Articles | Volume 10, issue 2
https://doi.org/10.5194/essd-10-837-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-837-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A database of 10 min average measurements of solar radiation and meteorological variables in Ostrava, Czech Republic
Marie Opálková
CORRESPONDING AUTHOR
Department of Physics, Faculty of Science, University of Ostrava, Ostrava, 70200, Czech Republic
Martin Navrátil
Department of Physics, Faculty of Science, University of Ostrava, Ostrava, 70200, Czech Republic
Vladimír Špunda
Department of Physics, Faculty of Science, University of Ostrava, Ostrava, 70200, Czech Republic
Philippe Blanc
MINES ParisTech, PSL Research University, CS 10207 – 06904 Sophia Antipolis CEDEX, France
Lucien Wald
MINES ParisTech, PSL Research University, CS 10207 – 06904 Sophia Antipolis CEDEX, France
Related authors
No articles found.
William Wandji Nyamsi, Yves-Marie Saint-Drenan, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 16, 2001–2036, https://doi.org/10.5194/amt-16-2001-2023, https://doi.org/10.5194/amt-16-2001-2023, 2023
Short summary
Short summary
The McClear service provides estimates of surface solar irradiances in cloud-free conditions. By comparing McClear estimates to 1 min measurements performed in Sub-Saharan Africa and the Maldives Archipelago in the Indian Ocean, McClear accurately estimates global irradiance and tends to overestimate direct irrradiance. This work establishes a general overview of the performance of the McClear service.
Hadrien Verbois, Yves-Marie Saint-Drenan, Vadim Becquet, Benoit Gschwind, and Philippe Blanc
EGUsphere, https://doi.org/10.5194/egusphere-2023-243, https://doi.org/10.5194/egusphere-2023-243, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Solar Surface Irradiance (SSI) estimations inferred from satellite images are essential to gain a comprehensive understanding of the solar resource, crucial in many fields. This study examines the recent data-driven methods for inferring SSI from satellite images and explores their strengths and weaknesses. The results suggest that while these methods show great promise, they sometimes dramatically underperform, and should probably be used in conjunction with physical approaches.
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022, https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
Short summary
Solar radiation received by the Earth's surface is valuable information for various fields like the photovoltaic industry or climate research. Pictures taken from satellites can be used to estimate the solar radiation from cloud reflectivity. Two issues for a good estimation are different instrumentations and orbits. We modify a widely used method that is today only used on geostationary satellites, so it can be applied on instruments on different orbits and with different sensitivities.
Mathilde Marchand, Yves-Marie Saint-Drenan, Laurent Saboret, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 17, 143–152, https://doi.org/10.5194/asr-17-143-2020, https://doi.org/10.5194/asr-17-143-2020, 2020
Short summary
Short summary
The present work deals with the spatial consistency of two well-known databases of solar radiation received at ground level: the CAMS Radiation Service database version 3.2, abbreviated as CAMS-Rad and the HelioClim-3 database version 5, abbreviated as HC3v5. Both databases are derived from satellite images. For both databases, there is no noticeable spatial trend in the standard deviation.
Claire Thomas, Stephen Dorling, William Wandji Nyamsi, Lucien Wald, Stéphane Rubino, Laurent Saboret, Mélodie Trolliet, and Etienne Wey
Adv. Sci. Res., 16, 229–240, https://doi.org/10.5194/asr-16-229-2019, https://doi.org/10.5194/asr-16-229-2019, 2019
Short summary
Short summary
Solar radiation is the second main important factors for plant growth after temperature. More precisely, PAR, which stands for Photosynthetically Active Radiation, is the portion of the solar spectrum that is efficient for photosynthesis. Due to the scarcity of ground measurements, researchers have developed methods to estimate this variable from satellite imagery. This paper compares several methods to assess satellite-derived PAR against measurements in the UK and in France.
Mathilde Marchand, Mireille Lefèvre, Laurent Saboret, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 16, 103–111, https://doi.org/10.5194/asr-16-103-2019, https://doi.org/10.5194/asr-16-103-2019, 2019
Short summary
Short summary
The present work deals with two well-known databases of hourly mean of solar irradiance that are derived from satellite imagery. The spatial consistency of the uncertainties of these databases is verified against measurements performed within a dense network of ground stations in The Netherlands from the Royal Meteorological Institute KNMI for the period 2014–2017.
The obtained results are presented for both databases. And a discussion is proposed.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Mélodie Trolliet, Jakub P. Walawender, Bernard Bourlès, Alexandre Boilley, Jörg Trentmann, Philippe Blanc, Mireille Lefèvre, and Lucien Wald
Ocean Sci., 14, 1021–1056, https://doi.org/10.5194/os-14-1021-2018, https://doi.org/10.5194/os-14-1021-2018, 2018
Alberto Troccoli, Clare Goodess, Phil Jones, Lesley Penny, Steve Dorling, Colin Harpham, Laurent Dubus, Sylvie Parey, Sandra Claudel, Duc-Huy Khong, Philip E. Bett, Hazel Thornton, Thierry Ranchin, Lucien Wald, Yves-Marie Saint-Drenan, Matteo De Felice, David Brayshaw, Emma Suckling, Barbara Percy, and Jon Blower
Adv. Sci. Res., 15, 191–205, https://doi.org/10.5194/asr-15-191-2018, https://doi.org/10.5194/asr-15-191-2018, 2018
Short summary
Short summary
The European Climatic Energy Mixes, an EU Copernicus Climate Change Service project, has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. Its concept, methodology and some results are presented here.
Mélodie Trolliet and Lucien Wald
Adv. Sci. Res., 15, 127–136, https://doi.org/10.5194/asr-15-127-2018, https://doi.org/10.5194/asr-15-127-2018, 2018
Yves-Marie Saint-Drenan, Lucien Wald, Thierry Ranchin, Laurent Dubus, and Alberto Troccoli
Adv. Sci. Res., 15, 51–62, https://doi.org/10.5194/asr-15-51-2018, https://doi.org/10.5194/asr-15-51-2018, 2018
Short summary
Short summary
Our approach allows estimating the total photovoltaic (PV) power generation in different European countries from meteorological data. It is aimed at being easy to implement since it does not require any plant information or prior knowledge on the installed PV plants.
Mathilde Marchand, Abdellatif Ghennioui, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 15, 21–29, https://doi.org/10.5194/asr-15-21-2018, https://doi.org/10.5194/asr-15-21-2018, 2018
Pascal Kuhn, Stefan Wilbert, Christoph Prahl, Dominik Garsche, David Schüler, Thomas Haase, Lourdes Ramirez, Luis Zarzalejo, Angela Meyer, Philippe Blanc, and Robert Pitz-Paal
Adv. Sci. Res., 15, 11–14, https://doi.org/10.5194/asr-15-11-2018, https://doi.org/10.5194/asr-15-11-2018, 2018
Short summary
Short summary
Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow cameras image shadows directly on the ground from an elevated position. They are used to validate other systems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high penetrations of renewable energy and solar power plants.
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Nonlin. Processes Geophys., 25, 19–37, https://doi.org/10.5194/npg-25-19-2018, https://doi.org/10.5194/npg-25-19-2018, 2018
Short summary
Short summary
We employ the Hilbert–Huang transform to study the temporal variability in time series of daily means of the surface solar irradiance (SSI) at different locations around the world. The data have a significant spectral peak corresponding to the yearly variability cycle and feature quasi-stochastic high-frequency "weather noise", irrespective of the geographical location or of the local climate. Our findings can improve models for estimating SSI from satellite images or forecasts of the SSI.
