of global carbonate weathering fluxes – Implications for future
carbonate weathering research, Chem. Geol., 527, 118874,
https://doi.org/10.1016/j.chemgeo.2018.08.010, 2019.
Rousseau, T. C. C., Roddaz, M., Moquet, J. S., Handt Delgado, H., Calves, G.,
and Bayon, G.: Controls on the geochemistry of suspended sediments from
large tropical South American rivers (Amazon, Orinoco and Maroni), Chem.
Geol., 522, 38–54, https://doi.org/10.1016/j.chemgeo.2019.05.027, 2019.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in: Treatise on Geochemistry (Second edn.), 4, 1–51, https://doi.org/10.1016/B978-0-08-095975-7.00301-6, 2014.
Ruiz-Agudo, E., King, H. E., Patiño-Ĺpez, L. D., Putnis, C. V.,
Geisler, T., Rodriguez-Navarro, C., and Putnis, A.: Control of silicate
weathering by interface-coupled dissolutionprecipitation processes at the
mineral-solution interface, Geology, 44, 567–570, https://doi.org/10.1130/G37856.1,
2016.
Savenko, V. S.: Chemical composition of sediment load carried by rivers,
Geochem. Int., 45, 816–824, https://doi.org/10.1134/S0016702907080071, 2007.
Stroncik, N. A. and Schmincke, H.-U.: Evolution of palagonite:
Crystallization, chemical changes, and element budget, Geochem. Geophy.
Geosy., 2, 2000GC000102, https://doi.org/10.1029/2000GC000102, 2001.
Tipper, E. T., Stevenson, E. I., Alcock, V., Knight, A. C. G., Baronas, J.
J., Hilton, R. G., Bickle, M. J., Larkin, C. S., Feng, L., Relph, K. E., and
Hughes, G.: Global silicate weathering flux overestimated because of
sediment-water cation exchange, P. Natl. Acad. Sci. USA, 118, e2016430118,
https://doi.org/10.1073/pnas.2016430118, 2021.
van der Perk, M. and Vilches, A. E.: Compositional dynamics of suspended
sediment in the Rhine River: sources and controls, J. Soils Sediments,
20, 1754–1770, https://doi.org/10.1007/s11368-019-02490-5, 2020.
Viers, J., Dupré, B., and Gaillardet, J.: Chemical composition of
suspended sediments in World Rivers: New insights from a new database, Sci.
Total Environ., 407, 853–868, https://doi.org/10.1016/j.scitotenv.2008.09.053, 2009.
Virro, H., Amatulli, G., Kmoch, A., Shen, L., and Uuemaa, E.: GRQA: Global River Water Quality Archive, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-51, in review, 2021.
von Eynatten, H.: Statistical modelling of compositional trends in
sediments, Sediment. Geol., 171, 79–89,
https://doi.org/10.1016/j.sedgeo.2004.05.011, 2004.
von Eynatten, H., Tolosana-Delgado, R., and Karius, V.: Sediment generation
in modern glacial settings: Grain-size and source-rock control on sediment
composition, Sediment. Geol., 280, 80–92, https://doi.org/10.1016/j.sedgeo.2012.03.008,
2012.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D.,
Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A.,
Liermann, C. R., and Davies, P. M.: Global threats to human water security
and river biodiversity, Nature, 467, 555–561,
https://doi.org/10.1038/nature09440, 2010.
Weigelhofer, G., Hein, T., and Bondar-Kunze, E.: Phosphorus and Nitrogen
Dynamics in Riverine Systems: Human Impacts and Management Options, in: Riverine
Ecosystem Management, edited by: Schmutz, S. and Sendzimir, J., vol. 8, Springer, Cham, https://doi.org/10.1007/978-3-319-73250-3_10,
2018.
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition...
Altmetrics
Final-revised paper
Preprint