Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3341-2020
https://doi.org/10.5194/essd-12-3341-2020
Data description paper
 | 
10 Dec 2020
Data description paper |  | 10 Dec 2020

A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change

Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill

Related authors

Do Southern Hemisphere tree rings record past volcanic events? A case study from New Zealand
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022,https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Introduction to the special issue “Climate of the past 2000 years: regional and trans-regional syntheses”
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019,https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Pleistocene glacial history of the New Zealand subantarctic islands
Eleanor Rainsley, Chris S. M. Turney, Nicholas R. Golledge, Janet M. Wilmshurst, Matt S. McGlone, Alan G. Hogg, Bo Li, Zoë A. Thomas, Richard Roberts, Richard T. Jones, Jonathan G. Palmer, Verity Flett, Gregory de Wet, David K. Hutchinson, Mathew J. Lipson, Pavla Fenwick, Ben R. Hines, Umberto Binetti, and Christopher J. Fogwill
Clim. Past, 15, 423–448, https://doi.org/10.5194/cp-15-423-2019,https://doi.org/10.5194/cp-15-423-2019, 2019
Short summary
Technical note: Optimizing the utility of combined GPR, OSL, and Lidar (GOaL) to extract paleoenvironmental records and decipher shoreline evolution
Amy J. Dougherty, Jeong-Heon Choi, Chris S. M. Turney, and Anthony Dosseto
Clim. Past, 15, 389–404, https://doi.org/10.5194/cp-15-389-2019,https://doi.org/10.5194/cp-15-389-2019, 2019
Connecting the Greenland ice-core and U∕Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events
Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S. M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer, and Raimund Muscheler
Clim. Past, 14, 1755–1781, https://doi.org/10.5194/cp-14-1755-2018,https://doi.org/10.5194/cp-14-1755-2018, 2018
Short summary

Related subject area

Palaeooceanography, palaeoclimatology
DINOSTRAT version 2.1-GTS2020
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024,https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024,https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024,https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024,https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024,https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary

Cited articles

Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series, Paleoceanography, 18, 1050, https://doi.org/10.1029/2002pa000846, 2003. 
Bakker, P. and Renssen, H.: Last interglacial model–data mismatch of thermal maximum temperatures partially explained, Clim. Past, 10, 1633–1644, https://doi.org/10.5194/cp-10-1633-2014, 2014. 
Bakker, P., Stone, E. J., Charbit, S., Gröger, M., Krebs-Kanzow, U., Ritz, S. P., Varma, V., Khon, V., Lunt, D. J., Mikolajewicz, U., Prange, M., Renssen, H., Schneider, B., and Schulz, M.: Last interglacial temperature evolution – a model inter-comparison, Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, 2013. 
Bard, E., Rostek, F., and Sonzogni, C.: Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry, Nature, 385, 707–710, 1997. 
Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Vostok ice core provides 160,000 year record of atmospheric CO2, Nature, 329, 408–413, 1987. 
Download
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Altmetrics
Final-revised paper
Preprint