Philippe Blanc, Benoit Gschwind, Lionel Ménard, and Lucien Wald
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-141, https://doi.org/10.5194/essd-2017-141, 2018
Revised manuscript not accepted
Short summary
Short summary
The construction of worldwide maps of surface bidirectional reflectance distribution function (BRDF) parameters is presented. The original data stems from the NASA which is making available maps of BRDF parameters from the Moderate Resolution Imaging Spectroradiometer instrument. The original data has been averaged for each month for the period 2004–2011 and a spatial completion of data was performed. The dataset in NetCDF is referenced by doi:10.23646/85d2cd5f-ccaa-482e-a4c9-b6e0c59d966c.
William Wandji Nyamsi, Phillipe Blanc, John A. Augustine, Antti Arola, and Lucien Wald
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-512, https://doi.org/10.5194/bg-2017-512, 2018
Manuscript not accepted for further review
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating photosynthetically active radiation at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Philip D. Jones, Colin Harpham, Alberto Troccoli, Benoit Gschwind, Thierry Ranchin, Lucien Wald, Clare M. Goodess, and Stephen Dorling
Earth Syst. Sci. Data, 9, 471–495, https://doi.org/10.5194/essd-9-471-2017, https://doi.org/10.5194/essd-9-471-2017, 2017
Short summary
Short summary
The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity.The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from ftp://ecem.climate.copernicus.eu.
Marc Bengulescu, Philippe Blanc, Alexandre Boilley, and Lucien Wald
Adv. Sci. Res., 14, 35–48, https://doi.org/10.5194/asr-14-35-2017, https://doi.org/10.5194/asr-14-35-2017, 2017
Short summary
Short summary
This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of surface solar irradiance (SSI). Estimates of SSI from satellite-derived HelioClim-3 and radiation products from ERA-Interim and MERRA-2 re-analyses are compared to WRDC measurements. It is found that HelioClim-3 renders a more accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales.
Mathilde Marchand, Nasser Al-Azri, Armel Ombe-Ndeffotsing, Etienne Wey, and Lucien Wald
Adv. Sci. Res., 14, 7–15, https://doi.org/10.5194/asr-14-7-2017, https://doi.org/10.5194/asr-14-7-2017, 2017
Short summary
Short summary
The solar hourly irradiation received at ground level estimated by the databases HelioClim-3v4, HelioClim-3v5 and Copernicus Atmosphere Monitoring Service (CAMS) Radiation Service are compared to measurements made in stations in Oman and Abu Dhabi. The correlation coefficients are greater than 0.97. The relative bias is less than 5%. Each database captures accurately the temporal and spatial variability of the irradiance field. The three databases are reliable sources to assess solar radiation.
Claire Thomas, Laurent Saboret, Etienne Wey, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 129–136, https://doi.org/10.5194/asr-13-129-2016, https://doi.org/10.5194/asr-13-129-2016, 2016
Short summary
Short summary
HelioClim-3 (version 4) is a satellite-derived solar surface irradiance database available at d-1 until 2015. To fulfill the requirements of numerous users, a new service based on the principle of persistence has been developed; it provides solar data in real time and forecasts until the end of the current day. The service exhibits good performances for 15 min and 1 h ahead forecasts, and degrades as the temporal horizon increases. Several customers have so far purchased this service.
Marc Bengulescu, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 121–127, https://doi.org/10.5194/asr-13-121-2016, https://doi.org/10.5194/asr-13-121-2016, 2016
Short summary
Short summary
The continuous wavelet (CWT) and the Hilbert–Huang transforms (HHT) are compared for the analysis of the temporal variability on ten years of daily means of the surface solar irradiance. In both cases, the variability exhibits a plateau between scales of two days and three months that has decreasing power with increasing scale, a spectral peak corresponding to the annual cycle, and a low power regime in-between. The HHT is shown to be suitable for inspecting the variability of the measurements.
Claire Thomas, Etienne Wey, Philippe Blanc, and Lucien Wald
Adv. Sci. Res., 13, 81–86, https://doi.org/10.5194/asr-13-81-2016, https://doi.org/10.5194/asr-13-81-2016, 2016
Short summary
Short summary
Several satellite-derived solar surface irradiance databases provide long-term and homogeneously distributed information on the solar potential at ground level. This paper presents the validation results of three of these databases: HelioClim-3 (versions 4 and 5) and the CAMS radiation service, versus the measurements of 42 stations in Brazil. Despite a slight overestimation of the CAMS radiation service, the three databases are suitable for studies of the solar resources in Brazil.
Mireille Lefèvre and Lucien Wald
Adv. Sci. Res., 13, 21–26, https://doi.org/10.5194/asr-13-21-2016, https://doi.org/10.5194/asr-13-21-2016, 2016
Short summary
Short summary
The new CAMS (Copernicus Atmosphere Monitoring Service) McClear service is a practical easy-to-use tool to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. This article presents validation against 1 min measurements made at three very close stations in Israel in desert conditions. The good results demonstrate the accuracy of McClear and its ability to capture the temporal and spatial variability of the irradiance field.
Mohamed Korany, Mohamed Boraiy, Yehia Eissa, Youva Aoun, Magdy M. Abdel Wahab, Stéphane C. Alfaro, Philippe Blanc, Mossad El-Metwally, Hosni Ghedira, Katja Hungershoefer, and Lucien Wald
Earth Syst. Sci. Data, 8, 105–113, https://doi.org/10.5194/essd-8-105-2016, https://doi.org/10.5194/essd-8-105-2016, 2016
Short summary
Short summary
A database of global and diffuse components of the surface solar hourly irradiation measured from 2004 to 2010 at eight Egyptian meteorological stations is presented. At three sites, the direct component is also available. In addition, a series of meteorological variables is provided at the same hourly resolution. The measurements and quality checks applied to the data are detailed. Finally, 13500 to 29000 measurements of global and diffuse hourly irradiation are available at each site.
P. Blanc and L. Wald
Adv. Sci. Res., 13, 1–6, https://doi.org/10.5194/asr-13-1-2016, https://doi.org/10.5194/asr-13-1-2016, 2016
Short summary
Short summary
Time series of hourly measurements or modelled values of surface solar irradiation are increasingly available. Currently, no solar zenith and azimuth angles are associated to each measurement whereas such angles are necessary for handling the measured or modelled irradiations. A method is proposed to assess such angles with a great accuracy. It makes use of two modelled time-series that can be computed using the web site www.soda-pro.com for any site in the world.
Y. Eissa, P. Blanc, L. Wald, and H. Ghedira
Atmos. Meas. Tech., 8, 5099–5112, https://doi.org/10.5194/amt-8-5099-2015, https://doi.org/10.5194/amt-8-5099-2015, 2015
Short summary
Short summary
This study investigates whether the spectral aerosol optical properties of the AERONET stations are sufficient for an accurate modelling of the monochromatic beam and circumsolar irradiances under cloud-free conditions in a desert environment. By comparing the modelled irradiances against reference ground measurements, the monochromatic beam and circumsolar irradiances may very well be modelled using a set of inputs extracted from the AERONET data.
