Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-1171-2020
https://doi.org/10.5194/essd-12-1171-2020
Brief communication
 | 
20 May 2020
Brief communication |  | 20 May 2020

Historical porosity data in polar firn

Kévin Fourteau, Laurent Arnaud, Xavier Faïn, Patricia Martinerie, David M. Etheridge, Vladimir Lipenkov, and Jean-Marc Barnola

Related authors

Numerical strategies for representing Richards' equation and its couplings in snowpack models
Kévin Fourteau, Julien Brondex, Clément Cancès, and Marie Dumont
EGUsphere, https://doi.org/10.5194/egusphere-2025-444,https://doi.org/10.5194/egusphere-2025-444, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Saharan dust impacts on the surface mass balance of Argentière Glacier (French Alps)
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kevin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-1741,https://doi.org/10.5194/egusphere-2025-1741, 2025
Short summary
Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025,https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary
Combining traditional and novel techniques to increase our understanding of the lock-in depth of atmospheric gases in polar ice cores – results from the EastGRIP region
Julien Westhoff, Johannes Freitag, Anaïs Orsi, Patricia Martinerie, Ilka Weikusat, Michael Dyonisius, Xavier Faïn, Kevin Fourteau, and Thomas Blunier
The Cryosphere, 18, 4379–4397, https://doi.org/10.5194/tc-18-4379-2024,https://doi.org/10.5194/tc-18-4379-2024, 2024
Short summary
Microstructure-based simulations of the viscous densification of snow and firn
Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe
The Cryosphere, 18, 2831–2846, https://doi.org/10.5194/tc-18-2831-2024,https://doi.org/10.5194/tc-18-2831-2024, 2024
Short summary

Related subject area

Glaciology
Antarctic Ice Sheet grounding line discharge from 1996–2024
Benjamin J. Davison, Anna E. Hogg, Thomas Slater, Richard Rigby, and Nicolaj Hansen
Earth Syst. Sci. Data, 17, 3259–3281, https://doi.org/10.5194/essd-17-3259-2025,https://doi.org/10.5194/essd-17-3259-2025, 2025
Short summary
A high-resolution pan-Arctic meltwater discharge dataset from 1950 to 2021
Adam Igneczi and Jonathan Louis Bamber
Earth Syst. Sci. Data, 17, 3203–3218, https://doi.org/10.5194/essd-17-3203-2025,https://doi.org/10.5194/essd-17-3203-2025, 2025
Short summary
Smoothed monthly Greenland ice sheet elevation changes during 2003–2023
Shfaqat A. Khan, Helene Seroussi, Mathieu Morlighem, William Colgan, Veit Helm, Gong Cheng, Danjal Berg, Valentina R. Barletta, Nicolaj K. Larsen, William Kochtitzky, Michiel van den Broeke, Kurt H. Kjær, Andy Aschwanden, Brice Noël, Jason E. Box, Joseph A. MacGregor, Robert S. Fausto, Kenneth D. Mankoff, Ian M. Howat, Kuba Oniszk, Dominik Fahrner, Anja Løkkegaard, Eigil Y. H. Lippert, Alicia Bråtner, and Javed Hassan
Earth Syst. Sci. Data, 17, 3047–3071, https://doi.org/10.5194/essd-17-3047-2025,https://doi.org/10.5194/essd-17-3047-2025, 2025
Short summary
A revised and expanded deep radiostratigraphy of the Greenland Ice Sheet from airborne radar sounding surveys between 1993 and 2019
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data, 17, 2911–2931, https://doi.org/10.5194/essd-17-2911-2025,https://doi.org/10.5194/essd-17-2911-2025, 2025
Short summary
Annual mass change of the world's glaciers from 1976 to 2024 by temporal downscaling of satellite data with in situ observations
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025,https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary

Cited articles

Bader, H.: Density of ice as a function of temperature and stress, Cold Regions Research and Engineering Laboratory, US Army Material Command, 1964. a
Barnola, J.-M., Raynaud, D., Korotkevich, Y. S., and Lorius, C.: Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408, https://doi.org/10.1038/329408a0, 1987. a
Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger, C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M., Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A., Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M., Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and Blunier, T.: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12, 4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. a, b, c
Etheridge, D. M., Pearman, G. I., and Fraser, P. J.: Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core, Tellus B, 44, 282–294, https://doi.org/10.3402/tellusb.v44i4.15456, 1992. a
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M., and Morgan, V. I.: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res.-Atmos., 101, 4115–4128, https://doi.org/10.1029/95JD03410, 1996. a
Download
Short summary
Measurements of the porosity of three polar firns were conducted in the 1990s by Jean-Marc Barnola using the method of gas pycnometry. From these data, a parametrization of firn pore closure was produced and used in different published articles. However, the data have not been published in their own right yet. We have made the data publicly accessible on the PANGAEA database and here propose describing how they were obtained and used to produce the pore closure parametrization.
Share
Altmetrics
Final-revised paper
Preprint