Articles | Volume 13, issue 3
Earth Syst. Sci. Data, 13, 1385–1401, 2021
https://doi.org/10.5194/essd-13-1385-2021
Earth Syst. Sci. Data, 13, 1385–1401, 2021
https://doi.org/10.5194/essd-13-1385-2021
Data description paper
31 Mar 2021
Data description paper | 31 Mar 2021

Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019

Qiang Zhang et al.

Related authors

SGD-SM 2.0: An Improved Seamless Global Daily Soil Moisture Long-term Dataset From 2002 to 2022
Qiang Zhang, Qiangqiang Yuan, Taoyong Jin, Meiping Song, and Fujun Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-80,https://doi.org/10.5194/essd-2022-80, 2022
Preprint under review for ESSD
Short summary

Related subject area

Pedology
New gridded dataset of rainfall erosivity (1950–2020) on the Tibetan Plateau
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022,https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary
An hourly ground temperature dataset for 16 high-elevation sites (3493–4377 m a.s.l.) in the Bale Mountains, Ethiopia (2017–2020)
Alexander R. Groos, Janik Niederhauser, Bruk Lemma, Mekbib Fekadu, Wolfgang Zech, Falk Hänsel, Luise Wraase, Naki Akçar, and Heinz Veit
Earth Syst. Sci. Data, 14, 1043–1062, https://doi.org/10.5194/essd-14-1043-2022,https://doi.org/10.5194/essd-14-1043-2022, 2022
Short summary
Soil respiration database at different time scales in forest ecosystems across China
Hongru Sun, Zhenzhu Xu, and Bingrui Jia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-454,https://doi.org/10.5194/essd-2021-454, 2022
Revised manuscript accepted for ESSD
Short summary
Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records
Tianyu Yue, Shuiqing Yin, Yun Xie, Bofu Yu, and Baoyuan Liu
Earth Syst. Sci. Data, 14, 665–682, https://doi.org/10.5194/essd-14-665-2022,https://doi.org/10.5194/essd-14-665-2022, 2022
Short summary
The Boreal–Arctic Wetland and Lake Dataset (BAWLD)
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021,https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary

Cited articles

Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017. 
Chan, S. K., Bindlish, R., O'Neill, P., Jackson, T., Njoku, E., Dunbar, S., and Colliander, A.: Development and assessment of the SMAP enhanced passive soil moisture product, Remote Sens. Environ., 204, 931–941, https://doi.org/10.1016/j.rse.2017.08.025, 2018. 
Chen, J., Zhu, X., Vogelmann, J. E., Gao, F., and Jin, S.: A simple and effective method for filling gaps in Landsat ETM+ SLC-off images, Remote Sens. Environ., 115, 1053–1064, https://doi.org/10.1016/j.rse.2010.12.010, 2011. 
Chen, Y., Feng, X., and Fu, B.: An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018, Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, 2021. 
Cho, E., Su, C. H., Ryu, D., Kim, H., and Choi, M.: Does AMSR2 produce better soil moisture retrievals than AMSR-E over Australia?, Remote Sens. Environ., 188, 95–105, https://doi.org/10.1016/j.rse.2016.10.050, 2017. 
Download
Short summary
Acquired daily soil moisture products are always incomplete globally (just about 30 %–80 % coverage ratio) due to the satellite orbit coverage and the limitations of soil moisture retrieval algorithms. To solve this inevitable problem, we generate long-term seamless global daily (SGD) AMSR2 soil moisture productions from 2013 to 2019. These productions are significant for full-coverage global daily hydrologic monitoring, rather than averaging as the monthly–quarter–yearly results.