W. Wandji Nyamsi, A. Arola, P. Blanc, A. V. Lindfors, V. Cesnulyte, M. R. A. Pitkänen, and L. Wald
Atmos. Chem. Phys., 15, 7449–7456, https://doi.org/10.5194/acp-15-7449-2015, https://doi.org/10.5194/acp-15-7449-2015, 2015
Short summary
Short summary
A novel model of the absorption of radiation by ozone in the UV bands [283, 307]nm and [307, 328]nm yields improvements in the modeling of the transmissivity in these bands. This model is faster than detailed spectral calculations and is as accurate with maximum errors of respectively 0.0006 and 0.0143. How to practically implement this new parameterization in a radiative transfer model is discussed for the case of libRadtran.
W. Wandji Nyamsi, B. Espinar, P. Blanc, and L. Wald
Adv. Sci. Res., 12, 5–10, https://doi.org/10.5194/asr-12-5-2015, https://doi.org/10.5194/asr-12-5-2015, 2015
Short summary
Short summary
We propose an innovative method to estimate the Photosynthetically Active Radiation (PAR) under clear sky conditions derived from the fast approach of Kato et al. (1999). It provides very good results better than the two state-of-the-art empirical methods computing the daily mean of PAR from the daily mean of total irradiance. In addition, this technique may be extended to be able to accurately estimate other spectral quantities taking into account absorption of plants photosynthetic pigments.
P. Blanc, C. Coulaud, and L. Wald
Adv. Sci. Res., 12, 1–4, https://doi.org/10.5194/asr-12-1-2015, https://doi.org/10.5194/asr-12-1-2015, 2015
Short summary
Short summary
New Caledonia experiences a decrease in surface solar irradiation since 2004, of order of 4% of the mean yearly irradiation, and amounts to 9 W m 2. The preeminent roles of the changes in cloud cover and to a lesser extent, those in aerosol optical depth on the decrease in yearly irradiation are evidenced. The study highlights the role of data sets offering a worldwide coverage in understanding changes in solar radiation and planning large solar energy plants.
J. Badosa, J. Wood, P. Blanc, C. N. Long, L. Vuilleumier, D. Demengel, and M. Haeffelin
Atmos. Meas. Tech., 7, 4267–4283, https://doi.org/10.5194/amt-7-4267-2014, https://doi.org/10.5194/amt-7-4267-2014, 2014
Z. Qu, B. Gschwind, M. Lefevre, and L. Wald
Atmos. Meas. Tech., 7, 3927–3933, https://doi.org/10.5194/amt-7-3927-2014, https://doi.org/10.5194/amt-7-3927-2014, 2014
Short summary
Short summary
The HelioClim-3 database (HC3v3) provides records of surface solar irradiation every 15 min estimated by processing images from the geostationary meteorological Meteosat satellites using climatological data sets of atmospheric properties. A method is proposed to improve a posteriori HC3v3 by combining it with data records of advanced global aerosol property forecasts and physically consistent total column content in water vapour and ozone produced by the MACC projects.
A. Oumbe, Z. Qu, P. Blanc, M. Lefèvre, L. Wald, and S. Cros
Geosci. Model Dev., 7, 1661–1669, https://doi.org/10.5194/gmd-7-1661-2014, https://doi.org/10.5194/gmd-7-1661-2014, 2014
M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald, M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W. Kaiser, and J.-J. Morcrette
Atmos. Meas. Tech., 6, 2403–2418, https://doi.org/10.5194/amt-6-2403-2013, https://doi.org/10.5194/amt-6-2403-2013, 2013
Related subject area
Atmospheric chemistry and physics
Two years of volatile organic compound online in situ measurements at the Site Instrumental de Recherche par Télédétection Atmosphérique (Paris region, France) using proton-transfer-reaction mass spectrometry
Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products of atmospheric trace gas columns
Crowdsourced Doppler measurements of time standard stations demonstrating ionospheric variability
An extensive database of airborne trace gas and meteorological observations from the Alpha Jet Atmospheric eXperiment (AJAX)
Isotopic measurements in water vapor, precipitation, and seawater during EUREC4A
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
World Wide Lightning Location Network (WWLLN) Global Lightning Climatology (WGLC) and time series, 2022 update
Long-term ash dispersal dataset of the Sakurajima Taisho eruption for ashfall disaster countermeasure
Full-coverage 250 m monthly aerosol optical depth dataset (2000–2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China
Global Carbon Budget 2022
The polar mesospheric cloud dataset of the Balloon Lidar Experiment (BOLIDE)
An investigation of the global uptake of CO2 by lime from 1963 to 2020
Multiyear emissions of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue as well as their key driving forces in China
Impacts of the proposal of the CNG2020 strategy on aircraft emissions of China–foreign routes
Northern hemispheric atmospheric ethane trends in the upper troposphere and lower stratosphere (2006–2016) with reference to methane and propane
New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane
International Monitoring System infrasound data products for atmospheric studies and civilian applications
A benchmark dataset of diurnal- and seasonal-scale radiation, heat, and CO2 fluxes in a typical East Asian monsoon region
Updated observations of clouds by MODIS for global model assessment
Attenuated atmospheric backscatter profiles measured by the CO2 Sounder lidar in the 2017 ASCENDS/ABoVE airborne campaign
Climatology of aerosol component concentrations derived from multi-angular polarimetric POLDER-3 observations using GRASP algorithm
Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China
A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021)
Multispecies and high-spatiotemporal-resolution database of vehicular emissions in Brazil
The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe (2007–2016)
European primary emissions of criteria pollutants and greenhouse gases in 2020 modulated by the COVID-19 pandemic disruptions
Historical reconstruction of background air pollution over France for 2000–2015
Methane, carbon dioxide, hydrogen sulfide, and isotopic ratios of methane observations from the Permian Basin tower network
Observations of the lower atmosphere from the 2021 WiscoDISCO campaign
A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS
Aircraft measurements of water vapor heavy isotope ratios in the marine boundary layer and lower troposphere during ORACLES
A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches
Two decades of flask observations of atmospheric δ(O2∕N2), CO2, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland), and 3 years from Halley station (Antarctica)
LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion
Design and description of the MUSICA IASI full retrieval product
Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques
An extensive data set for in situ microphysical characterization of low-level clouds in a Finnish sub-Arctic site
CAMS-REG-v4: a state-of-the-art high-resolution European emission inventory for air quality modelling
An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm
High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality modelling
Measurements from the University of Colorado RAAVEN Uncrewed Aircraft System during ATOMIC
ML-TOMCAT: machine-learning-based satellite-corrected global stratospheric ozone profile data set from a chemical transport model
The first global 883 GHz cloud ice survey: IceCube Level 1 data calibration, processing and analysis
The global and multi-annual MUSICA IASI {H2O, δD} pair dataset
The OH (3-1) nightglow volume emission rate retrieved from OSIRIS measurements: 2001 to 2015
Advanced NO2 retrieval technique for the Brewer spectrophotometer applied to the 20-year record in Rome, Italy
Total column ozone measurements by the Dobson spectrophotometer at Belsk (Poland) for the period 1963–2019: homogenization and adjustment to the Brewer spectrophotometer
Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965
Observations of the downwelling far-infrared atmospheric emission at the Zugspitze observatory
Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, Carmen Kalalian, Alexia Baudic, Caroline Marchand, and Olivier Favez
Earth Syst. Sci. Data, 15, 1947–1968, https://doi.org/10.5194/essd-15-1947-2023, https://doi.org/10.5194/essd-15-1947-2023, 2023
Short summary
Short summary
Long-term measurements of volatile organic compounds (VOCs) have been set up to better characterize the atmospheric chemistry at the SIRTA national facility (Paris area, France). Results obtained from the first 2 years (2020–2021) confirm the importance of local sources for short-lived compounds and the role played by meteorology and air mass origins in the long-term analysis of VOCs. They also point to a substantial influence of anthropogenic on the monoterpene loadings.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Hisahiro Takashima, Yugo Kanaya, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data, 15, 1831–1870, https://doi.org/10.5194/essd-15-1831-2023, https://doi.org/10.5194/essd-15-1831-2023, 2023
Short summary
Short summary
This paper presents the theoretical basis as well as verification and validation of the Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products.
Kristina Collins, John Gibbons, Nathaniel Frissell, Aidan Montare, David Kazdan, Darren Kalmbach, David Swartz, Robert Benedict, Veronica Romanek, Rachel Boedicker, William Liles, William Engelke, David G. McGaw, James Farmer, Gary Mikitin, Joseph Hobart, George Kavanagh, and Shibaji Chakraborty
Earth Syst. Sci. Data, 15, 1403–1418, https://doi.org/10.5194/essd-15-1403-2023, https://doi.org/10.5194/essd-15-1403-2023, 2023
Short summary
Short summary
This paper summarizes radio data collected by citizen scientists, which can be used to analyze the charged part of Earth's upper atmosphere. The data are collected from several independent stations. We show ways to look at the data from one station or multiple stations over different periods of time and how it can be combined with data from other sources as well. The code provided to make these visualizations will still work if some data are missing or when more data are added in the future.
Emma L. Yates, Laura T. Iraci, Susan S. Kulawik, Ju-Mee Ryoo, Josette E. Marrero, Caroline L. Parworth, Jason M. St. Clair, Thomas F. Hanisco, Thao Paul V. Bui, Cecilia S. Chang, and Jonathan M. Dean-Day
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-32, https://doi.org/10.5194/essd-2023-32, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The Alpha Jet Atmospheric eXperiment (AJAX) flew scientific flights between 2011 and 2018 providing measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor and meteorological parameters over California and Nevada, USA. AJAX was a multi-year, multi-objective, multi-instrument program with a variety of sampling strategies resulting in an extensive dataset of interest to a wide variety of users. AJAX measurements have been published at https://asdc.larc.nasa.gov/project/AJAX.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023, https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Jed O. Kaplan and Katie Hong-Kiu Lau
Earth Syst. Sci. Data, 14, 5665–5670, https://doi.org/10.5194/essd-14-5665-2022, https://doi.org/10.5194/essd-14-5665-2022, 2022
Short summary
Short summary
Global lightning strokes are recorded continuously by a network of ground-based stations. We consolidated these point observations into a map form and provide these as electronic datasets for research purposes. Here we extend our dataset to include lightning observations from 2021.
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022, https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
Short summary
We simulated the Taisho (1914) eruption of Sakurajima volcano under various weather conditions to show how a similar eruption would affect contemporary Japan in a worst-case scenario. We provide the dataset of projected airborne ash concentration and deposit over all of Japan to support risk assessment and planning for disaster management. Our work extends previous analyses of local risks to cover distal locations in Japan where a large population could be exposed to devastating impacts.
Xiangyue Chen, Hongchao Zuo, Zipeng Zhang, Xiaoyi Cao, Jikai Duan, Chuanmei Zhu, Zhe Zhang, and Jingzhe Wang
Earth Syst. Sci. Data, 14, 5233–5252, https://doi.org/10.5194/essd-14-5233-2022, https://doi.org/10.5194/essd-14-5233-2022, 2022
Short summary
Short summary
Arid and semi-arid areas are data-scarce aerosol areas. We provide path-breaking, high-resolution, full coverage, and long time series AOD datasets (FEC AOD) to support the atmosphere and related studies in northwestern China. The FEC AOD effectively compensates for the deficiency and constraints of in situ observations and satellite AOD products. Meanwhile, FEC AOD products demonstrate a reliable accuracy and ability to capture long-term change information.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Natalie Kaifler, Bernd Kaifler, Markus Rapp, and David C. Fritts
Earth Syst. Sci. Data, 14, 4923–4934, https://doi.org/10.5194/essd-14-4923-2022, https://doi.org/10.5194/essd-14-4923-2022, 2022
Short summary
Short summary
We measured polar mesospheric clouds (PMCs), our Earth’s highest clouds at the edge of space, with a Rayleigh lidar from a stratospheric balloon. We describe how we derive the cloud’s brightness and discuss the stability of the gondola pointing and the sensitivity of our measurements. We present our high-resolution PMC dataset that is used to study dynamical processes in the upper mesosphere, e.g. regarding gravity waves, mesospheric bores, vortex rings, and Kelvin–Helmholtz instabilities.
Longfei Bing, Mingjing Ma, Lili Liu, Jiaoyue Wang, Le Niu, and Fengming Xi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-327, https://doi.org/10.5194/essd-2022-327, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
We provided CO2 uptake inventory for global lime materials from 1963–2020, The majority of CO2 uptake were from the lime in China Our dataset and the accounting mathematical model may serve as a set of tools to improve the CO2 emission inventories and provide data support for policymakers to formulate scientific and reasonable policies under “carbon neutral” target.
Yi Cheng, Shaofei Kong, Liquan Yao, Huang Zheng, Jian Wu, Qin Yan, Shurui Zheng, Yao Hu, Zhenzhen Niu, Yingying Yan, Zhenxing Shen, Guofeng Shen, Dantong Liu, Shuxiao Wang, and Shihua Qi
Earth Syst. Sci. Data, 14, 4757–4775, https://doi.org/10.5194/essd-14-4757-2022, https://doi.org/10.5194/essd-14-4757-2022, 2022
Short summary
Short summary
This work establishes the first emission inventory of carbonaceous aerosols from cooking, fireworks, sacrificial incense, joss paper burning, and barbecue, using multi-source datasets and tested emission factors. These emissions were concentrated in specific periods and areas. Positive and negative correlations between income and emissions were revealed in urban and rural regions. The dataset will be helpful for improving modeling studies and modifying corresponding emission control policies.
Qiang Cui, Yilin Lei, and Bin Chen
Earth Syst. Sci. Data, 14, 4419–4433, https://doi.org/10.5194/essd-14-4419-2022, https://doi.org/10.5194/essd-14-4419-2022, 2022
Short summary
Short summary
This paper calculates the emissions of six kinds of emissions from China’s foreign routes from 2014 to 2019, enriching the existing database. This paper applies the improved BFFM2-FOA-FPM method and ICAO method to calculate the emissions, which can combine CO2 and non-CO2 emissions calculations and calculate the aircraft types' emission intensity.
Mengze Li, Andrea Pozzer, Jos Lelieveld, and Jonathan Williams
Earth Syst. Sci. Data, 14, 4351–4364, https://doi.org/10.5194/essd-14-4351-2022, https://doi.org/10.5194/essd-14-4351-2022, 2022
Short summary
Short summary
We present a northern hemispheric airborne measurement dataset of atmospheric ethane, propane and methane and temporal trends for the time period 2006–2016 in the upper troposphere and lower stratosphere. The growth rates of ethane, methane, and propane in the upper troposphere are -2.24, 0.33, and -0.78 % yr-1, respectively, and in the lower stratosphere they are -3.27, 0.26, and -4.91 % yr-1, respectively, in 2006–2016.
Malika Menoud, Carina van der Veen, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, James L. France, Rebecca E. Fisher, Hossein Maazallahi, Mila Stanisavljević, Jarosław Nęcki, Katarina Vinkovic, Patryk Łakomiec, Janne Rinne, Piotr Korbeń, Martina Schmidt, Sara Defratyka, Camille Yver-Kwok, Truls Andersen, Huilin Chen, and Thomas Röckmann
Earth Syst. Sci. Data, 14, 4365–4386, https://doi.org/10.5194/essd-14-4365-2022, https://doi.org/10.5194/essd-14-4365-2022, 2022
Short summary
Short summary
Emission sources of methane (CH4) can be distinguished with measurements of CH4 stable isotopes. We present new measurements of isotope signatures of various CH4 sources in Europe, mainly anthropogenic, sampled from 2017 to 2020. The present database also contains the most recent update of the global signature dataset from the literature. The dataset improves CH4 source attribution and the understanding of the global CH4 budget.
Patrick Hupe, Lars Ceranna, Alexis Le Pichon, Robin S. Matoza, and Pierrick Mialle
Earth Syst. Sci. Data, 14, 4201–4230, https://doi.org/10.5194/essd-14-4201-2022, https://doi.org/10.5194/essd-14-4201-2022, 2022
Short summary
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Robert Pincus, Paul A. Hubanks, Steven A. Platnick, Kerry Meyer, Robert E. Holz, Denis Botambekov, and Casey J. Wall
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-282, https://doi.org/10.5194/essd-2022-282, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes a new global dataset of cloud properties observed by by a specific satellite program, created to facilitate comparison with a matching observational proxy used in climate models. Statistics are accumulated over daily and monthly time scales on an equal-angle grid. Statistics include cloud detection, cloud-top pressure, and cloud optical properties. Joint histograms are of several variable pairs are also available.
Xiaoli Sun, Paul T. Kolbeck, James B. Abshire, Stephan R. Kawa, and Jianping Mao
Earth Syst. Sci. Data, 14, 3821–3833, https://doi.org/10.5194/essd-14-3821-2022, https://doi.org/10.5194/essd-14-3821-2022, 2022
Short summary
Short summary
We describe the measurement and data processing of the atmospheric backscatter profile data by our CO2 Sounder lidar from the 2017 ASCENDS/ABoVE airborne campaign. It is an additional data set from the column average CO2 mixing ratio measurements from laser sounding. It not only helps to interpret the CO2 mixing ratio measurement but also give a standalone data set for atmosphere backscattering study at 1572 nm wavelength.
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Short summary
A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou
Earth Syst. Sci. Data, 14, 3197–3211, https://doi.org/10.5194/essd-14-3197-2022, https://doi.org/10.5194/essd-14-3197-2022, 2022
Short summary
Short summary
Historical long-term PM2.5 records with high temporal resolution are essential but lacking for research and environmental management. Here, we reconstruct site-based and gridded PM2.5 datasets at 6-hour intervals from 1960 to 2020 that combine visibility, meteorological data, and emissions based on a machine learning model with extracted spatial features. These two PM2.5 datasets will lay the foundation of research studies associated with air pollution, climate change, and aerosol reanalysis.
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022, https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Short summary
A 10-year (2010–2019) global monthly terrestrial NEE dataset (GCAS2021) was inferred from the GOSAT ACOS v9 XCO2 product. It shows strong carbon sinks over eastern N. America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and Southeast Asia. It has good quality and can reflect the impacts of extreme climates and large-scale climate anomalies on carbon fluxes well. We believe that this dataset can contribute to regional carbon budget assessment and carbon dynamics research.
Leonardo Hoinaski, Thiago Vieira Vasques, Camilo Bastos Ribeiro, and Bianca Meotti
Earth Syst. Sci. Data, 14, 2939–2949, https://doi.org/10.5194/essd-14-2939-2022, https://doi.org/10.5194/essd-14-2939-2022, 2022
Short summary
Short summary
In Brazil, goods are essentially transported by a growing vehicular fleet. However, the atmospheric emissions of this prime source of air pollution are still unknown in most places. In this paper, we present the BRAzilian Vehicular Emissions inventory Software (BRAVES) database, containing detailed information on vehicular emissions of multiple types of air pollutants and covering the entire Brazilian territory. These data are crucial to understanding the air pollution in Brazil.
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022, https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary
Short summary
MONARCH reanalysis of desert dust aerosols extends the existing observation-based information for mineral dust monitoring by providing 3-hourly upper-air, surface and total column key geophysical variables of the dust cycle over Northern Africa, the Middle East and Europe, at a 0.1° horizontal resolution in a rotated grid, from 2007 to 2016. This work provides evidence of the high accuracy of this data set and its suitability for air quality and health and climate service applications.
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Jukka-Pekka Jalkanen, Elisa Majamäki, Lasse Johansson, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2521–2552, https://doi.org/10.5194/essd-14-2521-2022, https://doi.org/10.5194/essd-14-2521-2022, 2022
Short summary
Short summary
To control the spread of the COVID-19 disease, European governments implemented mobility restriction measures that resulted in an unprecedented drop in anthropogenic emissions. This work presents a dataset of emission adjustment factors that allows quantifying changes in 2020 European primary emissions per country and pollutant sector at the daily scale. The resulting dataset can be used as input in modelling studies aiming at quantifying the impact of COVID-19 on air quality levels.
Elsa Real, Florian Couvidat, Anthony Ung, Laure Malherbe, Blandine Raux, Alicia Gressent, and Augustin Colette
Earth Syst. Sci. Data, 14, 2419–2443, https://doi.org/10.5194/essd-14-2419-2022, https://doi.org/10.5194/essd-14-2419-2022, 2022
Short summary
Short summary
This paper describes a 16-year (2000–2015) dataset of air pollution concentrations and air quality indicators over France combining background measurements and modeling. Hourly concentrations and regulatory indicators of NO2, O3, PM10 and PM2.5 are produced with 4 km spatial resolution. The overall dataset has been cross-validated and showed overall very good results. We hope that this open-access publication will facilitate further studies on the impacts of air pollution.
Vanessa C. Monteiro, Natasha L. Miles, Scott J. Richardson, Zachary Barkley, Bernd J. Haupt, David Lyon, Benjamin Hmiel, and Kenneth J. Davis
Earth Syst. Sci. Data, 14, 2401–2417, https://doi.org/10.5194/essd-14-2401-2022, https://doi.org/10.5194/essd-14-2401-2022, 2022
Short summary
Short summary
We describe a network of five ground-based in situ towers, equipped to measure concentrations of methane, carbon dioxide, hydrogen sulfide, and the isotopic ratio of methane, in the Permian Basin, United States. The main goal is to use methane concentrations with atmospheric models to determine methane emissions from one of the Permian sub-basins. These datasets can improve emissions estimations, leading to best practices in the oil and natural gas industry, and policies for emissions reduction.
Patricia A. Cleary, Gijs de Boer, Joseph P. Hupy, Steven Borenstein, Jonathan Hamilton, Ben Kies, Dale Lawrence, R. Bradley Pierce, Joe Tirado, Aidan Voon, and Timothy Wagner
Earth Syst. Sci. Data, 14, 2129–2145, https://doi.org/10.5194/essd-14-2129-2022, https://doi.org/10.5194/essd-14-2129-2022, 2022
Short summary
Short summary
A field campaign, WiscoDISCO-21, was conducted at the shoreline of Lake Michigan to better understand the role of marine air in pollutants. Two uncrewed aircraft systems were equipped with sensors for meteorological variables and ozone. A Doppler lidar instrument at a ground station measured horizontal and vertical winds. The overlap of observations from multiple instruments allowed for a unique mapping of the meteorology and pollutants as a marine air mass moved over land.
Jianping Guo, Jian Zhang, Tianmeng Chen, Kaixu Bai, Jia Shao, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-150, https://doi.org/10.5194/essd-2022-150, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with a good accuracy compared to radiosonde is generated via machine learning algorithms, covering a time period from 2011 to 2021 with a 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input while PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Dean Henze, David Noone, and Darin Toohey
Earth Syst. Sci. Data, 14, 1811–1829, https://doi.org/10.5194/essd-14-1811-2022, https://doi.org/10.5194/essd-14-1811-2022, 2022
Short summary
Short summary
The heavy isotope ratios of water vapor can provide information on the movement of water in the atmosphere, such as water vapor's origin of evaporation (e.g., land vs. sea), or detection of prior precipitation in an air mass. This paper presents the water vapor isotope dataset collected via aircraft as part of the NASA ORACLES project. The data are presented to demonstrate their potential for providing a comprehensive perspective on moisture transport in this region.
Xing Yan, Zhou Zang, Zhanqing Li, Nana Luo, Chen Zuo, Yize Jiang, Dan Li, Yushan Guo, Wenji Zhao, Wenzhong Shi, and Maureen Cribb
Earth Syst. Sci. Data, 14, 1193–1213, https://doi.org/10.5194/essd-14-1193-2022, https://doi.org/10.5194/essd-14-1193-2022, 2022
Short summary
Short summary
This study developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF was extensively evaluated against ground-truth AERONET data and tested on a global scale against conventional satellite-based FMF products to demonstrate its superiority in accuracy.
Linh N. T. Nguyen, Harro A. J. Meijer, Charlotte van Leeuwen, Bert A. M. Kers, Hubertus A. Scheeren, Anna E. Jones, Neil Brough, Thomas Barningham, Penelope A. Pickers, Andrew C. Manning, and Ingrid T. Luijkx
Earth Syst. Sci. Data, 14, 991–1014, https://doi.org/10.5194/essd-14-991-2022, https://doi.org/10.5194/essd-14-991-2022, 2022
Short summary
Short summary
We present 20-year flask sample records of atmospheric CO2, O2, and APO from the stations Lutjewad (the Netherlands), Mace Head (Ireland), and Halley (Antarctica). Data from Lutjewad and Mace Head show similar long-term trends and seasonal cycles, agreeing with measurements from another station (Weybourne, UK). Measurements from Halley agree partly with those conducted by other institutes. From our 2002–2018 Lutjewad and Mace Head records, we find good agreement for global ocean carbon uptake.
Kaixu Bai, Ke Li, Mingliang Ma, Kaitao Li, Zhengqiang Li, Jianping Guo, Ni-Bin Chang, Zhuo Tan, and Di Han
Earth Syst. Sci. Data, 14, 907–927, https://doi.org/10.5194/essd-14-907-2022, https://doi.org/10.5194/essd-14-907-2022, 2022
Short summary
Short summary
The Long-term Gap-free High-resolution Air Pollutant concentration dataset, providing gap-free aerosol optical depth (AOD) and PM2.5 and PM10 concentration with a daily 1 km resolution for 2000–2020 in China, is generated and made publicly available. This is the first long-term gap-free high-resolution aerosol dataset in China and has great potential to trigger multidisciplinary applications in Earth observations, climate change, public health, ecosystem assessment, and environment management.
Matthias Schneider, Benjamin Ertl, Christopher J. Diekmann, Farahnaz Khosrawi, Andreas Weber, Frank Hase, Michael Höpfner, Omaira E. García, Eliezer Sepúlveda, and Douglas Kinnison
Earth Syst. Sci. Data, 14, 709–742, https://doi.org/10.5194/essd-14-709-2022, https://doi.org/10.5194/essd-14-709-2022, 2022
Short summary
Short summary
We present atmospheric H2O, HDO / H2O ratio, N2O, CH4, and HNO3 data generated by the MUSICA IASI processor using thermal nadir spectra measured by the IASI satellite instrument. The data have global daily coverage and are available for the period between October 2014 and June 2021. Multiple possibilities of data reuse are offered by providing each individual data product together with information about retrieval settings and the products' uncertainty and vertical representativeness.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Konstantinos Matthaios Doulgeris, Heikki Lihavainen, Anti-Pekka Hyvärinen, Veli-Matti Kerminen, and David Brus
Earth Syst. Sci. Data, 14, 637–649, https://doi.org/10.5194/essd-14-637-2022, https://doi.org/10.5194/essd-14-637-2022, 2022
Short summary
Short summary
We produced and summarized data sets obtained from two cloud ground-based spectrometers (CAPS and FSSP-100 ground setups) during 8 years of Pallas Cloud Experiment campaigns conducted in autumn from 2004 until 2019 along with several meteorological variables. The campaigns took place in the Finnish sub-Arctic region in a clear environment in temperatures that were usually below zero. This data set provides a helpful contribution to cloud microphysics processes.
Jeroen Kuenen, Stijn Dellaert, Antoon Visschedijk, Jukka-Pekka Jalkanen, Ingrid Super, and Hugo Denier van der Gon
Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, https://doi.org/10.5194/essd-14-491-2022, 2022
Short summary
Short summary
This paper presents an 18-year time series for anthropogenic emissions for the main air pollutants in Europe, distinguishing 15 main source categories. It provides a complete overview of emissions to air and is designed to support air quality modelling. The data build where possible on official country total emissions used in the policy processes, but where necessary alternative data were used. The emission data are spatially distributed at high resolution (~ 6 km x 6 km) in a consistent way.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Katerina Sindelarova, Jana Markova, David Simpson, Peter Huszar, Jan Karlicky, Sabine Darras, and Claire Granier
Earth Syst. Sci. Data, 14, 251–270, https://doi.org/10.5194/essd-14-251-2022, https://doi.org/10.5194/essd-14-251-2022, 2022
Short summary
Short summary
Three new datasets of global emissions of biogenic volatile organic compounds (BVOCs) emitted into the atmosphere from terrestrial vegetation were developed for air quality modelling using the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) driven by European Centre for Medium-Range Weather Forecasts meteorological reanalyses for the years 2000–2019. The datasets include updates of the isoprene emission factors in Europe and study the impact of land cover change on emissions.
Gijs de Boer, Steven Borenstein, Radiance Calmer, Christopher Cox, Michael Rhodes, Christopher Choate, Jonathan Hamilton, Jackson Osborn, Dale Lawrence, Brian Argrow, and Janet Intrieri
Earth Syst. Sci. Data, 14, 19–31, https://doi.org/10.5194/essd-14-19-2022, https://doi.org/10.5194/essd-14-19-2022, 2022
Short summary
Short summary
This article provides a summary of the collection of atmospheric data over the near-coastal zone upwind of Barbados during the ATOMIC and EUREC4A field campaigns. These data were collected to improve our understanding of the structure and dynamics of the lower atmosphere in the tropical trade-wind regime over the Atlantic Ocean and the influence of that portion of the atmosphere on the development and maintenance of clouds.
Sandip S. Dhomse, Carlo Arosio, Wuhu Feng, Alexei Rozanov, Mark Weber, and Martyn P. Chipperfield
Earth Syst. Sci. Data, 13, 5711–5729, https://doi.org/10.5194/essd-13-5711-2021, https://doi.org/10.5194/essd-13-5711-2021, 2021
Short summary
Short summary
High-quality long-term ozone profile data sets are key to estimating short- and long-term ozone variability. Almost all the satellite (and chemical model) data sets show some kind of bias with respect to each other. This is because of differences in measurement methodologies as well as simplified processes in the models. We use satellite data sets and chemical model output to generate 42 years of ozone profile data sets using a random-forest machine-learning algorithm that is named ML-TOMCAT.
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021, https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary
Short summary
Launched from the International Space Station, the IceCube radiometer orbited the Earth for 15 months and collected the first spaceborne radiance measurements at 874–883 GHz. This channel is uniquely important to fill in the sensitivity gap between operational visible–infrared and microwave remote sensing for atmospheric cloud ice and snow. This paper delivers the IceCube Level 1 radiance data processing algorithm and provides a data quality evaluation and discussion on its scientific merit.
Christopher J. Diekmann, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira García, Farahnaz Khosrawi, Eliezer Sepúlveda, Peter Knippertz, and Peter Braesicke
Earth Syst. Sci. Data, 13, 5273–5292, https://doi.org/10.5194/essd-13-5273-2021, https://doi.org/10.5194/essd-13-5273-2021, 2021
Short summary
Short summary
The joint analysis of different stable water isotopes in water vapour is a powerful tool for investigating atmospheric moisture pathways. This paper presents a novel global and multi-annual dataset of H2O and HDO in mid-tropospheric water vapour by using data from the satellite sensor Metop/IASI. Due to its unique combination of coverage and resolution in space and time, this dataset is highly promising for studying the hydrological cycle and its representation in weather and climate models.
Anqi Li, Chris Z. Roth, Adam E. Bourassa, Douglas A. Degenstein, Kristell Pérot, Ole Martin Christensen, and Donal P. Murtagh
Earth Syst. Sci. Data, 13, 5115–5126, https://doi.org/10.5194/essd-13-5115-2021, https://doi.org/10.5194/essd-13-5115-2021, 2021
Short summary
Short summary
The nightglow emission originating from the vibrationally excited hydroxyl layer (about 85 km altitude) has been measured by the infrared imager (IRI) on the Odin satellite for more than 15 years. In this study, we document the retrieval steps, the resulting volume emission rates and the layer characteristics. Finally, we use the monthly zonal averages to demonstrate the fidelity of the data set. This unique, long-term data set will be valuable for studying various topics near the mesopause.
Henri Diémoz, Anna Maria Siani, Stefano Casadio, Anna Maria Iannarelli, Giuseppe Rocco Casale, Vladimir Savastiouk, Alexander Cede, Martin Tiefengraber, and Moritz Müller
Earth Syst. Sci. Data, 13, 4929–4950, https://doi.org/10.5194/essd-13-4929-2021, https://doi.org/10.5194/essd-13-4929-2021, 2021
Short summary
Short summary
A 20-year (1996–2017) record of nitrogen dioxide column densities collected in Rome by a Brewer spectrophotometer is presented, together with the novel algorithm employed to re-evaluate the series. The high quality of the data is demonstrated by comparison with reference instrumentation, including a co-located Pandora spectrometer. The data can be used for satellite validation and identification of NO2 trends. The method can be replicated on other instruments of the international Brewer network.
Janusz W. Krzyścin, Bonawentura Rajewska-Więch, and Janusz Jarosławski
Earth Syst. Sci. Data, 13, 4425–4436, https://doi.org/10.5194/essd-13-4425-2021, https://doi.org/10.5194/essd-13-4425-2021, 2021
Short summary
Short summary
The article presents a dataset comprising all manual observations of total column ozone taken at Belsk (Poland) from 23 March 1963 up to 31 December 2019 by the Dobson spectrophotometer. The dataset contains results of ~115 000 intraday measurements. The original data can be used for trend analyses as the instrument's aging has not been detected. For comparative research with other ozone data sources, correction procedures (for adjustments to the Brewer spectrophotometer output) are proposed.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Albeht Rodríguez-Vega, Sarah Shallcross, Sandip S. Dhomse, Giorgio Fiocco, and Gerald W. Grams
Earth Syst. Sci. Data, 13, 4407–4423, https://doi.org/10.5194/essd-13-4407-2021, https://doi.org/10.5194/essd-13-4407-2021, 2021
Short summary
Short summary
The first multi-year stratospheric aerosol lidar dataset was recovered and recalibrated. The vertical profile dataset, January 1964 to August 1965 at Lexington, MA, and July to August 1964 at Fairbanks, AK, provides info on volcanic forcing after the 1963 Agung eruption. Applying two-way transmittance correction to the original dataset reveals data variations, with corrected stratospheric aerosol optical depth (sAOD) highest in 1965 with the highest 532 nm sAOD peak at 0.07 in March 1965.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Cited articles
Barillot, R., Frak, E., Combes, D., Durand, J. L., and
Escobar-Gutiérrez, A. J.: What determines the complex kinetics of
stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf
transpiration, J. Exp. Bot., 61, 2795–2806, https://doi.org/10.1093/jxb/erq115, 2010.
Behn, H., Albert, A., Marx, F., Noga, G., and Ulbrich, A.: Ultraviolet-B and
photosynthetically active radiation interactively affect yield and pattern
of monoterpenes in leaves of peppermint (Mentha × piperita L.), J. Agric. Food
Chem., 58, 7361–7367, https://doi.org/10.1021/jf9046072, 2010.
Casal, J. J.: Photoreceptor Signaling Networks in Plant Responses to Shade,
Annu. Rev. Plant Biol., 64, 403–427, https://doi.org/10.1146/annurev-arplant-050312-120221, 2013.
EEA (European Environment Agency): Urban Atlas, available at:
https://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-gis-data (last access: 10 February 2018),
2017.
Elshout, S. van den, Léger, K., and Nussio, F.: Comparing urban air
quality in Europe in real time. A review of existing air quality indices and
the proposal of a common alternative, Environ. Int., 34, 720–726,
https://doi.org/10.1016/j.envint.2007.12.011, 2008.
Grifoni, D., Carreras, G., Zipoli, G., Sabatini, F., Dalla Marta, A., and
Orlandini, S.: Row orientation effect on UV-B, UV-A and PAR solar
irradiation components in vineyards at Tuscany, Italy, Int. J.
Biometeorol., 52, 755–763, https://doi.org/10.1007/s00484-008-0168-1, 2008.
Jacovides, C. P., Timvios, F. S., Papioannou, G., Asimakopoulos, D. N., and
Theofilou, C. M.: Ratio of PAR to broadband solar radiation measured in
Cyprus, Agric. For. Meteorol., 121, 135–140, https://doi.org/10.1016/j.agrformet.2003.10.001, 2004.
Jančík, P., Pavlíková, I., Bita, J., and Hladký, D.:
Atlas ostravského ovzduší [The Guide of Ostrava Climate],
Ostrava, VŠB-TUO Ostrava, 2013.
Johkan, M., Shoji, K., Goto, F., Hashida S., and Yoshihara, T.: Blue
light-emitting diode light irradiation of seedlings improves seedling
quality and growth after transplanting in red leaf lettuce, HortScience, 45,
1809–1814, 2010.
Journée, M. and Bertrand, C.: Quality control of solar radiation data
within the RMIB solar measurements network, Sol. Energy, 85,
72–86, https://doi.org/10.1016/j.solener.2010.10.021, 2011.
Korany, M., Boraiy, M., Eissa, Y., Aoun, Y., Abdel Wahab, M. M., Alfaro, S.
C., Blanc, P., El-Metwally, M., Ghedira, H., Hungershoefer, K., and Wald, L.:
A database of multi-year (2004–2010) quality-assured surface solar hourly
irradiation measurements for the Egyptian territory, Earth Syst. Sci. Data,
8, 105–113, https://doi.org/10.5194/essd-8-105-2016, 2016.
Kurucz, R. L.: Synthetic infrared spectra, in: Infrared Solar Physics, IAU
Symp. 154, edited by: Rabin, D. M. and Jefferies, J. T., Kluwer, Acad.,
Norwell, MA, 1992.
Lambers, H., Chapin, III F. S., and Pons, T. L.: Plant Physiological
Ecology, Springer, 2008.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package
for radiative transfer calculations – description and examples of use, Atmos.
Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Materová, Z., Sobotka, R., Zdvihalová, B., Oravec, M., Nezval, J.,
Karlický, V., Vrábl, D., Štroch, M., and Špunda, V.:
Monochromatic green light induces and aberrant accumulation of
geranylgeranyled chlorophylls in plants, Plant Physio. Biochem.,
116, 48–56, https://doi.org/10.1016/j.plaphy.2017.05.002, 2017.
Meijkamp, B., Aerts, R., Staaij van de, J. W. M., Tosserams, M., Ernst W. H.
O., and Rozema, J.: Effects of UV-B on secondary metabolites in plants, in:
Stratospheric Ozone Depletion: The Effects of Enhanced
UV-B Radiation on Terrestrial Ecosystems, edited by: Rozema, J.,
Leiden: Backhuys Publishers, 71–99, 1999.
Mims III, F. M. and Frederick, J. E.: Cumulus clouds and UV-B, Nature, 371,
291, https://doi.org/10.1038/371291a0, 1994.
Muneer, T. and Fairooz, F.: Quality control of solar radiation and sunshine
measurements – lessons learnt from processing worldwide databases, Build.
Serv. Eng. Res. Technol., 23, 151–166, https://doi.org/10.1191/0143624402bt038oa,
2002.
Navrátil, M., Špunda, V., Marková, I., and Janouš, D.:
Spectral composition of photosynthetically active radiation penetrating into
a Norway spruce canopy: the opposite dynamics of the blue/red spectral ratio
during clear and overcast days, Trees, 21, 311–320, https://doi.org/10.1007/s00468-007-0124-4, 2007.
Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K., and Kurata, K.: Effect
of light quality on growth and vegetable quality in leaf lettuce, spinach
and komatsuna, Environ. Control Biol., 45, 189–198,
https://doi.org/10.2525/ecb.45.189, 2007.
Opálková, M., Navrátil, M., Spunda, V., Blanc, P., and Wald, L:
High-resolution radiation and meteorological variables measurements for
Ostrava, Czech Republic, PANGEA, https://doi.org/10.1594/PANGAEA.879722, 2017.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the
Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11,
1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Reddy, A. R. and Raghavendra, A. S.: Photooxidative stress, in: Physiology and Molecular
Biology of Stress Tolerance, edited by: Madhava Rao,
K. V., Raghavendra, A. S., and Reddy, K. J., Springer, 2006.
Roesch, A., Wild, M., Ohmura, A., Dutton, E. G., Long, C. N., and Zhang, T.:
Assessment of BSRN radiation records for the computation of monthly means,
Atmos. Meas. Tech., 4, 339–354, https://doi.org/10.5194/amt-4-339-2011, 2011.
Sayre, R. M. and Kligman, L. H.: Discrepancies in the Measurement of
Spectral Sources, Photochem. Photobiol., 55, 141–143,
https://doi.org/10.1111/j.1751-1097.1992.tb04221.x, 1992.
Tilbrook, K., Arongaus, A. B., Binkert, M., Heijde, M., Yin, R., and Ulm,
R.: The UVR8 UVB-Photoreceptor: Perception, Signaling and Response,
Arabidopsis Book, 11, e0164, https://doi.org/10.1199/tab.0164, 2013.
Verdaguer, D., Jansen, M. A., Llorens, L., Morales, L. O., and Neugart, S.:
UV-A radiation effects on higher plants: Exploring the known unknown, Plant
Sci., 255, 72–81, https://doi.org/10.1016/j.plantsci.2016.11.014, 2017.
Wald, L.: Solar Radiation Energy (Fundamentals and Theory). In Solar Energy
Conversion and Photoenergy Systems, in: Encyclopedia of Life Support Systems (EOLSS),
edited by: Blanco, J. and
Malato, S., Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK,
available at: http://www.eolss.net, last access: 17 July, 2007.
Weissmannová, H. et al.: Ostravsko [The Ostrava region],
in: Chráněná
území ČR, svazek X [Protected areas of the Czech Republic Volume X],
edited by: Mackovčin, P. and Sedláček, M., AOPK ČR & Ekocentrum Brno,
ISBN 80-86064-67-0, Praha, 456 pp., 2004.
WMO: CIMO Guide to meteorological instruments and methods of observation,
WMO-No 8, 2008 edition updated in 2014, World Meteorological Organization,
Commission for Instruments and Methods of Observation, Geneva, Switzerland,
2014.
Younes, S., Claywell, R., and Muneer, T.: Quality control of solar radiation
data, present status and proposed new approaches, Energy, 30, 1533–1549,
https://doi.org/10.1016/j.energy.2004.04.031, 2005.
Zhou, Y. and Savijärvi, H.: The effect of aerosols on long wave
radiation and global warming, Atmos. Res., 135–136, 102–111,
https://doi.org/10.1016/j.atmosres.2013.08.009, 2014.
Short summary
Files with irradiances of a few spectral regions of incident solar radiation and some meteorological variables including concentrations of some air pollutants measured for 2.5 years at 3 stations in Ostrava (CZ) were prepared. Special attention was given to the data quality and the process of quality check was described. This database offers an ensemble of data with high temporal resolution and creates a source on radiation in relation with environment and vegetation in polluted areas of cities.
Files with irradiances of a few spectral regions of incident solar radiation and some...